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A MAXIMUM PRINCIPLE FOR THE TIME OPTIMAL CONTROL
PROBLEM IN BANACH SPACES
by
ovidiu Carjd
Paculty of Mathematics
University of Jasi
Iagi 6600, Romania

Abstract A weak version of the maximum principle for the time optimal
control problem in Banach spaces lsg obtained. An example involving li-
near retarded systems is derived.,

1, INTRORUCTION

We are concefned here with the time optimal control problem for
the equation
(1.)) xt(t) = Ax(t) + Bu(t) t>o0

X

x(0) b

(L.2) Fithde = A x(t)

where x(.) takes values in reflexiveBanach Space I, BeL(U,E), Ae¢
L(U,F);U,F being other Banach Spaces,4 is the infinitesimal generator
of a strongly continuous semigroup {S(t)-t:;sj on E,

Vie_ denote by L(X, Y) the algebra of linear continuous operator from

VIR WM AAW W W

to Y endowed with the usual norm H-HL(X,Y)O
We shall consider the 'mild".solution of (l.1l) , i.e.,
"
) x(t) = S(t)x, +S $(4 - 8)Bu(s)ds
. ;

4 thus we may rewrite (l.2) such as

. 4) 3 - Asit)x +AS S (% ws,Bu(s)d_s.

at_xc ¢ E and yle;F be fixed and for M > o we denote

2 (gry): (M €M ace. t >0

L o5

N
t
D=y
£
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4 trajectory y(.) is admigsible if BhO)m K 4o ThE) = 3 for some
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t > 0.Since trajectories are always gontinuous,there exists a gmallest
t+ for which y(t) = tholda; this number will be called the trangition
time of y(o) o The infimum T of the transition times of all admissible
controls UJELM ig called the optimal time.The time cptlmal eontrol
problem is the followinge
(8) Does there exists a control u é=Lh(optlma1 control) such that
y(T) = yl? (T ig optimal time) ' '

(b) Assuming u, exists , haw can it be cbaracterized and what
properti@a it hes?The answer to (a) is generally affirmative .Using
gimilar assunption to those of Lemma 2.1 in[ 4] , the existence of
optimai control for our problem is assured.

The question (b) was stu&ied for some particular cases:([4] ,
[5] ¢ [6]0) The hasic technique used in these papers is the applica=
tion one of the standard acparatio* theorens for convex sets.The dif-
ficulty consists in the sets which are considered in a netural way
(seeflT defined in (3.4)), have interior void in the state space.
Phe seperation theorem is applied theh in other apaces,suitable
chosen,which have stronger topologies +For example Fattorini)4['4] 9
uses D(A) with the graph norm and cbtains a version of the maximum
principle without restrictions on S{%) €Th,” 2. ¥)and“in fhe case
when the.ﬁemigrgup is snalytic .ané E is a Hilbert space obtaing:

Corollary 5.2. [4]. If 0gt<T , there exists x €H , with

*

1.6)  u,ls) = S (e-a)x,]  * O st

&6(°) being the optimal control.

Tn the papers mentionad above U = E = F and B =/ =1 are consi=-
dered (Here I is the identical operator in E)The seme problem is stu-
..died by Henry too, 71 . in the case of parabolic equations , uging
the analytic semigroups, im fact.

In this note we shall demonstrate a similar result with (1.6},

without preposing the analyticity of the gemigroup and in the



o
framework genérally indicated at the beginning .We also mention that
the introduction of the operatoxr /\ in this study is determined by
the fact that in certain problems which are written in the form (1l.1)
(e.go.the equation with delay) the controllability ig not studied in
the whole space but on certain subspaces .In this cage,jW a projection |

operators appears,for example see [l] o r10] o

Phe space in which we shall apply the geparation theorem is gimi-
1ar with that used by Schmidt [6] ;, (he studies the bang-bang principle

for parabolic equations with boundary'control) and by Henryl:7l o
2, PRELIMINARIES

We introduce the operator V(t): 1.° (0,%;4) E,by

t : :
(2.1) V(t)u = ( S(t-s)Bu(slds , t >0

O

and S0 we may rewrite (L.4) a8

(2.2) y(t) = As(t)z, + A V().

The basic assumption which will be in effect throughout this paper

ig the null controllability property of the systen (1.1) (Le2) ,iee0

(2.3) [\S(t)E<:./&V(t)L°°(O,t;U) for every t> O,
Denote by

(2.4) Rt(xo,Loo(o;t;U)) a{_y € F; there exists ucaLoo(o,%;U )

such that y = A S($)x, + A V(t)n

end so (2.3) cen be writicn as

(2:5) A S(4)E C Ry(0, L% (0,8;5W) |

We introduce on LOQ(R+;U) the following ©Oper&ioTss
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(2.6) (Jsu)(ﬁ) =u(t + 8) forez o
) if o <t <8l :
(d5u) (t) = . for s<o |
wt seaplisiBet >lal |
Caee T6] ) . %
Lemma 2.1 The following identities hold: ; 1
(207) AV(t+ t5)u = A'S(t?_)vctl)zi +AV(t2)J,G1’ u

for tl,t2>'o
(2.8)  If %)< t, then AV(u=A V(5035 g, B 0
Proof. The proof of this Lemma can be obtained through some
rather standerd manipulations iavelving (2.1) . (206) &

Using Lemma 2.1 it is easy to prove the fbllowing

Provosition 2.1 Assume thet condition (2:3) holds, Then Rt(xo’

L% (0,%;U)) is independent of x € I _and t7 o.0ee e dive] . [13]z.e

" Denote by R = Rt(o,LQO(c,t;U)) and introduce on R the following

normsi
(2.9) hyily = dnff flall o s ue 1% (0,%:U) ¥ = A v,

t>0 , which define & Banach Space topelogy on...ReFor the proof see
Eoae, Telis ¢

Using (2.8) we may infer that for s<t we have liyll, guyﬂaoThe
closed graph theorem shows that the norms lbl%, Tivie iy are equivalent

In what follows we shall consider R as a Banach space with the
notm Il o i '

We slac observe that the inclusion mapping fyom R inte F, I1:R—2F

is continuous.We shall denote

(2916) X = Gl(&)}\S(t)E) (Here "CLl" denotes the closure
G +56 :

in the topology of R).

o
14

0 , be defined by

e
N

e

(2.11)

(£} = AS(%)
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We summarize some properties of the operator P(t) Dbelows

lemms 252 ey R(EN s & 1inear and bounded operator.

(b Lim o Bltle— p(t )x for every x € B and T >0
t___\y% » (0] B — O

(e) IE %€ X“ax* # o, then there exists TE 4> 9

Such that P*(e)x* # o for every € < Eye
- proof. (a) results from the closed graph theorem o
b) For t > t, we have P(t)x = p(1 )x = P(ty) (S(t=t)x = x)
i sevilos B R s Bl dx = 0 o
t—»to 2
t:>t0

I, o b S8, WE have Pt (5 ) =ﬂP(tl)S(t-tl)” L(E,%) <

é:“P(tl)n L(E{X)ub(t“tl)uL(Egﬁ)é'L(C being & positive constant)s

On the other hand we have
le(t)x - Pt xh 4 =lpce) (x = Sty )x)lly £ Clix=s(t)xily

and we mey conclude that 1im Pit)x - P(t )x = 0 «
ot 5
ot
(¢) Let us assume that there exists &30 , €, ~99, such that
P*(&n)x* = o, For t o there exists enf:t and from (2.11) we
nave P(t) = P(E )S(t~ €, ).Then pr(t)x* = S*(t= EP*( £ Jlx*=apus
Thus we have P*(t)xf = o for all ty»o, and according to (2.10)

we get x¥ = 0o.The proof is completeo
%, THE MAIN RESULTS

Let us denote Rt(xoﬂLM) = {y@;F; there exists ngLM such that
peiAs(xs it Av(t)uy,

The main result..of this paper is the following

T @ N . — i VP e | v s b
Theorem Jaod Let £, € & and blﬁint\“ogLM) such that

k) M5 dist (s s X) .
ERS &

~

et u; be an optimal control, T its trensition time.Then thexre
S

iz

|

€0 » o such that for every E<E&; there existls ﬁ?é B

xis

e m——cS.
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% %
(3.2) (B8°(T - €= t)x; 4u (t)) *sup (BS (T ~g~t)x] ,u) =
: Tulig M

8oCo t GEO,T ""E] °

(8™ - £-t)x:IIU*

Por the proof of -this theorem we need two lemmas

Lemma 3.1 Let y, as in Theorem 3.1 .Then there exist 4y € Xy
U € Ly with Duli! Q@< i guch that
(’353) : T A V($)uy

For the proof see Lemma 1 in [ 6] .
Let ; :
(3.4) QT m'{y € X; there is‘ u € LM’ y = A_V(t)(u-ul)ﬁ

where u, is given by Lemma 3.l Cléarly ) T is convex ,

Lemma 3.2 o is an interior point of (L.,

i
o s L ¢
Proof: If l!yzli,r < {;hSHR then {yeX,; nylle i (M - | ‘21”005“%

See also [6] .

Proof, of Theorem 3.1 First we shall prove that 2, - /\S(*t;)}:Q

is a boundary point ofﬂTgNote that from
(3.5) ¥ = %y +AV(%‘:)U~1 m/\S(T)xO- + G ) Uy

we obtala &) --/‘.\,_.3‘>(T):;aQ = AV(T)(&AQ - ul)é_Q.T .

Kdisie Z, - As(m)z, is an interior point of {1 poUsing the conti=-
nuity of P(.)x, in X and the convexity of 'Qe.r is not difficult to
deduce the existence of §so y 2 <l sueh that

5 (zy ~As@@x)ell, ror T —e<or < 2,

Hence there exists u ¢ LM such that By = A S(T“)xo + /X.V('l‘)(ru-itml)
end using (3.5) we get yl = [\.S(T')xo + AV(T) (pu + (l»r)ul)oDeno‘cing

Uy = 2w + (L - r)u, , we have ful <M and ¥, - AS(T)z  + AV(T)U.2

G
On the other hand , using (2.7) we have

AV(R)u, = AV (I,

o N - W e ar ‘ y 4 < :
Obviously , lim V(T « T)u, = oln B. &5 JAS(T N, o ig bounded,we
s L(I&,X)

miom
Dy

may infer that &f we take TV gufficiently mnear T we have|[[AS(T!)V(I~



o

---'I.")u2 Il X<S: M ||u2noo.Next,by (2,9) there is u3eL5 such that
AS(2)V(T=T")u, :AV(T')u3 :

Hence yq = NS(Tx, £ ATy 009y +uz) , with

Roq_psup * ugll o € My which contradicts the time optimality

of u
0 °
The proof ends by applying & gtandard separation theorem for

convex sets: there exists x*e€ E xt £ 0, such that
(5,605 A MENEg s sy Zo.ToR(SYETY yE€ QT

(Here < 4> denotes the natural peiring between X and X*).For every

u € Ly we denote U .= (1 ~’WQ Ju, + ﬁL u, where 7£ denotes the
characteristic function of the interval [b L wé] oInvolving (2. l)
(2,6) we get

< ot - (2
(3a7) ngﬂT)(uE ul)c T

end so,by (3.6) we obtain < x* ,/\V(T)?&»(uou u)y » o for every u

€Ly, and by (2.1) we have
T-€

(528) < x*, AS(E) g ST “&ws)B(uo(s) ~ u{s))ds) > o

0
for every u.€ Ly, and therefore

T-&
(3091 " AEE(ER, [ str-e-o)Bu,(0) = ule))de) > o for
)
every u & LN(H ere (o,0) denotes the natural pairing between E and

E*).Denoting P*(e)x¥* = xz € i, oS eRte, {&O given by Lemma 2.2)

we obtaini. from (3.9)
T-€

(2,30) S (B¥S*(T - & —«s)xge sl = u(s)ds)z o
0

for every u € Lye

Using the argument of Pattorini (Theorem 3.1), Fal . (18]
implies (3:2) .Thisiends the proof of Theorem Sk«

“\ .

We end this section with some renarks,1f F = U and B=/\ =1
Proposition 3.1 (a) 11»1 g(¢)x = x for ever;y XCD(A)(ﬁhe 1imit "is

taken in the topolo"“ of Xike &




& oEw

(b) X = CL(D(A)) (48 in (2,10) , "Cl" denotes the closure in
the topology of X) o

Progf.(a) IS X € D(A) ean integration by parts shows that
L :
x = S S(1l=s)(x - sAx)ds . Hence
: L | :
(34T TogigyRes (o g(-a)(8te)z - & 8(E)Ax)da , £>0 .

Denoting u(s) = = -~ 8 Ax and uzﬂg) = S(e)x ~ 88(€)Ax we obtain

ha, =ul <l s(e)x -zl o+l s(e)ax - AXHE.This implies that lim u_ = #
B .

cs0 ©
in Leo(ogl;u) and therefore 1lim S(€)x =x in X :

€20
(b) From (a) we obtain ¢1( D(A)) C X. On the other hand we may
: : + ‘ : '
write S(%)x = S S(t-8) % S(s)x for every x € E, t>0 olet J, =

0
= (I uA;%)wl, 2> 0,¥We have J, S(g)x € D(A) . Using the continuity

of QAS{a)X and S(.)x we may infer that for every A> o there exisis
8, € [o,%] such that

o ' LB )X = 0 ) f = ; - [ 5

e L el ha,s(s )= - 8(s, )=l g

There exigts & subsequence (again denoted 8 {asuch that lim 8 = 8
Using (3.12) we have

13,8(s)x ~ 8(x)xlg < 13,5(8,)x ~ 3, 5(5,)x f, + 1l s(a, )x ~ S(a,)xl_+

+ HJAS(&Q)X - S(sg)xﬁé and thus we get;&}ﬁ LJAS(,)X = 8l )x

in 1% (0,%;E) which implies lim J S(t)x = S(t)x  in X,
! A-0

Hence X C CL(D(A)) and the proof is complete,

4. APLICATIONS

JIf F=E=0U and B=/A =1, the null controllability condi~

%
o ok Xl o . 4 1 :
tion id verified because S{¥)x, = { S(t-8) F 8{(adx, . i.e- u(g) =
J
) : &
% Bl : e - S
T ols)x, for 8¢ Fo,%] o Much more , if S(%)E = E for soms t o0 we

>

" e b Y , S 3 SR G o P il
have - K .= X = BE:and from %the cloged graph-tiheoren 1% foliows. that |-l

A0 A o’



is equivalent to i+l ;e The agsumption (3 1) is instantly verified

e ST TR A S S S

snd letting & tend to zero in (%.2) we obtain Theorem 3.1 in [4].

2. The wave_equation .Let H be a Hilbert space , A a self adjoint

operator in H such that (Auj,u)€ ~cu[ul ,u € D(A),for some @ y 0 where
(o,0) denotes the gcalar product in H and  [.] stends for the norm |
in H.Let V be the domein of (MAﬁ% (the square root of (=A)).It is
well known that A is the 1nf1n1t931ma1 generator of a strongly cont i=
* puous cosine family Sy pLalsl and ;}% [ :K} 1sthe infinitesimal
generator of & strongly continuous groﬁp 12 v x H .The norm in V is
defined by fjulf = l(wAﬁ% u|l and the Space v x H is endowed
with its Hilbert product norm.Let B € l&UO,HJ ; U, being other

Hilbert space .We define BiU—>V X H by : E
Q ‘ ' b
(4‘:1) Bu :(
Byu :

Conesider the equation
(4.2) x*(t) = Ax(t) + Bu(t) ,  t >0,

el se s xtled 5 %€ B .ty

This problem can be reformulated as

(4,%) Y AP ey Bl e 0

st X : |
where y(t) = (x%t) ;yJ:<kJ ; §

Le {C(t) 5 UuE Rf be the cosine family generated by A and b(t)x =

C(s)xds , x € V;t € R, o ~ Let V(t) be the group generated by A

i
O b ¢t

It is easy to see that

[’ c(t) S(t)]
(4.4) v(t) =
o L ioiEl B

The mild solution of (4. 3) is given by

(4,5) o oybtl = Wby, ¥ V(t-g)Bu(s)ds .,

O bemyc°

The definition of controllability for (4.,2) is given for example in
Egj The invariance of (4.2) with respect to time reversal jmplics

that the null controllability 1is equivalent 1o global controllabili?g
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¢
Hence K = X = VXH oLettlnxviend to zero in (3.2) ,after some simple

calculations involving (4.1) , (4.4) we obtain
 Corollary A.l Agsume the null controllabllity of (4.2)°Then there

.g;g_xf < V'g X € B, xl £ o'or x2 £ o, gsuch that

(4:6) (B 8" (2 = t)xy + BEOT(T - t)xpeu (1)) =
= gup (B S (th)zi + B C*(Tmt)xz s u) .o ON [b,T«E]
jul< M

‘If U = H and BO = T then the null controllability is proved in
5] AmEins paper is proved the maximum principle too.We also remark
that the meximum principle (3.2) is obtained if we gtudy the cohtr017
lability in the spaces Yaoxn He Obviously ,/@will bevrll,f7i, regpec=
tivgiy (riigi = 1,2,y will denote the projections of VXH onto its
component spaces). . |

3., Linear yetarded syctems Ve consider the. kinear retarded equati~,
3 & -

Cile ;

‘ N 2
(4.7 2'(8) = 2 Ag2(e-hy) +§h Ayp(8)B(t+ 8)d 0 + Bult)
(4.8) (e) =¢°, 2(8) =4'(8); Be(=hy0) , &3 0.

Z
g1}
where ZeR, c#

o]

| Ple 12(=b,0, B Ayl poithe Ly -
valued function 6 —> 4;(0) is bounded measurable , and o = h <
; hl< oene <},3_,}.T = h;y B GS(msnfi)ueng Here % et denotes the space of
all px q real matrices endowed with a suitable ncrm.The Iframework a-
dopted in this paper and the general results ﬁta{ed below aré egsens
tially dus to Bexnier and Manitius [2] . '

~ Por tyo., x, denotes the function on  (=h,o] defined by x.(8)=
St a0, BelEhel . |

The solutions of this equation will be treated as elements of the

Hilbert space M2 = M2(-h,0;E%) = K°x L°(-h,0;E®) endowed with usual

ol .1 9l that eqnatiom (4.7) induces

J

e
b]
]
| 28 ]
i’m—}
I
=

2
e,
=
e
P

inger product.lt

&\, §

s stronsly continuous semigroup 48{%),% 7’°j on M°.Let z(t) be &
golution of (4.7), (4.8) ¢ then x{t) = (”(t), )} is the mild solution
of the abatract 4if fereﬁtlai equation.



- 1i =
(4.9) . x'(t) = ax(t) + Bu(t) £t o

X(O) &= 4)0

2 2

wheres A: D(A)c: M- —>M" is the infinitesimal generator of {S(t) )

30} and B: B®>1° is a bounded linear operator defined by
(4 10) Bu = (B u,o) ;

More detaild about S(t),u (t),A can be found in el .

For (4.7),(4.8) , there are a lot of types of ¢ontrollability studied
in literatire . See @& ['lO] el Thus , for ¥° - controllabi-
"1ity /x in (1.2) is the identity operator in MEW for L2 ~ controlla~
bility and Euclidian con»rcll&bll;ty ,Jﬁ will be the projection of
ma onto Lz(mhge;Rp) and R® , respectively .For the case of P-control-
lebility studied by Manitius [ 9] we have A =F= ﬁ gl(see ER

for details about F) .
We are in the situstion of general problem {l.l) (l.2) described
in Section 1 , where E = ME;U e ,j&and F are described ahove .

Following [ 2?} we shall describe the operator E%S?t) We have

S*(t) = P& G’k + s*(t). where
Gtwl [“tWJ (0§

4.11
; ) [Gt“i"]a(e) = X (t +9)‘{" +§ l (t + S-G-Q)‘-{’(s)d,s

{% (t)y)® = o, [&° )yl (9 = %’{€~t)x@’ Q+h§t)

where %Ka,b) denotes the characﬁeristic‘fanction of the interval (ag@
gsupergeript ¢ will denote transpozition of a vector in R@;X(t) dew
note the fumdamental matrix of Eq(4;7) s dees XZ(t)= o for

bt 20 5 Xlo) s Ty TE) = L(X )a.e, where X (¢) denotes Xt(e)

X(t +6) , ©e[-h,0], |

a2
Fa ksl
a4

6]

= . o™ b A o oS N ~ Y
The operator I is as follows: Extend A (o} 50 (=-00,00}

-

s SN S e e S % e
putting Aol(a)‘s o for ¢ (~h,0] and define
; T

48

O
s = - oy = das
(4.12) Blis e Aot(oon w56 A
W 5




} - 12 -
'(4013) ®(8) é“Ao'X(moo,o)(e) + G(O) .
Both G(+) and N(.) are bounded variation functions .For ¢ € C([-h,o],
R ) we define, using S‘tmltjes m‘tegral notation , the operator
i L= § an(6)p(6)

«h
and for ¢6L (~h,0;3 R® ) we define Hs L (=h, Q,R ) -~>L {~h,0;R*) by

(4.15)  (d)(e) = §as<a)4><sme)
. : “h ;
As results from [2] s Prop. Jel 2 POT L;‘/ e L (wb.,ca R ) we have
e

(426)  @¢Heo) = i@ ()¢ (s - 0)
)
We b,ave alam

Wiyl 195 = :d

 Using (4:10), (4.21) , (4.17) we obtain

¥ ¥ % T o % 9 14
(4.18) B 5 (¥)§ =B, X (’c)‘{’f e S}{ (t + s)y(a)ds
o =h
L}/ el

where ¢/ = (U/i}eﬂi&. ,

Defining RS,R_,G and X as in Section 3, Theorem 3.1 can therefore
be applied to the present situation .

Corollary 4.2 Let the system (4.7),(4.8) be null controllable o

o o= of 2 n ;

Let ¢, = (¢5¢)) € M (-b,0;R") and by € Ry(¢psLy) such that M

distR( #219){) «Let u, be an optimal control , T its transition time,

Then there exists & 5 o guch that for every t < E‘o s there exists

Yo = (%D € u*(-h,03R%) such that
¢

e o6 e 3 =l w? i
(4.19) (B) X (£)Y + B .,.% X (5ra) 4 (0)d8 yug(s) =
= s?up (Bﬁ X (t)#f ’2 S X (“c+s)“{’4(a)ds L) om [0,0-¢l,
fud <M -5 '

Remark: The null ccm:ﬁ*ollability of {4:7) 4 (4.8) s atudied for

a )
example in [ 1)}

L5
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