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NON-LINEAR ELASTIC MODELS OF SINGLE DISLOCATIONS

by

C.TEODOSIU* and E.soos**

The present paper deals with the formulation of the non-
linear boundary-value problem associated with the determination
of the elastic state produced by single dislocations in the vi-
cinity of their cores. Both Eulerian and Lagrangian formulations
are given to this problem for dislocation loops and straight
dislocations. It is shown that the Lagrangian form is much more
intricate than the Eulerian one and requiresa very careful kinej

matic analysis.

1. INTRODUCTION

-

There was a renewed interest in the last few years
for the determination of the non-linear elastic field of single
dislocations, ever since analytical solutions for anisotropic
elastic media have become available [1 - 3] and combinedvatomis—
tic and continuum calculations have shown that non-linear effects
play an important role in the determination of the core configu-
ration and the estimation of the overall dilatation produced by
' dislocations [4“6] 5

However, only straight dislocations have been consi-

dexed seomfarasin addition ,..only@éparticular choices for the cuts
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used to define single-valued deformétions have been investigated
[7 = 9]. As shown in the present paper, the general case of ar-
bitrary dislocation loops and cuts requires a careful analysis
of the kinematic fields and of the condiﬁions to be imposed on
the cuts in order to preserve the continuity of the dislocated
crystal.

~ Sects.2 and 3 are devoted to.the Eulerian and Lagrangian
foimulation of the boundary-value problem associated with the
determination of the elastic state produced by dislocation loops
in the neighbourhood of their cores. The Eulerian formulation
uses as reference configuration the dislocated crystai, while
the Lagranacian one employs the perfect lattice as reference con-
figuration. It is argued that the Lagrangian formulation leads
generally tc a more sophisticated boundary-value problem.

Sect.4 concerns the discussion of the concept of local Bur-
gers vector and of its connection with the true Burgers'vector.
Finclly, the case of straight dislocations is considered
in Sectib. A‘special attention is given te the particular sitlua-
tion wher? the cut surface is a plane passing through the dislo-

cation line and parallel to the Burgers vector. In the latter
case, both Eulerian and Lagrangian formulations are shown to be
of comparable- complexity.

" 2. EULERIAN DESCRIPTION

Consider an elastic bcdy 55 free of body forces and surface
tractions, occupying a simply-connected region v bounded by a
surface /A , and containing a single disliocation loop of line L.
Denote by (k) this configuratioﬁ of 5§_and by x the positién veo—

tor of a current particle X of B in (k).

P o e o LA




i It is known that the dislocation produces a state of self-
stress of the body and that there exists no clobal stress-free
configuration of the dislocated body. Let N (X) denote a material
neighbourhood of X. We assume that there éxists a local stresse
free conficuration 2(X) of N(X), which may be obtained, at least
in principle, by cutting out of the body this neighbourhood and

allowing it to relasx.

Pag. .
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Let Y be another particle of N(X) and denote by dx and
dg the position vectors of ¥ with respect to X in the configu-
rations (k) and %¢(X), respectively (Fig.1). The tensor A defi-

ned by
dx =AdE ' ' (1)

" is called after Kroner the elastic distortion. We assume that,

when N (X) is sufficiently small, Qldepends only on X and #(X),
being independent of the choice of YEN(Xﬁ.

Suppose that the above cut-and-relax procédure is repeated
for all particles.XefB outside a thin tube_t% of boundary G, ha-
ving the dislocation line as axis and with circular cross sec~
tion of radius rg. Then, denoting by mz)the reagicn vmxb,Eq.(l)
defines the elastic distortioﬁ as a second-order tensor‘field on
Uy

Clearly, z(X) is determined to within a rigid=body displa-
cement. We restrict now this arbitrariness, by requiring that
the crystallographic axes have the same orientation in all local
stress—free configurationsf Moreover, we assume that the distor-
~tleon field ﬁﬁis invertible and continuously differentiable toge-

ther with its inverse‘é—l. Hence, by (1),
dg = A “dx . - : (2)

The (non-linear) elastic constitutive equation will be given

by

. wp) ,T , S
:“?,:-‘ﬁ ._].D.A:N.“ ’]\\' v (3)
'~

Vi)

LS

where T e the”Cauchy stress tensor, j=det B 0, W 15 ‘the




strain-enerqy density per unit volume in the relaxed configura-

tion 2dX), and
(aTA-1) " | (4)

is the strain tensor.
The change in volume of the body 43 produced by_the>dislo—

cation is given by

AV=ANO+ g(l—j)dv, : (5)

Ve

where QOVg denotes the change in volume of the material inside'%,

Arbitrarily choose a positive sense on L. By analogy with

single crystal dislocations, we require that
Sdt:(x)= SA’l(gg)d’}g:b, | (6)

3 4 : N4
where b 1s the true Purgers vector of the dislocation™ , and
¢ denotes any smooth curve which encircles once ?% in the
right-handed sense with respect to the positive sense on L.

Tt is easily seen from (6) that

gg"l (x) dz=0, (7)

C
where c is any closed circuit in Y not encircling to. Conse=
guently, by a known theorem of integral calculus, we deduce that

A =grad2(; 5 (8)

o

ﬁ‘We'us-z throughout the SF/RH sign convention for the true
Burgers vector.



u

“where X? is a class C2 vector fielldidn= Uidefinediby
XK@ + g AT (max. o
Xo

The line integral in (9) is to be calculated on any smooth
curve in 1%, %5 is any fixed point in 1% , while X§ is an arbi-

trary constant vector. Generally, by (6),X? is a multiple-valued

function having b as cyclic period. =L

In order to obtain a single-valued function %x éatisfying .
(8), we may introduce a two-sided barrier s bounded by L and
rendering U, simply-connected (Fig.2). Let S be the part of s
out”side E%, and n the unit normal to Sq directed in the right- i

handed sense with respect to the positive sense on L. Denote

4

by S5

the face of g into which points n and by s; the opposite

face of Sy Then, from (6) and (9) it foellows that the vector
field'X?(ﬁ) is of class C2 in V\s, and satisfies the jump rela- -

tion

Xﬁ (35"_)-')(?i (ﬁ>§")=-’g for xes . : (10)

Here and in the following, the superscripts + and ~ are used to
distinguish between the limiting values on the positive and nega-

tive faces of the barrier, respectively.
Clearly, the single-valued function X?‘depends on the bar-

. . . "N . .
rier s. Thus, by choosing another barrier, say S, non-intersecting

with s in V;, we obtain from (9) another single-valued vector

~

%
field,say z:, of class C2 in \5\30 and satisfying the jump rela-

tion



Fig.2

Next, let us denote by V the region bounded by the two

barriers and O;_. Since
% Ax A
grad 2& = grad 2&. i vo\(souso)}

Ry
the vector fields 2(:* and 7’9{ must differ by a constant vector in
either of the regions ‘\TO\V and V, where V is the closure of V.

Let

) : (129

Xﬁ_iﬁiz {

1y

On the other hand, since X" is continuous across Sor We have

"~

’}(?i(x*')—'}’f(x_)'—:o for xeS (13)
7 ~ ~ Ay "~ ~s 5

Hence, by subtracting (13) from (11) and taking into account



(12) we conclude that

-

_3=E (14)

Yo

A —
Moreover, if we require that X?=ﬂ? in 1%\\V, we obtain
o~

A
=0, a=b, and

o~

x"‘f-/i*'z D dn gV (15)
A b, Ve

In particular, B i(15) holds when 3 is unbounded if we require

that

1in |11 () X" ll =o. (16)
ixli-»o0 :

In the case of single dislocations we may be interested to
obtain a relaxed configuration of the body by using a minimum
number of cuts. Let us first choose as cut surface the ' barrier s
and denote

x=0'(x) forEemeg. (17)

~

This equation defines a mapping of VY, \ S, in the Euclidean

space &ro et oK) sdeniote the configuration assumed by the crystal

through this mapping. We denote by capital letters and a super-
posed tilde the position of the material volumes and surfaces
in (K.

By virtue of (10), we infer that E; is translated with
respect to EZ by the true Burgers vector Q_(Fig.3), i.e.
Xﬁ( ")=X?(£+)fh for xes.. (1

2 . O

~

K

Inspection of Fig.3 shows that the rclaxation of the cut body




(a)

Hiiq. 3
leads eventually to the occurrénce of a gap Aﬁ:’ and of a
region of overlapping Aﬂif . Consequently, a complete relaxation
requires to introduce a second cut alonc the part of S; boun-
ding Cﬁtf . From the mathematical point of view this corresponds
to restricting'}? {which generally is not injective) to a one-to-
one mapping.
When L is a dislocation line ending at the external surface
\%‘9‘.}
of the bedy, a part of boundary of the cut surfage s will be si-
tuated on the external surface A; however, the whole reasoning
above stilil holds.
On physical grounds we sﬂould reguire the continuity of the

stress vector S T n throucgh the barrier Sqe In ocur case, how-
P o
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ever, this condition is merely a consequence of the assumed con-
tinuity of A through So and of the constitutive equation (3).
ne
We are now in position to give the Eulerian formulation of

the boundary-value problem. Find an invertible second-order ten-

sor field A=A(x) of class C1 in M et satisfies the field equa— -

tions

div T =0¢
AT . -
TRk %%‘9‘)‘ AT, j=det AT >0,} (19)
£ Wt
D= 5(2"A-1)

A"t (x)dx =B, o)
“C
and the boundary conditions1
9 on A
t on c;)

where is the traction on O, , and n is the outward unit normal

o]

t{agd

to MU0, . After solving this boundary-valus problemn, X?(ﬁ) may

be found as a multiple-valued function in v, by making use of

(9) and arbitrarily prescribing the value X§ BE an arbitrary

point goew%.
Alternatively, we may formulate the above boundary-value

: e
problem in terms of é. as follows. Find a (sincle-valued) vector

s e : '
field X,=X.(§) of class C2 in aENs o thats satidisfies ithe  jump

o R

O

[ m———

4 N
The values of t on 0 may be determined only by combining
the elastic model with the atomistic model cof the dislocation
iori,fltc. b% using a semidiscrete method. Anyhow, the resul-
-ant force of the tractions t 31 . .

ns £ on 0, must be zero for stationary

dislocations,

fonet
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condition
X (x)-XF(x)=-b  for xes_ e

and whose gradient
éﬁl(§)=grad'%f(§), : (23)

together with its inverse A satisfy the field equations (19)
and the boundary condition (21).
Finally, X? may be replaced in the latter formulation by
the displacement field defined by
* ~#

u* () =x- % (). (24)

e

Then (22) and (23) becomrme, respectively,

v (x)-g* (x7)=b for xes_, (25)
5-1(5)=1 = grad Ex(g)- (26)

2. LAGRANGIAN DESCRIPTION

The state of self-strain of a dislocated crvstal may ke
also_simulated by starting from the perfect lattice andrusing
a Lagrangian description. To this end we consider an imaginary
line L in a perfeét crystal that occupies a region'v'of boundary
\f in“a‘confiigiration®(K) ¢sCutiout asthin tube To of boundary
2., having L as axis and with circular cross section of radius

~

R . Let 1€ be the region QT\TO, S a smocth and two-sided cut
. 3 « 5 .
surface passing through L and renderlng'(% simply~-connected,

and So the part of S outside T_. Arbitrarily choose a positive
v



g

sense on L and denote by N the unit normal to So inthe right=
: +

handed sense with respect to the positive sense on L, by SO the

face of SO into which points E, and by'sg the opposite face of

SO (Fig.4a).

(a) ‘ ‘(b)

Fig.4

Assume now that Sg is translated with respect to S; by the
true Burgers vector B. Clearly, this operation requires removing
the material volume Dﬂzf,'whereas the continuity of the deformed
lattice requires the introduction of the material volume ﬁﬂ{f,

4-x7r
L

v ioftthesbody is

L

-

S e 0 Qo A € gmamiam s~ T~ ~ 1 y
as shown in Fig.a. 2Uuppose that the continul

reestablished and the forces used to deform it are removed,such

~

that the crystal attains a new aguilibrium configuration (k)

i e e




' =10
(Fi§.4b). We denote by small letters and a superposed tilde the
positions of the material volumes and surfaces in'(g).
Let us designate by 2'(» the mapping from ('U;\Avo—\so)UA'U:\-

to & defined by
x =X(X), (27)

where X and X denote the position vectors of the same material
particle in the configurations (K) and (X), respectively.
Clearly, we may identify (i) with (k) and assume that the
3 . = 5 - ":J+
crystallographic axes 1in 'UQ\A”O; and A A have the com-
mon orientation adopted for the local stress—free configurations
in the Eulerian description. Then, the deformation gradient of Z

will coincide with the distortion field Ay i€,
A = Grad X(X) » (28)

for any X in QU;\‘ﬁﬂxr)k)CQIj' except the points of S situated

on the boundary of 551% . Moreover, Q§=d§ and we may write

dx = AdX, (299
where Q§ and dx denote the position vectors of the particle §+@§
with respect to X in the configurations (K) and (i),respectively.
Let us denote §,=5_ N Aﬂ% and S,=S NS, Examination of Fig.4
shows that a current particle §+ situated on SI in (K) is connec-

ted with the particle §_ + b, and hence their positions in (k)

will coincide. Conseguently, we reguire that

e
—
(€3]
<D
~



By (28), the first of these conditions is equivalent to ‘

X+b :
S é(g)dg=g for gesl, (31)
X+

r~

where the line integral may be taken on any curve_C,l in

LN AT

connecting the points §+ and %f T4l (Fig.4). : |
The jump conditions on 82 require a more intricate analysis.

5 /\+ A - 3 A :

Let us denote by X and'§ the particles on the boundary of Al& |

that are brought in coincidence with the particles §-655 and

“+
2!

the orientation of ﬁﬂz¥, we may write

%ﬁES respectively. Clearly, according to our convention on

Vot o g O _
X =X 4w , X =X +b+w, (32)
where the constant vector v defines some suitably chosen trans-

jation. It is easily seen now that the continuity of the dislo-

cated crystal requires that

B s Lea (33)
- A+ +
A, Axh=a &) (34)

for any §QSZ' By (28), conditions (33) imply that

g A(Y)dY = g A(y)ay . for et L. (35)
4‘\_' X+ j

where the line integral in the left-hand side is taken on any

~ 2 = : 2o R A » . : ;
smooth curve C connect1qg§’ with R llﬁ; ,wiiestth e liiines an =
tegral in the right-hand sidé is taken .on" any smooth curve C,
connecting §+ with X~ in fl\.ﬁﬂ&f (@Fig.4). Clearly, the
conditions (30), (33), and (34), together with the constitutive

L
eguation (3), assure the continuity of the stress vector in (k).



= -
In order to formulate the traction boundary-value problem

we shall use instead of the Cauchy stress'tensor T thesfdrst

- Piola-Kirchoff stress tensor S defined by

It may shown that the constitutive equation (3) and the traction

boundary conditions (21) become in ‘terms of S:

a4

where N is the unit outward normal to jﬂ)Zo, while %-denotes

"~ ~
the traction on O in the deformed configuration (k), measured
per unit underformed area. Finally, the equilibrium equation

(19)1 becomes

Div 8§ =

RO

?

where Div is the divergence calculated with respect to X.

We may give now the Lagrancian fofmulation of the boundary-
value problem: Find an invertible second-order tensor field A=
=A(X) of class c? in (U;\A'U;"\ Sy AU: that satisfies the

field equations

Div § =0,
_ o 2H(@D) S :
ﬁ" A oD D= 2(5 a l)' (36)

the jump conditions



X'+b
§(§+)=§(§'+13), Q A(Y)dy=0  for X€S,, (37)
X‘\’
- A
A=A Eh, agh=aED, ,
X+ - (38)
g A(Y)dY = X" A(y)dy for XeS,,
-— X-‘-

and the boundary conditions

0 on 3’
sy = 9

el
g on Z,.

After solving this boundary-value problem, X,(’)é) may be found

as single-valued vector field by the formulae

X .

L= +\ a@idy for Xe UNAY, (40)

X=X + Q;” A{y)dy for Xxe AUF, (41)
Ro

The line integral in (40) is taken on any smooth curve
din P AU-’, that in (41) on any smooth curve in A'U:\', X5

7~ -
and X_ are any fixed points in i \AUO and A'U;+ , respec-
N

tively, while ?C ' X. are arbitrary constant vectors satisfying

w O ~°

the consistency relations

X~ 3 %
T +SNA(Y)dY = Z\'« + g A(Y)dy, (42)
Lo X ~ Ao s o ~r o ~s

A go

A r -
2‘9‘“8 Aray= X+ %’“f\,(z)dz- (43)

These conditions are implied by (33) and are mutually com-
patible by (38)2.

Alternatively, the above boundary-value problem may be for-
follows. Find a (single-valued) vector

2 g0 (NBUENS) U ALY

that satisfies the jump conditions (30)1, (33}, -and whose gra-

)
9]

mulated in terms of A
~s

field 2([=X(}§) of class

D)

A S T
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dient (28) satisfies the field equations (36)1, the jump condi-
. condilion

tions (37), (38),and the boundary ¥ (39).
Finally, 2& may be replaced in this formulation by the dis-

placement field defined by

(%) =RAX) - X. (44)
Then (30),, (33), and (28) become, respectively,

WX )=w(x+8)+b  for XeS,, (45)

- A4 + A
(X ) =X ) +w, a(X7)=m(X )+b+w  for XeS,, (46)

A(X)=1 + Grad 4(X). (47)

A comparison between the Eulerian and the Lagrangian for-
mulation of the boundary-value problem shows that the latter is
much more complicated in the general case of an arbitrary dislo-
cation loop. The main difficulty arises from the fact that the
solution is defined on the union of two disjoint regions, so that
the conditions required in ordef to assure the continuity of the
dislocated crystal are much more séphisticatede In addition, the
first Piola-Kirchoff stress tensor is asymmetric and this leads
to supplementary complications when using stress functions [2].‘
These difficulties disapper, of course, in the linearized'theofy,
when terms of the order O(bz) and higher are neglected, and both
Eulerian and Lagrangian formulations lead to essentially the same

boundary-value problem.

3. THE LOCAL BURGERS VECTOR

In order to define the local Burgers vector we ougt
the infinitesimal vectors corresponding to the vectors d¥% taken

dlone=a ‘clreud tiaround i and closed in (K). Conseguently, by

e 1Y bbS
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analogy with' crystal dislocations, we extend A to the field QE

; : &
defined on (’UO\SO) v AU by

{ A(X) for Xe ('Uo\ A \'So)u&%*(‘ll -
A (X-Db) for Xe bl

Unlike A, the field éF is generally not injective.
Consider now, a smooth circuit C closed in I@ which encir-
cles once TO in the right-handed sense with .respect to the posis

tive sense on L. We define the local Burgers vector 2? by

=5 & ax (X)= - \ Ay (X)dX. (49)
¢ e

Fig.5b shows the.local Burgers vectors ccrrespond.ng to two
different choices »f the circuit, which intersect the parts 81
and 82 of SO and are &enoted by C1 and C2, respectively. It is
easily seen that, unlike the true Burgers vector b, the local
Burgers vector Bﬁ does depend on the local deformation of the
lattice in the neighbourhood of the intersection of the circuits
with the cut surface Sqe

We can give this assertion a quantitative form by establish-

ing the connection between b and 2?. Let us fFirst considerithe

cirecuit Ci‘ With the notation in Fig.5 we have

b (X)= - A_(Y)dY for Xes,.
MANTAQ

On the other hand,

2
<

( Ap (Y)dY= (\ dy
) VS ~ J‘

~
oA a4 € M W
‘U"ﬁ‘“drk 1 IA“ «.

1

U

since My coincides with P,. By addinag the last two relations,

we obtain




Eig.5
X g
p* (x) = S Bz (1)AY for Xes,
%
and, considering (48), we infer
X% b
b* (x)= g A(y-b)dY for Xes,. (50)

Now, the mean theorem of integral calculus yields
p*(x)=a(x")b + 00?) for ges,, (51)
" where b is the magnitude of the true Burgers vector.

Aralogously, we have for the circuit C2-

pE(x) = - \ L{ulay,
e M, N,Q
and hence, considering also (38)3,



X S
E*(z).—: -% ’z}('/x'v)d’g = - \ %(X)d}v{ for 5&82,(52) i g

where the.first integral is taken on C,, while the second inte-
grgl may be taken on any smooth curve in DAE*. By taking into
account that %+ = %: + b, we deduce the relation

*(x)=n (X ) + 0(b%) for XSy, (53)

which coincides with (51) byAVirtue of the jump conditionv(38)2.
Equation (51) shows that, ﬁo within terms of sécond order in b,
theloeal Burgers vectdr may be viewed as the true Burgers
vector abplied at the intersection of the circuit with the cut
surface and elastically deformed tocether with the ffattice.
Consequently, although the Lagrangian.formulation could be sim-
plified by using the local Burgers vector, this cannot be consi-

dered as a datum of the problem.

Finally, from (28), (50), and (52)1 it follows that

b* () =X(x") -X(X -b) for XeSy, (54)
p¥(x)=X0CH-Xx)  for xes,. (55)

4. STRRIGHT DISLOCATIONS

The most frequently treated situation is that of an infini-
te straight dislocation in the axis of a circular elastic cylin-
der. Let us choose as tube TS isolating the dislocation line a
coaxial circular cylinder of radius EO and boundary Zi) and deno-
te as before by EL the region between 2; and the external
boundary ﬁ?,

Clearly, we may use as cut any surface connecting Z, Sl S

s i s : 5
and rendering q; simply—-connected. Generally, any choice of the
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cut leads to a particular case of the general model presented

in Sect.2. A special situation, however, occurs when using a pla-

ne cut passing through the dislocation line and parallel to the

trileuBurgers vector.

To be more specific, let
and choose a right Cartesian
with the X3—axis directed in

tion line, and the X,l - axis

Hha.6

us consider an edge dislocation
system of co-ordinates (Xl' X2, X3)
the positive sense of the disloca-

in the sense of g'(Fig.6).

(K)
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We consider alternatively four typical cuts shown in

Filg. 6. The positive and negative faces of the cuts are defined

by extending L to the whole boundary of the cut. It is easily Seen

that the cuts perpendicular to the X1X3 —Aplane lTead to paxrti=
cular cases of the general model. Namely, we have [Xu;'izd) A

Z§1L+}= qb r S4=S4r SZ=<$ for the cut X;=0, Rd$X2$R, and .

A= b, AT+, 5, =0, 5,=5, for the cut %=0, ~R¢X,¢-R,, where
R s the radius of the external boundaryff.

On the other hand, the quts’situated T Ethe X1X3—plane re-
quire a special treatment, since [ﬂg;d% £ﬂ§ﬁ=¢>, and hence the
cut surfaces remain in contact when passing to the deformed con-
figuration (¥). The same special situation occufs when the dis-
location is of mixed type and the cut lies in the ijg*plane,

and also for the scxew dislocation and any plane cut passing

through L.

o]
o

2|

e
[Co]

~3

SRS ——————
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Let us consider for example an edge dislocation lying along

the X3~axis and the cut XQéO, -R$X¢<~RO. Inspection of Rig.7

shows that the jump conditions {30), (33), (34) must be simply

replaced by
X =X+, A=A (XT+b)  for Xes_, (56)

the relations (40), (41) by

X

S

Z,L(?E""‘ch + gx A{Y)ay for Xe | e k)

M

~0

and the jump conditions (45), (46) by
iz ) =X +b)=b  for Xes_. (58)
Finally, relations (50), (52) are to replaced by

X+b .
g BiNaY = BAGR) | for %es (59)
X-\-

T~

: ; . Ay e .
and any smooth eircuit € connecting X with x % E in

(54) and (55) become

X=X =p*(x) for xes, (60)
QX
M) - =h* (x)  for xes_. (61)

U, , while

For the sake of completeness we consider also the Eulerian

formulation corresponding to this special case. We choose as

tube 2% in tne configﬁration (k) :of the dislocated crystal a



coaxial circular cylinder of radius r, and boundary CE and denote

asHbeforevioys U the region between and the external boundary

A

I, (k)

Eiags8

Let (xl, X x3) be a right system of Cartesian co-ordinates
oriented as shown in Fig.8. We choose as cut the plane surface
x2=o, —rg{x;& -r_, where r is the radius of A . Inspection of
Fig.8 shows that cut surfaces E; and'§; remain in contact and
the continuity conditicns (22) and (25) remain unchanged.

Finally, the considerations in this paper show that the
Fulerian formulation has one more advantage in comparison with
the Lagrangian one, namely its form invariance with respect to

the cut, for both dislocation loops and straight diislocations.
{/




9.

...25._

REECREOESREE NEC B S

e R Wil ldis s dntod.Engnag.Sei.., 2(1967), 1945

A.Seeger, C.Teodosiu, P.Petrasch, phys. stat.sol. (b),67
(1L975) ; 207,

P.Petrasch, Thesis, University of Frankfurt am Main, 1978
F.Granzer, V.Belzner, M.Bucher, P.Petrasch, C.Teodosiu,
J.Physique, §§(1973), Cellegue C9, suppl.lli=12,  €9=359;
P.Petrasch, V.Belzner, J.Physique, 37(1976), Colloque C7,
suppl.12, €7-553.

J.E.Sinclair, P.C.Gehlen, R.G.Hoagland, J.P.Hirth, J.Appl.
Phys.,49 (1978), 3890, |

C.Teodosiu, Kontinuumsmechanik mit Anwendungen im Bereich

der Festkorpermechanik, Lecture Notes, vol.1l, University

of Stuktgart, 1971,

B.K.D.Gairola, Nonlinear Elastic Problems, in Dislocations

in Solids, F.R.N. Nabarro, Ed., North-Holland, Amsterdam—-

New York-0xford, vol.1,223-242, 1979.

C.Teodosiu, Elastic Models of Crvstal Defects, Ed.2Academiei,

Bucharest, Springer Verlag, Berlin-New York-Heidelberg,

1981 (in print).






