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by C. TEODOSIU ¥ and E. S50fs **

The present paper deals with the extension off Willis! iteration
gcheme for the determination of the non-linear elastic field pro=-
duced by single dislocation loops in anisotropic bodies. The first
part'of the paper gives the EBulerian formulation of the boundary-
. yalue problem for both finite and infinite media,under considera-
tion of the core boundary conditions. The uniqueness of the solu-
tions to the successive linear boundary-value prohlems occurring
in the iteration scheme, and the ccmplzmentary conditions at in-
finity are discussed in some detail. The second part of the paper
will be devoted to the determination of the second-order elactic
effects produced by an edge dislocation in &n infinite anisotro-
pic medium. :
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The first systematic iterative method for the solution of
non-linear elastic boundary-value\problems has been elaborated by
Signorini [1] , who further developed his ideas in 1256 80 Hidd i
[4] has adapted Signorini's scheme té the case of continucus |

distributions of dislocations by uging Eulerian co=-ordinates
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and Green's function techniques. He hag also treated the case
of a gscrew dislocation in an infinite anisotropic elagtic medium

by ignoring, however, the core conditions.

Alternative iteration gchemes using Lagrangian co-ordinates

have been algo developed and applied for de?ermining the non-li-
near elagtic field of screw and edge dislocationsg in anisotropic
nedia by Seeger and Mann [5] , Teodosiu {61 , volg 2; Sect. 15,
Seeger, Teodosiu, end Petrasch [7] . However, as shown by Pe-
trasch [8] and by the present authors [9] , the Eulerian for-
mulation ghould be generally preferred, since it avoilds the ra-
ther complicafed discussion implied by the correct formulation of
the boundary-valuz problem in ﬁermé'of Lagrangian co-ordinates.

In the first part of this paper, Willie' scheme in Eulériah
cé-ordinatesvwill be extended tc include the influence of the '
core conditions on the non-linesr elastic field produced by sin-
gle dislocation loops in anisotropic flnzte bodies or infinite
media. A special attention’is given to the conditions assuring
the uniqueness of the solutions tp‘the successive linear bounda-
ry-value prcblems, ag well as to the complementary conditions to
be fulfilled for unbounded media. .

In the second part of the paper, the iteratibh scheme will
be applied to determine the second-order effects produced by an
edge dislocation 1lying along a two-fold‘symmetry axig in an in-
finite anisotropic elastic medium. in particular, the results
obtained by Seeger, Teodosiu, and Petrasch [7] are completed
and partly corrected,; by removing some residual discontinuities
occurring across the cut surfece in the second step of the ite-
ration, which are shown to correspond %to.a generalized Somigliana

dislocation [10] . Similar results have been obtained by Petrasch
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(8] in the particular case of the orthotropic medium, by using

a different reasoning based on symmetry'and continuity conditions.
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1., EULERIAN FORMULATION OF THE BOUNDARY-VALUE PROBLEM

Consider en elagtic body B fpee. of body forces and sur-
face tractibns; occupying a simply-connected region V- bounded
by a surface A , and containing a gsingle diglocation loop of
1ine L. Denote by (k) this configuration of $B and by x the poéi- ;
. ¢ion vector of & current particle X of B in (k).

Ve apply the (non—linear) elagticity theory outside a thin
tube T, of boundary Og'having the diélocation line as axis and with |
circular cross section of radius rd; and denote Y= v“\to o Ik
has been shown in [9] that the boundary=-value problem associated
with‘the determination of the elastic gtate produced by thé dig-
logcation loop may be given the following Eulerian formulation.

* Pind an invertible sécbnd»order tengor field A = A(x) of class ¢

in ¥ that satisfies the equilibrium equations

the constifutivé equations
. WD) r WD)
T=isA—"A , Tos =P, o By (052
L =s az? ~ &L = § NRm o En

the jump condition

&c é4(§) (L:f- e 93; p) gcl&fkg(:f) d':cﬁ, = Q& ? A.3)




& A

and the boundary conditions

0 on A . 0 o A
'E ovu 0;, t& m'(); >

‘wheré & is the elastic distortion, T is the Cauchy stress tensor,

W is the strain—energy dengity per unit un%erformed volume,:
p=LWA-1, Dy =4 (ApkAre - i) (1.5
is the finite sgtrain ténsor, | 4
4=dat K 50, | . (256)

¢ denotes any smooth curve which encircles once T_ in the right-

Q
 handed sense with respect %o the positive sense chosen on L, b ig
the vrue Burgers vector of the dislocation,.g is the outward unit
normal to b\36;~, and % is the traction acting on O, from the dié-
location core T, o Here and in the following we write the main re-
- lationships both in direct notation and in the rectangular Carte-~
sian component form. -

The value of % may'be‘determined only by combining the elag- ;
tic model with the atomistic model of the dislocation core, by u-
sing a semidiscrete method. For stationary dislocations, since the
diglocated body ig in equilibrium, we must fequire that the resul-

tant force P and couple M of the tractions acting on ¢ vanigh, i.e.
P = g ,-E‘ d-b - 0O : (107)
a :

M__( s 20
M = \ :’,.,““~°"b—o~0~" ; (1.8)
%

KN e anad 1* » A—ég ":X;;Q, ‘> (1.9)
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where 'X* is a class C2 vector field in Y defined by

~

Ve = X; + CS Keds. ickio) i
s : :
The line integrel in (1.10) is to be calculated on any smooth curve
in %V, connecting an arbitrary fixed ‘point:;goe v with the currert
point x, while_v ‘X.: is an arbitrary constant vector. By (1.3), ?S‘*
'is generally a muitiple-valued function having b as cyclic'period.
Al‘cernatively,' we may obtain a gingle~valued function 2{.* ga=-.
tisfyingr (1.9) by introducing a two-gided barrier s bounded by L
and rendering Vs gimply-connected. Let 86 be the part of s outside
'Co , and n the unit normal to B directed in the right-handed sense
with respect to the pogitive sense on L. Denote by s'; the face o'f
8o into which points n and by s; t_he opposite face of so._Then,
from (1.3) and (1,9) it follows that X.* is of class ¢ in VNS,

and satisfies the jump relation

Vih) = K@) =-% fv xehr. )

Here and in the following the superscripts + and - are uged to dis-
$inguish between the limiting values on gt and s, respectively. |

By introducing the displacement. field g*, defined by

W) = % - K ®) _ (1.12)

relations (1.11) and (1.9) become

&*(g*-) 15 LL*(DS") -.:.& ?0"/ :i;e }30 > . (1.13)
54= 1- lj*, | A4§m= Cgshm— H-’;m:, (1.14)

where H" is the digplacement gradient given by

.*— *_ : - ¥ V3 oy
R = quaa u”, e = (1.15)




We may now formulate the boundary-value problem invterms
of Ef as follows. Find a (single-valued) vector field g*::gfqp.
of class G2 in v N s, that satisfies the jump condition (1.13) on
so‘and whose gradient E* satisfies the field equations (1.1), (1.2),
and (1.14), end the boundary conditions (1.4).

On physical grounds we should require the continuity of the
streés vector i-“ T n through the barrier 8q° In our case, however,

this condition ig merely a consequence of the assumed continuity of

A through s, and of the constitutive equation (1.2).

2 ITERATION SCHEME

o T e s ety ks o o paee s o o 1 e o
Prdiorrf s oo iipiiiaiia i

We will solve tne non-linear boundafy-value problem for-
malated in the preceding sectiion by an iteration scheme, baged on .
the following hypotheses : ‘

(i) The prescribed traction 0n<%_an& the true Burgers vector

are proportional to a small parameter &, i.e.

A

Sz 8@(4) : Q= g&m' (2.1)

o~ 25

This hypothesis is justified by the fact that % venishes togethef

with b. The numerical choice of €& is'immaterial,'sincé it appears

in the final result only through the combinations eiﬁ’ and %"
(i1) There exists a solution u”(x) of the boundary-value

problem that depends analytically on € and vanishes for & = O,i.e.
W el e (2.2)
Let us put

é = i‘i‘ E‘j 3 A%g = ugea + E"%&Q'. (2.3)



ok
Introducing (1.14) and (2.3) into the relation A :5."'1 = 1, we obtain

LI I % Lk : :
=T e, Hee = Heg + Hyp Hro - (2.4)
On the other hand, we have from (1.15) &nd (2.2)

5 %(1) 2 %) _ '
Hyp = EMgy + &M +o (2.5)

and hence, by (2.4)2,

s *(4) : *(2) *Q) *(4)
H&Q. ¥ EM'WC + & (u'%% + Uy, “u 11., )‘\' (2.6)
Next, substituting (2.6) into (1.5) yieldg
. #*(A) *(ﬂ g2 @ w) w0
Dup = ""(“‘M, s ‘g‘(“’%% +*r?: My o p +
*m *(4) #(A) *('D (2.7
g MR+ gy M) /

Tn order to obtain the expansion of the stress fensor we

firgt rewrite Eqs. (1.2) and (1.6) in the form

’OW(D)

Tet = 5 G + ) =5 (32“ Hg,,,) i eiey

;8: dako [Sﬁﬁ—Hpq—J : (2.9)

Assuming that W may be developed in a power geries of D, we have

SW(D) v
iy 2,1
0 D‘m'm C"““T‘ 9 T'o\ C'm’n‘pa'rs 9 Dw; ( 0 )

where ¢ and 'g are the tensors of the second-and third-order elas-

tic constants, respectively.
Introducing now (2.7) into (2.10), (2.5) into (2.9), and
putting the results obtained into (2.8), we deduce that “

)
Ty = qug, + T%i%? R )




where

w %(1) 2)
T Lotmn u"m,n > ‘]-&Q =G m, +T’§Q e
Tps, = — *(?mTéa,) ot S |

% (1) %’c(«) 4 * (D *(4) A *m (4)
+C¥1Q'm%(“fm,'p T e M"p,'m/ Pirv b Cke'mn.rb ‘f

Substituting (2.1), (2.2), and (2,11) into (1.13), (1.1),

and (1.4), end equating like powers of '€ jUWweE bbtain a sequence of

~ linear traction boundary-value problems, nemely, at the first step

; *(4\)

(+)“Mq2( - {a-aces

('n @ *(4) e ,
Toasor 5 0uste ey 15 Satimomitinags Wy 000, of 210
T(«) 0 onv A
n o1
‘at the gecond step
%(2) + *(2) .
(x7) - Mg ("C)- fov xE€8, )

Tata =0, m_a%%“ D Ty NS, P (2415)

)TV

T&Q’nzzo ov AU G, /

and so one. In the following we will consider only the first two
ateps of the iteration, for the subsequent steps involve elastic
constants of fourth and higher orders, which, in gencral, are not

available.



The traction boundary-value problem. (2.14) and (2.15)

can be formulated in terms of the displacement fields uPand w*®@
- G & & cr

respectively, asg

* W)t 2,y W
My () = My (x7) = v xes,, )
. *U) Bowe
%an 'm;n,?. =0 in vNs,, } (2.36)
O o b
P *u) ¥
,m"“"" ‘m’"”n'z {t‘s Q“f\'o;: .
and
*( e :
3 (2 g
%Qm?\, U-m(?n,ﬂ, + %k =0 wv VoS, , } (2.17)
‘qummn- ‘*GD o T ——'tﬁz) oL )‘LiCT
o “ °)
where
cz) 84y oo '
t?z?.‘b > t?i = ~Toa My, , (2.18)
pléy the role of a body force_and Bl surfage . traction, res-

pectively., It may be shown, by usihg Géuss'fheorem,H‘that the re-
sultant force and couple of the forces (2.18) are Zero.

Clearly, the boundary-value problem to be solved at the
first step corresponds to a Volterra dislocation of transglational
type with prescribed tractions on the boundary of the dislocation

core, while the second step involves a classical iraction boundary-




value problem of linear elasticity. Assuming that the tengor of
gecond-order elastic constants ¢ is p081tive definite, it follows
that any two solutiong of the traction boundary-value problems dif-

fer Dby an infiniteslmal rigid displacement.

In the original form of Slgnorlni g scheme the arbitrary fns=

finitesimal rotation corresponding to each step of the iteration is
determined such that the body forces and surface tractions corres-
ponding to the following step be equilibrated. OnAthe other side,
~ in the case of a gingle diglocation, the only external forces ac-
ting on the éaft of the body occupying the region v are those &ap-
'plied on the core boundary(g. Moreover, these forces must be‘self-
-equilibrated in the deformed configuration of the body, since the
dislocation core itself is in'equilibrium. Congequently, when u-
ging a gemidiserete method, the infinitesimal ri«id rotationg oc-
_curing at each step must be used as adjustable parameters, together
with the tractions on 0‘ and the positions of the atoms inside
for minimizing the potential energy of the whole body.‘
Alternatively, the succegsive linear boundary-value problems
could be formulated in terms of stress functions. However, this ap=
proach leads generally to great mathematical difficulties whi.ch
heve been overcome so far only in two particular situations t the
iéotropic cage ané the anisotropic boundaryfvalue problems inde-
pent of one Cartesien co=ordinate. The first pase'has been exten-
‘gively treated by Krdner and Seeger [11] and by Pfleiderer, See~
ger, end Kréner [12] . The second case has been considered by See-
ger, Teodosiu, and Petrasch [7] and by Petrasch [8] 5 it will be

elso 1llustrated in the second part of the present paper.
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When studying the elastic field of a single dislocation loop
lying in an infinite elastic medium, we shall require, on physical
grounds, that the stress'! vanish and the finite rotation R gp=

~ proach the unit tensor at infinity, i.e.

YoasTlen) = Ons . gome i Bli) = 1. e

' Wacl»oo ™ g : Nxireo ~
‘gince tﬁe lattice distortion gradually disappears at large dig-
fances from the dislocation line.
Yhen using the iteration scheme explained in the preceding
section, the first condition (3.1) is.equivalent %o ;

| o I(M('JS)‘:Q < n=4.2, ; (3.2)

xll-»oo
knalogously, we write

R=1+eR%iR4 = (3.3)
aﬁd require that _

Lo, B(ﬂbﬁ) i 9, ) R=d 2 (3.4)

W acli-so0 . , ‘

The last condition may be given a more ekplicit form by ex—
pressing R(n) in terms of gradgg*“g y N = 1,2.:To this end we

start from the polar decomposition

A=RU \ - (3.5)
where R is an orthogonal tensor and U is a sgymmetric tensor.
Since R'R =1 and UT = U, we have by (3.5) and (2.3)

=l

It

A"}5=4+ AT s eie)

e ~ o

U2



By taking

= 4+ STV (3.7)

jntroducing (3 7) and (2.6) into (3.6) and equating the coeffic:.ents

ot 8 and G, , we obtain

(27 (2)
0 - 41483

1) ¥ (A) *m .
U&a = (%z + M ) (3.8)
3 (2) *() *(4) *(A)  XW
M‘Q e _Z; ( &;T‘- T")D‘ M"E)'(" u"ftk i
‘ %) * ) Y ¥(4) *(«)
+ AL
& ?)Q, L\. *L&,T, 2)1,, ( 30 9 )

Next, in broducing (2614163, 3Y) and (3.7) into the relaticn 1 + H =

=R U equa’sz,ng lnke powers of £ , -and cons.x.dem.né (3.9) we obtain

after some algebraic calculation

Ly O '
R = Q&Q ) | (3.0
(2) 4 @) .L #xA) %W (0 *u) («) *u) *(« )
R%Q‘ = Q (3%,’“ u"(\', T‘v& Q. 'T‘-;& ’f") )1")>(3.11) :
where
(4) *(4) *(0 %(2) *('0
A9 = -'( Mg e ) —Qm =12-( ) (3412)

are the (antiﬂynfﬁe’crlc) mflnitesn.mal rotation tensors corregpon-

ding to the first two steps of the iteration. ,

By (2.12)1 and (3.2) the symmetric part of grad u

K1)

must

vanlsh at infinity. On the other hand, by (3hd), (3.10), i (3.12)4

the antisymmetric part of grad ¥

and hence

W must also vanish at infinity,




SRS

Qirerv grad Igm(ag) =0 - (3.13)

N x\»00
Next, (3:13) and (2.,13) imply that T venishes at infinity.
Since 2(2) vanishes also at infinity, we deduce from (2.12) that
the symmetric part of grad g*_(z) vanishes at infinity, too, On. the
other hand, by (3.4) and (3.13) we see from (3.11) and (3.12), that
“bhe antlsywnetmc part of graui'uu.m hag the same property, and

hence

grad 4 Dx) = | (3.14)
‘\x\\-yoo

Convefsely, Bags {3.13) end (3. 14) assure that conditions
(3.2) and (3.4) are fulfilled. Consequently, the boundary condi-

‘tions on A corresponding to the first two boundary-value problems
_ P

must be replaced in the case of an infinite medium by (3.13) and ‘

(3.44). Altematlvely, we may retain the conditions (3.2) a.nd re-

place (3.4) by

B 0000 168) S (3:15)
Wxlso e
‘where 0.) )denotns the ax::.al vector corresponding to the antisymme-

tr:.c gecond-order tensor _Qm), ie€e

) _ ¥, e e =
W = Lok £ O =-L€nratn , Me4,2(3.16)

while Cmrpp Genotes the permutation tensor.

By virtue of Bézier's uniqueness theorem [13] , we con-
clude that the solutions of the linear traction boundary-value prob-
lems corresponding to the first two steps and satisfying the com=-
plementary conditions (3.2) and (2.15) at infinity are unique to

within an infinitesimal tranglation.
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by C. TEODOSIU® and E. S005*®

The first part of this paper is devoted to the extension of
‘Willie'iteration scheme for the determination of the non~linear
elastic field produced by single dislocatlion loopg in anisotropie
medie under consideration of the core boundary conditions. The se-
cond part of the papor”will‘be-CQﬁcerne& with the determination of
the second-order elastic effectis pvoduced by an edge dislocation
lying along a two-fold symmetry axis in an infinite anisotropioc
c¢lastic medium, .

4o

Second«order effects in the isotropic elae%ic fleld af}mn
»edpp dislocation have been determined by P”laidcre s Seeger, and
Kréner [12], by disregarding core effects and applying en iteration
scheme formulated in Eulerian co-ordinates, which had been praﬁiousa
1y elaborated by Kréner and Seeger [11]. .

Seeger, Teodosiu, and Petrasch [7)] have determined the
gecond=order effects in the anieotrmpic glastic field of an edge
dislocation, under consideration of the core boundéry conditions,
and uging an iteration scheme fcrmulat@d in uagranyinn COwordinatcr.
Their results will be completed an d part‘v corrected in the present

‘paper, by removing some residual discontinuities occurring across

©

nptitute for Physics and Technology of Hateriales, De-
partment of Solid Mechanics, Str. Const Mille 15, 70701 Buchareat,

ﬁﬁatiannl Inatitute for Scientific and Technical Creation,

; PEAdE 300 SEo0 T ianians
Bd, Plecii 220, 79622 Bucharest, Romania.
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the ecut surface in the second atep of the iteration, and using

%illis'iteration scheme in Lagrangian co?ordinates.
Consider a stralght edpe dislocatlon lylng in an infinite

anicotropic elastic medium v and take the axes X4 and x3 of a Car¥

enian system of co~ordinates along the true Burgers vector, regpec-
fivvl Tet us amsoume that the dislocation line lies along a iwo-
tald a?ia of materinl symmetry or, equivalently, that any crystallo-
graphic planc parallel to the xly -plane in the local gtresa~-froe

configurationai {g a planc of material symmetry.

We apply the (non-linear) theory of elastleity to the region
Vy situated outaide she dislocation core, the latter being taken as
an infinite tube bounded by a sircular ¢ylindrical surface C; of
radius T, and axis KB. Let us denote by rélﬁha intersection line
of G; with the x,x,-plane and by A, the reglon outside T; in
this plesne (Fig. 1). We assume, on physical grounds, that the trac-
tions acting on r‘ from the dislocation core do not depend on Xq;
"and henae the elastic medium g subjected to a state of plain strain.

Pt
-7 ag cut gurface 8
S o o

Th@n, by taking the half-plane X, = 0, Ty
-reﬁdoriﬂﬂ Uy gimply-connected, we may define in the region . YV N\ 8,
a single~-valued displacement ficld, whoge Cartesian components must

have the fOfmg

ks o "',.. : b ; oy
w, = Agiyxﬁ;xé) * gL =0 (4.1)

1o, 9], Sect, 1,

o]
“Here and in the following Greek indicee range over the
values 1, 2; the summation over twice repeated Greek indices will

Y 4 Irvs ) 3 1 1y o P e ?
be alwaye implied, while othor casee of summation will be explicit

rt

indicated by the symbol E: x

s &




14 mey be shown that (441) and the anouned mmtoriaﬂﬂymm@try imply
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The lagt two sections of the paper will be devoted to the

“golving of the linear boundary-value problemsg (4.3) and (4.4).
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The first linear boundary-value préblem (4.2) hag been solved
by Teodegiu and Nicolao [14] , by using a complex-variasble technique.
jThereforo,.we reproduce here only the.mnin intermediate results that
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According to this definition, the Iiniting velues of B on the
upper nnd lower faceg of the cut are K and =T respectively. On -

the other hand, we have
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" Congsequently, considering also (5.2) and (5.10), we have
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Next, from (5.16 - 18) it follows that
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Substituting now (5.24) into (5.29) and the result obtained into
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Conditions (5.30) and (5.31) provide two complex equations for

the determination of the parameters 9q\and 2T, « Following [14] 5

we first simplify (5.31) by teking into consideration (5.21) and

(5.30), thus obtaining
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The complex potentials (2) and 60205) can be dutenghuﬂ
by using the boundary conditions (6.6), (6.7), end the continulty
conditions (6.3),(6.10), provided we are able to calculate two in-
definite integruls thot are necegoary to obtain R&zz;ié)' and

b?"/ rom (6.,15) and (6.20), reapectively. Since the functiong

@) &nd Qi, occurring in (6,15) and (6,20) are quadratic in the par-

tial derivatives of XJH3 , it 1a eanily seen that the emount of
algebra neceggary to calculate %{Eé;ﬁé) and aEL/EB«

increasea very rapidly with the number of termg taken into account
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gu(zz,?b) and 2*;/33k corrcsoondmn to this approximeotion is

pregented in Lhe Appendix. The final result reads
ok, . :
@ 1
== (%, % g [ A,z + A, Goend - g o0

2) 'A‘O( 362) e g [Sd_/\*d_ (%,3:2)‘.1‘_{:&[\‘1’\3@“3:2)] ; (6.5

where .
- 4 t
\a‘ o (9]
A X)) = — 4+ 2+ 2+ 2, :
A 24 2 73
: ‘t() t t E 4 a
. - 2
B e st T e U o) T AT
7 P y(6.26)
el B —— =iy e {
. 6‘2 3 4‘ e I; £
e reeam. : Q
Iy k’j" \) o k‘z -L:: * 4 f ; ';:T “:E“ el ? \ i
Mgl = =55 4 o g Ao T g b Ay T 2 )
25 -2 gl AT, - A 5% Y 4y I



while ti’ Sy tq; Viq gees Vig are paruamcterg deponding only on the
olastic constonta of second and third orders and on the Durgers vec-
tor, and whoge explicit expreseslons are given in the Appendix.

nd ¥

Prom (6.19), (6.21), (6.24), and (6.25), it follows that

2). , . :
%g“ (e %p) = Z{”ﬂlwim“%"Ad,&%xgjfw;(m + A )62

Uw (%, \3_62) = Ao &, \302)"’".% {SOL [@;L (2,0 + A;L(-xd )xzﬂ +

+Qu JohEN P Al e NI . (6280

Ingpcction of (6.26) gshows that ‘jﬁUQxh’ﬂgg) is continuoug across T,

while A,‘ (304,3%) and Ag@'%nxg have t-h;: jn:nps

A”"(x4’0+) —Aot(xﬂoﬂ):“?ﬂi,\(m/ﬂgﬂ ’ié’!,Q (6.29)
for ﬁ%€5Q~oO,“YB]) where
- : : L » ? -
Kymwisag =09, Kp= Webwg-wi.  (6,50)

In view of the continuity coanditionaz (6.3) and (6.10), 1% may be shown
that the part of the solution (6.27), (6.28) corresponding to the
i

functions (U&(Zm) muat reprecent 2 generalized Somigliena dislo-

cation of the type considered in 10 with variable dlgplacement
i Vo3 b ] ) {5

3]

jump acrogs the cut T, ond a dis
tioas acting on the cut facea. Ag showm in [10] , the solution to

this problem may be found by getting

., M‘
= sl g .30
W2, Y e ) (6.31)
il o
and requiring that the funciions W (ae) © (1 Eigly the jumocen~
A
35 4 i e el S e Fratlbe A ol 5
Sutvsliviel 3 0{3 1G nish at lniinivy, W 1is 5,%‘\?3&} nat he

tribution of‘non-cquilibrated trac-



S

continuous occerogs 6; y vanigh at infinity, and fulfil tho boundary
<l r‘ s ' 2
conditiona on i, , modified by the contribution of 43, (2)) . In our
et (]
cage, we may satiafy the jump conditionsg resulting for W (Z)

from (6.3), (6.,10), and (6.27 ~ 30) by simply taking

i S o T o8 o
bl =t amnp (6.32)

On the other hand, in agreement with tho approxination ndﬂnted a=-

bove, we ghall take

N
Men

(2)

) A =
he, (6433)
i (2) :
interpreting the coaefficients 8oy ©8 adjustable parametcrs.
Summerizing the above considerations, we conclude that the
non~linear slagtic displacement field is given up to termg ol order

0(22) and O(?ﬂ) by the expregsion

TR ‘2:*\9 |

1% “o“m Zo

2 e
. Ke R T Ao TN
S ® + T, / }+ 2& o = + & Uo\x“:tzz)ﬁ-uoﬂ’%)(c, 34)

whare

,A M) 2 (2)

A) e ()
8(1 +€CL40L) uomEuo = ’U’;::Eva %

while o, l(&) Igtgﬁxi) are given by (5.34), (6.30), snd (6.25%
regpectively. Since 764 and 2%2 are proportional to b(l), while

r r ; . p - (1)
Kqs Ky, and (11, Aq) are proportional to‘the gqhare of b’

and gince b = & b(i) s the fLuwl exnregsion (6.34) of tho digpla-

cement "field does not depend on the.choice of the amall paramcter E,

ag it should he.
The golution obiained depends linearly on two crbitrary com-

plex conatants, A, and A,. When uping a semidigerete method, thege
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pression of the toial potentinl snerpy, together with the pesitions

£ ¥ha abamee Sayeed 4 Y5 e 5 z ( : } i
ol tho otloms ingide the dislocation core, and are to be calculataé

ing

by ninimizing

-
5 iJ.



thipg enercy. Finally, V. 1v0 giveg & rigld transletion that can

be determined by prescribing the displucement of an arbltrary noint

of the clagtic medium,

IR NI T ERER

APPEUDIX

‘Thid appendix io dévoted to the determination of the func-
fions O /o7 ama UL .. Ve follow the procedure employed by See-
ger, Teodoagiu, aend ?etruéch [7] , taking advantage, howevar,vof
the simplifications brought about by the Eulerian formulation.

Lot ug first determine the explicit expregasiong of the
functiong Eﬁ, and d% . By introducing fhc conciged notntion

*(ﬂ et & *(1) : %(4) :
Uy = Ry » Mg2 = £, M =%, U=t (Aol)

we obtain 1 from (6.8), (4.5), and (4.3)3

“where the coefficients A.p and Byp, which gatisfy the gymmetry
reiations
AKR - ARK - AKR > BKR :BRK 5 : (Ao 3)

are plven by

!

Throughout the Appendix capitel Latin subgcripta range
over the values 1, 2, 3, 4 and the summation convention vith res-

pect to repected such indices ia being used.



Zog] e

AM = % (scﬁ + <, +C1M+C12) Nin= ; (—-c + 2@2 22+C112+C_422);
Ap= "?2"<g<?46 g € CMG + Cm;), A= ’42‘ ( i M6t Cwe)}

Age = "42“ (C42+ SCQZ+C12’2 + szz) ) A2§=";“( 6 +C €+C226)
Aé@:—‘ﬁz(cw+5 +C 6+~C226) :7}(42+C + 4G +C,,+CM;)

=
Ay = 7 (Cpt 20+ 6,,4 ey, + Chee * Czes),

A ;
Ay = 2 ('C4’_‘ iCae e S C'\&G i+ Czss),

e ;
By (oc,ﬁ a2 + C,meMQ)"‘& (3‘346"“‘(3416):

Bio = ’12‘ (C*z;“ “u +'C142""C426) *a C42'5

el L C '
By = 5 (506 06+ ”14€—C126)+"‘<%2+2C4€+ Crss)s

By = & (Cme = C«zs) + 4 (CM i Log+ C4ee)>

822 = “12“ <'¢42 2 5'022 " C422 222) + 4 (3 Ces t szes):

£ < s f :
B,s= 5 4Che- sze) 4 (€po + €oc+ Coge)

Baoq = (‘ T DGk C’\ZG zzs/‘*"“ \Cm““%aﬁ*’czse)

Byy= "42‘(‘%2 — €+ e+ Cigem 2&)*"* <3‘C26*” C‘W’)

Bl o %(C €2+ Crag=Coge I+ i (244g + 264 *"'Ca;:se)g

- N

/ 3
B, (Cri—Cr2—4cgs + (g ‘”\fz'”>""'@€10“" 666/ .

et
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The next step jg the dotermination of hK in termg of i?&ﬁzm)
by meana of (A.1) and (5,20). Ag already mentioned in Secct. 6, wo
wish to determine the termp thet are at most of the order 0(¢7*)
for the.dinpiucamentg s 0(g72) for the = tresses, ag @-y00 « Ingpec-
tion of equationsg (6.15) and (6.20) reveals that all terms of the
expunsion,&uﬁd) but the loarithmic one lead to terms of order higher
than 0(9'2) in streass and hence con be disrcgnrded in Tinding
the functions %izg,iig and BFg/bii . Consequently, we gimplify
(5s24) to ' '

. ]
z
ey B =" U o 5
whence, by (5.20),

2O = Ry T (6,05,) % zm.ggs.._ L

(404)
*m Imz \Sd. Cs)u.

@ o > ) |
Hext, -introducing (A.4) into (A1) and tgﬁ‘.g into account that
B 2emE = (W) B FAU-TT,

we obitain

‘eLK‘:: 2 Ro % (EKO(./EoL)) . 4 (4e5)

where v Ay, e
E1o¢, = (5oL+ -S;oc) (’H‘Tm)/z ) Ezd;.: %d(d;—?¢>(4"’%)/2 )

‘ Eya =07ty (% J‘éx) (1- "'5},4)/2 o R = ’CmQ&aL‘?a)(’“* T/,

Finally, subatiiuting (A.5) into (4.2), we find

4 . i Gl | \
SR b il 2\ A e IQF Laf L 2Magli e ey
\f‘) - V4 [Tt = . .;*_1': -—-_...,.:::s...... (FA=E &LY) o ‘:/____ \\......_..g__-‘ ‘.::,M_:.ﬂ e cnmcmin e ) Le g
g — 3 o ¢ . . e =¥ oo —
] o B citp .L'..,}{‘Lp 2,7: éri o Ci.,f’; \ &y Cy £y 22}3 f,kﬂil




with the notation

fup = F;;,aé el A S Gap = G = A EKdEFep;

Tup = Ipt = B Exa Brg ,  Lup=Lpx = By E Erp, | (2.7
We proceed now to determining the functions %(22)"52)

3@/33?1 « From (A.6) we deduce that

s w .
%4®o+%2q>o_*f%s®o = ey e,

_and

F—m—b s L
2 =T = o
4 S e T x
w5 g e . Fpe 5 (La B

2

vhere

meE k, b Rp Ly + %3 Mooy M= 2 (&4 Gyt QQMM+&>;§M)

V)
M=t (&ﬁz 4'?32142 h &3 L42)>

W

M= 2 (&, G+ R, M2+ &M, ))
m’s = &4]:?6'«4" %2 L44+ %3 IM )

_{

¥ 4 == N
=6 - 54 e Ay

2
il
N

P
i

4G22 i %2 Mz? s %3M22>, mw:: Pe,‘ F;:)'*‘ "Q‘):e L22v A <12<'3 122 5

ng (As8) dnto (6.15) énd using the formulae

2= 22%% ,. 3-.«’_:32222+“52 B HE D 5= % %5+T T
2.)2 . J)Z q »2 : b} 1)2 e
dz, = - - : o
g<G“"z*' 87, )(c74dZ,) (ad-bo)z, [g“a 2,4 8%,)-bn (¢ zzu%)] e
- , (A.9)
<\ Inle2,+d7,) d=, __ Inlezedm) N
) (az,+8%) PYPERTES




where nd-bc # 0 and 1*/(22),\}/3(?2) donote two crbitrary Sfalytic

functions of Z,, we obtain

L Mg mg m’\ 7z
%(22’%‘*)” (”7%‘““ b e
3 }it a\ 2%2 2, 2.‘2
i g Tiam .Q— s o ns 2“’ 2, ) :
2, : A.11)
2 s __22 Zy . /H‘Tz .
where
'ﬂ___mgvm:a-\'mq n_....mz_‘MG ™4 n’—mg*’m() e
R Y, - i 27 v, » e e et
A 4 3 A 3 % A "“"‘3 ;
Finelly, by introducir g (A.6) and (i, 21 dnto (6.20) and
e s :
omitting tems in ¥, and 2,7 which con be inclnded in
ol (2) and iz, , we find
21 : | »
ke = & z Z 3
0% 0% 2o BT TP, Pave 1T 22 2
¥ = 2, g Z . o
= ; i AYT,
whers

‘"—«2?24\7“4.231‘*_%‘\;_*_ - —,)4'

. p ...')\?zq 11+Q{5M11>, 3
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o= ook e s B T

- [, 0 e { T
:‘k —_ 2 \2 F\“lﬁ- \7%2 + g&g M,‘z > RS ?»12‘> i }}1*’71,‘ :



Lo e

Using now apgnin (A.9) and (A.10) with 3

t 2, replaced by 2,‘ s 0nd
taking into account that
e ?1~‘8“-2:1 = —-’6'421.;.2 'z::;p32@~y¢’z‘ ; 'i::.-y‘*i“.\:}m%l
= b : = 2 o3 Y A » )
we obtain
Pl by [« 2 2 2 <+m4o+ 2”3"'”'40*‘” NEZ ,_zsz\o?ﬂ i 1 407‘“4+
RER LA 2 P 52 = YS2 5472 o)
02, 15 Yoz, %% 1% %y R
+(__§_4_+ 221 y’c’?j)gm NN 2712)2“._?1._..4_
A Yy By Wy Zy W \mE, TRl
" ( Ho o ))27\3 ) ___2_2.____ (Q_;_/:ba 3)?713 )QME__] 9 (A 12)
= — Z, B T
Z, 2,2, 1+7, A 9,2, Qv T,
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Batr - e o - % %
haer b il —¥m-un, , =12,
A 3)1 '))4 % 7 2{‘5))4
r T G0 A oM
e 3 5
Py= g L T e SR e
itk Sl ‘e %y
e 0 s+ oA IO
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Yy A 2 2
Pinally, by taking into eccount that
L B D : (K13
—— = e o - 4 i
At 1 oz, 27, s

and introducing (A.11) and (Rel2) dnto A1) and (6.22), we find

the exprensions (6.24) ang (6425) given for OF, /2Z ana R

the main text, -with the notntio

ion
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