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AN ENUMERATION OF ALL uMOULh, ROJECTIVE VARIETIES

P
OF DEGREE § AND 6 %)

Paltin JTonescu

Introduction

.

As the title announces, the main purpose of this paper is to give a list of

: #E)
all smooth, projective varieties defined over €, of degree 5 and 6, We tried to

obtain much of the absiract structure and their embedded properties (Hilbert
polynomial, nunber and degrees of generators of thblf ideals, Hilbert so¢emév i
cur results are summarized in the table below. The main technical tool of our
investigation is the adjunction mapping, studied in modern literature by Scmmese

i [?7] and Van de Ven [?91. It allowed us to gwve modern proofs of two theorems

originally due to Castelnuovo A] [5 ] from which one dednces the list of sur—

iL/
faces of degres £ 6 (see Semple~Roth [?6] p.218). We must emphasize that to

complete the list oOf '(smooth) varieties of degree 5 and 6, one neéds the difficul

classification of Del Pezzo varieties, recently obtained by Fujita 9 (1ol (the
s Fliles |

4

lYJ)« For such varieties the

case of 3-folds was previously done by Iskovskih

e

adjué%iop mapping reduces to the constant map, so one needs couplutely different

techniques, We recall that one knows all (not neces sarlly smooth) varieties of

degree < 4, see the anonymousg note l}@]and Swinnerton-Dyer [?3]. For rsader's
- convenience we gave at the end of our paper a uniform way of Obtdlninb the smooth

%),Partial results of this work were the subject of a conference at the "Week of
Alzebraic Geometry" held in Bucharest, 1981, June 22-28.
5 b 2

”*) See Hartshorne I}5J for a swrvey article conscerni
> .

lem for varieties of small de:



S
ories, which we have alsc included in the table. We are aware thalmany of our
statenents were familiar to ¢lasslcal aigedraic geocimelels. Howsver we included
proofs for those results for which we coulda't find. an adequate reference,We
also mentioned saveral known facts for the sake of completeness.
It is my pleasure - -to thank L. Badescu, A, Buiwa, RN, Buruiana and P, Francia

for helpful conversation, I am also indebted to Prof. M, Fujita who kindly sent

; s ~
me his preprint [1q}.

éOtFreliminaries

We shall work over.the field of complex numbers €, The word variety will

ct

mean projective, smooth and connect2d (if not otherwise state d) algebraic variety.

4 curve (resp., surface) is a variety of dimen=ion 1 (resp. 2).

We shall denote by Ga 0 ——>k the blewinhg-up morvhism between
r,“v..? g 2
3
surfaces X',4, with center “Pi”"’ae’ Ei the exceptional divisors. For a com-

vlete.linear system | Djon X we shall wraite }Dn—a,P ~ an —a\P., for the com-
4 < )

4 KK
plete linear system h§> D) - S —akEpl va X', wherc &, are positive
P, = :
3 N HEeey) f“v

integers (see L;é] pP. 394). By a geometrically ruled surface we mean a surface

X iscmorphic to P(B) f‘or some rank-2 locally free sheaf on a curve {. For every-
thing concerning such surfaces we refer the reader to ]}6] Ch, V§2 o In parti-
cular if7t¢X —+C ‘denotes the natural projection, we shall frequently use the
o= x®
s e o agies: % e e P S
normalisation of & giving a section G, of @ such that : PlC(X)zékpoﬁfﬂfPlC£C))
,' 0% = - e o ey T‘lz m Al 2’ 4
hum(&)uj ]Gﬁ nJ, where ¥ is a fibre of T and (F )=o, (}‘Co)zl, (Co)=—e. A8 in
ils\ we let E‘»W(O (mc)), €20, & scroll we mean a variety X=P(&), whers
oy . 1 5 n ¥ 3o . ”1 -
& is a locally free sheaf of rank)Z over a curve C, eumbedded in P in such a way
¥ % ; . o : '
thatithe fibers of the natural projection 7C :X—=C are linear varieties., A:matio-

e ; g oL el e
12l (resp. elliptic) scroll is a scroll over P (resp. over an elliptic curve),



o

We shall freely use intersection theory (se? ElS] ), the ad junction formula

(see [25]p. 243) and the Riemann-Roch theorem (R-R for short) for curves, surfaces

and 3-folds (‘}6] p..295; 362, 437). We also need Kodairsa's vanishing théorem,
(see for instance {}2] Pe 154). For & study of "linkage" in éodimension Z2isee [?5}
For the rest notation and terminology are standard,

We need the following results;

0.1, Leémmd Let (X,%KKH)) be a (smooth) projective variety of dimension}i?
andii an invertible sheaf on X. Suppose for any smooth hyperplane sectién Heef ok,
&"(H is generated by its global sections and 'Hi(X,S(@?%((»H))mo. Then ‘.f,.is gene— |
rated by global sections, | 2

For a proof apply Bertini's the‘orem and the standard exact sequence 3
df~4wz§&%c(~ﬁ)~——v'§f-ﬁ’;f&{~—*0.

m.
0.2, lemma Let XCP be a (smooth) projective variety of dimens:ou} 2, Suppose

>0
3 : 4 ; el : :
its generic hyperplane section H=XAP is arithmetically Cohen-iacaulay (resp.

: : : n—1 S -
& complete intersection of type di"“’ds) in {P- ,Then the s2me holds for X in
" e T e : . : M-
P o If X is arithmetically Cohen-Macaulay and the homogenous ideal of H in P
= 7 2 ! 3 - . "L
is generated by forms of degree<sk, the same is true for the ideal of X dan afPree o
The proof is standard and we omit SLUS
The following result is Exercise 2,12 (b) in [;C]Ch. Ve, §2.
0+3. Lemma Let X be a geometrically ruled surface with invariant e over an
elliptic curve C and b an intéger. Let H=C,+bF. Then |H| is very ample if and
only if b> e+3.
- - > -{Y.L ¥ - .
For any nondegenerated variety XCP of dimension r and degree d, one has the
following elementary inequality (for instance (171, lemma 2,1):

If r = 1, recall Castelnuovo's bound for the genus of X (see [1

2lp. 252)

Dfmn—i? ( ’lA:”i)\ S

e . Lo = et e e
sy where { | denobes least inleger



(1)) {5 a'Thtional Seroll of degree d and

dimension r we can write_XﬁP(?P4(ai)¢%;,,, @3Q'1(ah))’ with a(7]" e

o r
‘;“ a.=d and ?KFH) is'the tautological sheaf (see LY] Phe 3s8) IF 31:1’ Tellyirensty

A 5

S Sl ; ; ) d-1 o r2dad X

this is just the Segre embedding of P X P in P 3 any other rational scroll
of degree d is a linear section of this Segre:embedding. Indeed y irgay g{isj71

X .
§ P ad
we can constuet an exact sequence of the form:

»

°“‘.’"’f°&)r—“”0ﬂg<b) @ OIP‘(C) ® O[P‘ B lo e O@

with b1, cl, b+c:ai (sce [i] pP. 19 ). If is easy to see that f makes

1»(8“{')“{"4’0?4 (di) @ oes @O?.\(a‘« )-—-PO

Y

HﬁP(%E{<ai)GB e O?4<ar)) a hyperplane section of XEP(O?4U}Kﬁ%ﬁc)ggyjaz)@pH(B%ngﬁ)

oz

3

The following table presents the list of all nondegenerated, linearly normads

: Nt
. . S . . . > ¥

smooth varieties of degree L6 and dimension r, embedded in P . We let S=Nl~T.

il o & ~3 2

Except fer the elliptic scrolls and some curves of genus 3 and degree 6, all

“he varicties in the table arc crithaetically Cohen-lacaulay,

¥ —Jee PMujite {;OJ for various abstract descriptions of such varieties, They

are projectively equivalent if they have the same dimension.

‘ 5o s
KR e nr

2 - if the curve is not on a quadric.
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S

§1. Remarks on the adjunction mapping

Sy

Let X be a (smooth, connected, projective) algebraic variety defined over §

of dimension I'>/vé, and L =(iK(H) a very ample invertible sheaf on it. We shall
: 2 + |

always denote by H a smooth hyperplane section of X. Let P- ( )= E X ( 5
be the Hilbert polynorual of the pair (X, i’_) e ddnotc by g K(x 5{) —as e
and g:g(x,f,‘i)zl—xﬂithe sectional “genus. Let q:q;(X):h (X’OX.) be the irregularity

¢ 4
‘andcg =<§ (X,%) =g,

Remark 1.1. a) q(X)=-a(H) if r3

/
b) 57, . 2 0

The exact sequence o-—«woyé—-f{) *—ﬁ«?x——vor_mao and Kodaira vanishing give a).

To prove b) we can assume r=2;(g7/o by the same exact sequence and g.:x%{—-lﬁ-g:

=l-g4D -1+g=§+pa s where p = p_ (X) is the geometric genus.
c gy
| : - s
Denote by A any of the following pairs (X,£): PP , Opf.ﬁl); &5 OQMl) =

2,
smooth hyperquadric; P, 0_2(2); a scroll,

[fg

Nowy the adjunction mapping is the rational map Aassociated io the complet

linear system lKX”f(r"l)H, . We have the following result generalising the

Sommese~Van de Ven theorem ( {_Zﬂ Props L5: ,[29}1,11. ii:) to arbitrary dimensions

Theorem 1.1, Phe following are equivalent:

B lEetye i

Y h 0 (K (»-1)))=o

v;L) 0 (K +(r-l)£4) is not generated by global sections.
XA
-~ 0\
Y ~ ~ X e . x VR .
Proof, The equivalence of iv) and v) follows from Kodaira vunishing, )= )



527} prop.s 4.1, Weilshall ‘show vi)u=—>i), 1)=—iil) and§)=— iyl

: — (T
s Gy S P O T st tal G, OB S T e S ST 2 3 2 s i
< Bubs by |l 1 th he ant (4} LS ULs 2 53, We hane thats GOER g s (00, L)C Ay

Al
73 L

3 N 3 . . 0
é:%(H,EltH) G Afﬁ} o%bhe other hand, by duality and Kodalra vauishing,

1 ;. T e : Ry
B (X, ?E;(KX;+(r—a)H))=ﬂ (x,?xﬁ(a-r)h))=o, so by o.1. %r(K,+(r—1)h)) is

generated by global sections if 0O ijj(r»Z)H) is (we used the adjunction for-

&

mula and induction). : _
! : : ; = l
1= We can assume T=: s0 3 =XQ -1l4g= g-q+p =0 Bince g=q and p =0.

) =ii) o .
i) =>iv) 1is by induction on r, If r=2 we have by Kodaira vanishing,R-R

¢ ;
and the adjunction formula: h (X,0 (K +H ):7((0 (i 4 =% 0 +g-1=0 sSince p =0
f J : ' ( ﬁ?é.K ) X )) = q

s ¢
and g=q. For r7 3, by adjunction formula h (H,Oﬁ(gﬁ%(r—a)ﬁ)):o'implies

0
n(x,0 (%(+(r_1)H))=o since |H] is very ample. g.e.d.

Remark 1.2. ¥We understood that Sommese recently obtained the same theorem

by & different method.
As a consequence we have, for instance, the following cleassical result, due

to Prriques-Del Pezzo (see [7] ths. 2.1,2.2,3.8, for a direct proof):

‘ : ey v
Genallany il d, Let g=o, Then (K,?Z) is one of the following: PP yO‘v(l);

P

c 5 : ; : fees
Q ,0 v(l); Pt 0 2‘2); a rational sexoll;
Q B »

Corollary 1.2. . (Compare with [9], th.. 1.9) The following are eguivalent:

i)”'g;:l, q=6 :
ii)g =1
) on (K,QXS%Kf(r—l)h))=l
iv)ﬂ~%((§K+(r-1)H)=1

v) —%K =(f—l)H

Remark 1,3. The pairs (X,ﬁi) satisfaying v) are known as Del Pezzo varieties
and were recently'completely classified by T. Fujita [9], Eo] (see [}7] for the

case of 3-folds),



Proofj 1) ==ii) By adjibtion, supposing r=2, we haves (8 )+(H ) 0
. ;
so p =0 and we are done, since z<§+p% o
v) =>iii) is trivial and iii) =>v) follows from the theorem,
To prove v)=>> i) suppose r=2; then p =0 and by adjunction g=1l, so that
3 A
o ; S
1=h (K,oﬁ(g(+ﬂ) =g-q and g=0. It remains to see that i) =P v)d iFor 1=2 e thave
S '
o : .
1=S =h (x,?K(%<+H)) so the theorem applies. But for ry 3 the restriction map
Pic(X)~—*>Edc(H) is injective by Lefschetz's thecrem, so ad junction formula and
induction yields the result,

We think the followmT result.;is also due %o Enriques}

‘Corcllary 1.3, Let g=1, Then we bave one of the followine:

i) c=ouandi L) s saas Dol Bevzd variety

i) asd and (X, L) is - an elliptic scroll.
P00l . Iif ko épply corgnd i dos Al q=1,c§ =0 and we are done by the theoren,

o

Corollary 1,4, Let g=2, Then we have one of the followings
M &y (=)

: ; 1
1) g=0 and the adjunction mapping $Prisia morrvhism fo P such

: . ; NS i i :
that ¢xcept for a finite number of poiuis of P s the fibers of Y » together with

"the restriction of L are smooth hyverquadrics,

S e o dand a0 M e s sonoiihmenin sounud of gerus 2,

Proof, If q = o, suppose first r=2. The adjunction formula gives

7% : c
(H )+(H~§k}=2, so p =0 arnd h (X,0 (K +E))=2. We have O~(L+Y ) ( CHAK )+(& HeK )

5" R .
‘which gives (gﬁgﬂ;?x)»-z. By adjunction we obtain p (H+§X_ 50 lh+ng is a

pencil of conics, For r73, &s in the proof of the theorem i) =>iv), we have

(€) '
inductively h (X,0_ (K +(r-2)H ))—o. Kodaira vanishing and the exact sequence:

=2
0 —>0 (K*+(r—¢)P}~—#'O (Kﬁ+(1«¢)d)«—490 (k j(f»&)n)»—ﬁ?O
e KA H A
‘O/ % = S AC, y . . :
give i \&,0 (K +{r=1JH)j)=b (U0 (K +{r-2)0))s »qed . iis ifpossibie, Tndoed,owe
{ NN t o Sp i
> (‘ y Gy
‘can assume r=2 %nd since p =G, wWe obtaind =1 a contradiction to cor, Ieon
A .
d

1}
E \ . : i
If =2, we have U =0 and the thecorem appliecs, Gee.d.



e A WA

Now consider the following:

; = \ SR B . o A RIS s
Problem, (Castelnuovo) Enumerate all variecties WIS g SeIHC preblicmEof
enumerating varietied of degree«lf is & special case of this. lfore generaliy, to

know all varieties with dg:do it is enough to know all varieties with ggéf(do),

4 - - 4 2 i gi“ : 3 G 3
Where f(de) is the Casteinuovo bound for the genus of a curve degree d, in P

(see[16] p. 351 ).

§2. Two theorems of Castelnuovo .

3

OQur first objective is to know all surfaces of degreesgé( see \36) Do 2180,
As we have already remarked it is sufficient to know all surfaces with g&3. The

cases.g=0,1 are well known (see [%3])vand can be quickly derived by the same method

(eor. 1. and 1.2)

®

77}

urface (X,OV(H))

~Theorem 2,1, (Castelnuovo 4], see also [27] , leuna B2 2) 3

]

Wabh oms2 4

either a scroll cver a curve of genus 2 or one of the followin

; = : I : : g e
tionals surfacedies (i h=200+(3+1)9 y i=0,1,2 or a2 blowing-up of P~ with center
= o (_ - #

g ) e ;
e ;P15...,RK e PSleLTRG ond H*4L"223"3,"f""3<’ where Liisi el ¥ne dnnPr, Sbey . - -

< ~— S

0

LA
Tave 5<(E <12,

' i 4
Proof. . By cor, l.4 it is enough to study the morphism Y =Lfl G

hs it is well—known,(gl P. 36,such a map cannot: have multiple fibres. So the
5 5 . 5 ; A

nonsmooth fibers of P consist of 2 lines intersecting in one point, and any such

o

line is an exceptional curve., Denote by'f :X—>X' the contraction of one of the
: : ‘ 1
lines from each reducible fiber of i, Then there is a morphism ¥ :iX'—=P na-
/
king-X’ a geometrically ruled rational surface and such that ‘f-c§>:‘P. Put
HY = j‘;(H)=aco+’oF for some &, b€z, Since {H-F)=2 it follows a=2, But if D=E+B'
is a reducible fiber of ¥, (H-E):(H-E'):l, so H' is smooth and so g H)mg(H')=2.

Ldjunction on X' yields:

2= (20, +bF) +(EGO+bF4~2CC+(aa*e)F)=2b—ae—4 50 b=e+3 , But since H' is ample on



X'y b>2e (see {}61 sor 2,18 p. 380) S0 0<ed 3 and we obtain e=o s b=3;
2
)*“"09

B s ) . : ‘ Ry LAl B
e=1 , b=4 je=2 , b=5 . Ou the other side (K )+(H‘g()=2 and since (5+K2C

2 2 2, :

(KX)+(H~KX)=-—2 which implies: .87(1{}{) =(H )-47/1 y Since a curve of genus 2
has degreu>/5, So we see that § is the blowing-up' of at most 7. peints lying on
- ~Aq
different fibres of Y . The plane representation follows.' by considering elemen-

tary transformations (see [23]) from L{% and \E‘Z to KFL (note that lFi is the blowing-

2
up of P with center Po ). The theorem is proved,

Theoren 2,2, (essentially due to Castelnuovo [5]) 4 surface (X,0.(H0)) with
AN\

&=3 is one of the following: 7

=

a) A surface of degree 4 in [P

b) A scroll over a curve of zenus 3

: S : 2
c)A geometrically ruled elliptic surface with e=-1, HEDPD 4P so (H):s

d) B, B =20 +(4+1)F, 1=0,1,2,3 or a surface 6Btained by blowing-up
C 5 fo) 9 5 : s} I

one of these geometrically ruled surfaces in k points Pi""’Pk y lying on

different fibers, 1<k<9, If H.= 2C,+(4+1)# on F.y 0£i<3 , we have

: 1 i
H=HL—PL—. se=P o They all have 7<L(H )<16

el , “He AL ori a blowing—up of &% wibh cenier PlyeeesB 5 1€k

——

: 2
and H=4L——P1-=...-—PK +i They diave . 6 (H )< 16 .

: ; . 2
f) The Del Pezzo double plane which is the blowing-up of P " with

center PIL’PZ,’“-"P?’ H=6L--2Pi --...nZP7 Lo (}1'2“)=8 s or the blowing-up of the
: : : —~ ~2
Del Pezzo double plane in one point Po y Wwith B=H-P. 4 50 (}12 =7,

Proof., A curve of genus 3 has degree),z} with eguality if and oy i f it s
: Aol + s ‘ \ . '2' ; T -
& plane curve., This last case leads to a). Suppose (H )}5 We have o\(\q <2
. :
g q=3,¢§ =C - 80 this is case b) by th. 1.1, We show Q=2 1s impossible, Indeed,

4 C("Z

y . y = . 24\ :
(11'2')},5 and adjunction formula gives (H J+(H-K )=4 50 p =0 and & =& .4p =1

; a

Jk. b q

o d

o
contradiction to cor. 1l.2. Suppose g=1l. Since Po=o . h (K,G,(Ha-lif)}r—él 50 wWe
: 9 X A
1 ¢ 3
S y LD = Rl . . st Y 2 o P95 i ;
2ave oo B et B $ in particular (HaX ) =0, It follows (K »H+X )=-1 and
} N & o < = X



C—iH -

by adjunction p (H+K )=-1 . So a generic Déle-K)\,\ consists of 2 nonintersecting
el N N

/
smooth conics. Let Y :X —>C be the Stein factorisation of\f', so that C is a

2 o - - - -
: . We have ga@):q:i ¢ A8 inl the

A\
( J

P

- e YOO ) 1 A gy 4 3 b
mooTh) curve which is a degree covering of P,

98}

i

proof of th, 2;1}1et S":X—“PX' be *L'ne( ontraction of one of the 2 lines of each
[ i
+. T
reducible fiber of Y . We again have a morphism “f :X'—»(C making X' a geome-
‘ I / S
tricaldy ruled elliptic surface, such that \P."f:(f' Leti H = fﬁ(};) = C-LCo-a-b_F‘ HOTS
some a, oG Z. Since (H.-F)=2 , a=2 and as above H' is smooth, so g(H')=3. By the
genus formula we obtain b-e=Z, But H' is ample so by [16] preyss o, do2l; p. 382
= byor e o , b>2e , 8o we have the followipg possibilities: e=-1 , b=lj
5 - o= . w g ,:J 2 +
et hiYb=ptss ool g b=l o Tiet ? Cor- Cc+E4 toeotBy r o0 , where Cy 18 the proper
~J
transform . ‘of Co and E. the exceptional divisors., We have: (¥ (CovH)an =
g g 20 % 5
=(0C_+B E +H)=(. *H)=(C_+H')=(C, > 2C+bF )= e llows (C_-H)4L -2e+b .
-§C’0‘u4+...+ 5 H) (fco ) (cc ) (CO 2C4+D Y=—2e4+b , Tt follow (C 1)L -2e+b
But Fo is an elliptic curve, so (6;=H)>3 and we must have e=-1 , b=1 , In parti-
cular §’ must be an isomorphism (otherwise we would obtain at least 2~ vealues of
e, corresporiing to the contraction of each of the 2 lines). So we are in case cls
Let now g=o0 , so ‘“O(X 0. (H+K ))=3 and we have P ‘(-——a>|p?“’
) W Q= 3 It “ {0 LI ] HP, .
e "Wy 2 .
Gase’ = (X)) is a(possibl;y singglar) curve C, Then we have: (H+KX) =0 §
. : ;
(I—I+I§T\* I??(>:"4 ;- 80 pa(ﬁ+§%=-l «48. above let Y :X—=C' be the Stein factorisation
: ’
of (P :X—C and note that g(C')=q=0 so C'?:’iPi and the fibers of ‘f are conics.
Let ? :X —=X' be as before and exactly as in the proof of th, 2.1 we find that
: . 3 : 2 i
X' is one of W, 1i=0,1,2,3 and H.=2C +(4+i)F . From (H )+(H:K)=4 and (KK+(H°K)2=-—4
L 2 /
~, ’L Z : L
we obtain 8;@(}3{1—1) -8 -2 (a mnonplanar curve of genus 3 has degree »5). But the
case (H)=6 , (1&){):—2 would give X embedded in [P', which is impossible by the
formula in [16] P. 434 . So we have 7L (H- )16  and X is the blowing—up of one
of (F'C, ‘i=:o,'1,2,3 with center k points béionging to distinct. fiberg, o$k<\9°
This is case d). <

?
SR =) : : : . S &
Case I11: LF:}{'T“‘“‘E" is surjective, We have 2p (I-{+K<)——d=(ﬁ+K\‘ +(H+KK) =
: : : e



=
.:,4+_2(}1+1{’7;z;>2 so that i (nm) 3}-(H+I‘x K) By Bertini's the rcrn; a generic De\}m%\
is smooth and connected, so that %%(D)?;o; since (H-H+§g=4 ‘we ca%%ave g(D>=¢,i,3,
L) g(D)=o0 so0 (}{+Ig:13?;:-3, (I{+I%22=l and ¥ is birational., We obtain 97,‘(1?72
=(Hz3—72;~1 and u‘<(,i )<16. So the number of blown-up points a5l e, TR T 1o
an (effective) divisor on X contracted by P , we have: o=(EoH%§9=(E'H)+(E-§Q ;
so that (E‘%2<:o. But Y is a composition of blowings-up (with center a point)
so we must have (E‘%Q:;—l. This implies (E~%2=—1'and (B+H )=1 so B is an excep-
tional curve. This shows that the blown-up points are ordinary. Einally; k£ we'
put H's= %l(ﬁ) s we must have H'=4L since g(H')=3. We ébt&lned case e).
P) g(D)=1 ; since (H'D)=4 , R-R on.D gives that D ig contained inSPB, It follows

: : 0 ;
that there is C >o such that H=C+H+K, so that h'(%((—zgno. We have (H+K-X)=-2,
g : 2

X
X
: = P : SRl
'(H+K) =2 so\f has degree 2. Since p ~%2=1 ,*‘—(H'%Q)ZB ana (R )=—5—( K)>’1 (1)
We have by Serre duality: (%é/K*H))”“ (o(- H—K)) and (2) + H (o(/w4n3)--
s H (Qj ~H-K))=0. To prove (z) , look at the exact sequence:
0. = 0. (-D)~—>0 - » 0. —wo
4 :
Since D is smooth)connected and H (%K)zo we are done.: We obtain by R-R:
0 ’ i :
h (q(azuu)):'x(o}((zmﬁ)): 1+1/2(2K+4H°K+H)=1. How we have again 2 possibilities:
X.
1) H=- =2k, 30 X is the Del Pezzo double plane or
: ;
2) b (0(-H-2K))=0,
X :
5 570 o :
in the second case, f{irst remark that h (géuK))zh (0(2K))=0 , so we obtain by R-K:
Y : 20 ] %
e (O(—K))~>%KO(~K)=(%% +1 . The exact sequence:
X VS

O et O H2K) e sl o i Qul=k) womme gives:
‘ X = ‘

(s} o) o (¢}
o —— (O)g—-H-ZK)) —— (%-—K)) = H(D508(-K) ) i Sivcesy(olimton))=o,
_ 4 5 o

¢ o 2 o
h (%-K))sh (OD(-K)):2 by R-R on D. So we obtained by (3): (}:K)+1§11(o(-—x))g2
& : <
s 3 Z U / [\/ Ay
Together with (1) this gives (¥ )=1 , (8 )=7. Remember itheat h \311 H218) =1 i, g0

: i)—- ' o & o~
| H+2K[=E with (H:3)=1, (E7)=-1. If G ¢tX —eX' denotes the contraction of I,

clearly X' is the Del Pezzo double plane and H= Cf(~ 2YL L Yl i Sl tilis- eddls Ho dakset)



. - A sy . A =~ ~—~ 1 - P, I o
'g) D(D):} go D is & plane curve. But then there is a D'¢e l'“E\;(i such that
Dip'@dH]} .Since in this case (H+K~%2«o s (D=D' J=0 contradicting “he fact that
X :
. v . AR I o IS5 Sy 0 e ko i
Al (llVI 3O ';’; 18 OOI"{I.\U\,‘t-G\,‘L. Thts theorem 13 con Plbtb Ly Provei,

§ 3« o Varieties of desree 5

o ‘ -
Let XCP be a nondegenerated,lincarly normal variety of degrec 5, Denote

1

by s=n-r the ccdimension of X, We shall discuss.the possible values of s. We have

bysotd 3€4.LN

. If _s=4 , by 0.5 _g=0 and by cor.l.1 X is the Veronese embedding Yg(Pi)
e
or a rational scroll X2P(0 ( Yieus. . ® 0, (e s o )
. ot o ot o e

=

‘""‘51 d»,l 3y - ,...I'

Qe
(52

‘-L

and 0 (H) is the tautological sheaf; 0.6, In particular 2£r<5 and for r=5 we

s :
: : Lo b o e d ‘ : ; Mg
have the Segre embedding of P Xi® in [P° 3 any other is a linear section of this,
0.5, By lemma 0,38 any such varlety is arithmetically Cohen-ifacaulay and its
homogenous ideal is generated by lo hyperquadrics.

IT. _3=3 . By 0.5 g=0,1. Since we have supposed X linear’y normzl it is
enough to consider g=1 ., Firs% o' all we have elliptic curves. By [ﬁij e N
are arithmetically Cohen-ifacaulay, and their 1dca1 is generated by 5 hyperquadrics,

B

If CCP 1is such a curve, the standard exact sequences:

(Ere o v L S e mﬁ?‘*lc — Ncmr—»»o and
. -
(290 = 0 —e0{l) —=n ik 7o) :

e
]?‘*\C
ive.: y»c(\’l §=25 and r'i’zl )=0", 80 b S Eorthatilon Ehton 1,.] the Hilbert
give. n .LCI,? =c) 1 \\C[f‘/‘ =05 TS N ormatl eory [q, s L€ pliper
scheme_parametrising such curves is smooth, of dimension 25,

If ©22, by cor, 1.3 X is either a Del Pezzd variety or an elliptic scroll,

But the Del Pezzo varieties were recently complet ely classified by Fujita [9},
[?6]'(1}7J for 3-folds). In our case we obtain that any such X is a linear.: sec—
: _ o ; e R e » L Rt il

tion of the Grassmahn varievy of lines ip [P with the PlUcker embedding in P~ .

tny two such varieties of the same dimension are projectié&y equivalernt, For



._47',_
: - 4 . : ; it
. r=2 we have the well-known Del Pezzo surface, obtained by blowing-up P in 4
points, HmBL—P&wP%—Pﬁ-%‘.If r’Z} one can find various abstract descriptions of
such varieties in [lo] . 4gain by leima o.2 any such varlcty is arithmetically
Cohen-Macaulay and its homogenous ideal is generated by 5 hyperquadrics.
As we shall see below, the elliptic scrolls do not ocour, in this case .
1II. s=2 By 0.5 we can have g=o0, 1, 2. For g=1 only elliptic scrolls
: 2
have to be considered, For r=2, if HZC +bF, we have by 0.3: :5=(C +bF) =-e+Zb ;
b e+3, so eé-—l. But for any geometrically ruled ellipticsurface_e),—l (\":161
s o i ; : s lf
tha2.15 peafil)iao e-:—-l, b=2, h (o_ (8))=5 (by R-R} and they really exist in (P
([16)th.2.15,p. 377). Let X=P(E) X . ¢ with C elliptic. The standard exact

sequences (1), (2) and :

(3) o——s Txlc,"“"”’ B
(4) o

- .-«-%7(, 1} ~—=T — O
Tl £)(1) e
G e ding Eil
give h (N, 6 ,)=25 and h (N 4)=0 , so the corresponding Hilbert -scheme is
X @f x/&" =
smooth, of dimension 25, 1t should be remarked that these scrolls are nolt arith-
metically Cohen-iacaulay, since their hyperplane section is an elliptic curve

s

: %) . , ‘ :
of degree 5 in [P”, hence not linearky normal. This suggests the following useful

Lemma 3.1. Let C be an elliptic curve and Y=P(E) with B a locally free

; L | : N
. sheaf on C, of rank T e ouppose embedded as & linearly ncrmal scroll in P ,

: ot
Then there is no smooth (nondeqenerated) X embedded in (P such that Y is a

hyperplane section of X,

Proof, 1In the context of the proof of th. 3 in'[é}, suppose the lemma is
not true and consider the exact sequence:

(1) o —* ——» () — 0(Y) —>o0
| 0 .

; &
It follews that X itself has the structure oi a P -bundle owver T, say q:X -—=0C |
Apply q to the sequence (1) to obtain:
O ey O e e Y T O ;



— z\x,

with ® a locally free sheaf 'on C which is ample and E'=E@L’ for some L'€PiclC)»

o~

s A S 6 S ot
Qo % {§ — ]I w’) ez S ——== s (B

1 o :
But by duality, H (#)=H (¥)=o since I is ample, Now, we obtained:
o 0 (g e s e : .
ntl=h (Y,OY(Y)):h (8")=h \F)zh(X,O?\_(Y)) which is absurd. q.e.d.

So, for g=1 only surfaces can occur,

Consider g=2 . For such curvec we have the following classical result (for

t

instance [26] p. 93).

Lemma 3.2. &Any curve C of genus 2 and degree 5 in [P is "linked" to & line

.

by 2 surfaces of degrees 2 and 3 respectively, .

Proof, »‘B.jf R-R 'it follows that C is contained in exacily one gquadric Q
(necessarily irreducible~), Again by R-R, .the family of cubic surfaces containing
C has. dimension 2 5 so C lies on an irreducible. cubic S.° >So there is a line L such
that Q@ NS=CUL. q.e.d.

In particular € ‘is ax‘i'tlnnetically Cohen—ifacaulay, [25] prop.l.2. (this follows also

for 0. from a resolution of

c OL. s namely:

. ) s Ofeb( 4 )@Ol??)( ___4“)_...4,, OE,,J( ~2 )6»;0{27) (-3 )@pﬁ)%( -3) -—"‘»"O}?g—“”' OC-———— 20

By [6"}\ the Hilbert scheme of such curves is irreducible, smooth, of dimension 2o,
Consider now r=2. By the 2.1. X carie & blowing-up of B with center P,
:P,J’. ’. ¢ & ’P7

scroll over a curve of genus 2. The scrolls do not occur in virtue of the following:

. H;—;41,._:’413'0,_131 —eos—P (which we shall call Casgtelnuovo surfaoes) or a

7.

Lemma 3.3, A scroll over a curve ¢ of genus ¢ has degree 28,

Proof. Since a curve of genus 2 must have degree >/5, we obtain (CO~H)=
. ¢ 3 2’ S
;:(CC*Ccbe)=-ne+b7/5, so b»5+e and (Hz):(Cc+b};‘) =-e4+2b er+lo. By a theorem of
Nagata {:;44] th.1 , we have e -2 so we obtain (H Y8 gecadse

The Castelnuovo surfaces are easily seen (as in lemma 3,2) to be linked to a



el
plane by a hyperquedric and a hyper _gubic., They have the resolution (k) G
of @3) and are arithmetically Cohen-iaca aulay. Such surfaces do exist by kgj}th B2
(or simply taking Pc,o,‘yf QJPZ'to be "in gcne*al position" and showing that
4L-2F ~P -...-P, is very ample - sce (3)ex. 17 p. 73). By (6] their Hilbert scheme
is irre@uoible, smooth, of dimgnsion 32. Let r=3, As above we have the resolution
(%) (w instead of | 3). These are arithmetically Cohen-facaulay and by {25] th.6u.
they do exist, The Hilbert scheme is irre@ucible, smooth, of dimension 45 by [Bjo
1% would be nice to have & description of such varieties in‘terms of some known

3~folds. For the moment we haves e S Ak 7 ses

‘Lemma 3.4. 4 (linaarly normal, nondegenerated) 3-fold X of degree 5 in[Pb

has Betti numbers b, =0, b =2y b,=6. The classes of H and 2H+§K¥Q form a° base’ of

. Bic(k) with (a)=5, (5% 0)-8; (&, el

' 4

Proof. The aagunotlon mapping Y q]ni*ﬁd ives a mc;pulsm to P whose goneral
fiber @ is a smooth quadric (cor.1. 4) We show that any fiber ot P i integral,
80 any nonsmooth fiber of %’is an ordinary cone. Suppesé F is a nonintegral fiber
of Y . Since (HJH‘F)=2, Wwe can 6nly have F=H'4H'' op P=2H', where HbUs U are
planes., But remember (proof of th. 2.1) that for E the adjunction mapping gives

i L = ; L : ST e 2 e
& morphism fto [P such that any fiber is either & smooth conic or 2 lines intersecting
in a point, *It follows that P=2H' is ruled . out and if F=H'+H''y; H' must be an

1

eéxceptional plane, so it can be contracted to a point, This is absurd;'sincé in
thik case the curve H'NH'' would be contracted to a point, Now retdrn to the
proof of 3.4. We shall show below tnat‘f has exactly 8 oln ular flbers, Let ? be
one of them, Since it is @ ‘cone, the restriction of H.to & generates Pic(Ff. So,

o

for any divisor class D on £ we have Dh;:bﬁi for some b&€Z. It follows that for

i
any D therd are s,bC Z such that D=al+bH, and the intersection numberscare given
- 2% 9B
4 o 7 3\ -0 ¢ C
bys (H)=5, (H™:Q)=2, (H-a)=(q")=o.
Hext, we want to compute the topelogical Inler-Poincars characteristic,



el R

Using the map Lf sathe formula.j.n (:33 lemma VI.4 p. 95 gives: {o) "?C%rglf{)-==8-—zz,
g - ,,"

whioro n is the nunber of singular fibers of kf’ « We shall compute: "X (X;}:cz) by R—R,'

using the method in ilé} Bl s

a2, ,
bundle of XCIP , from the standard exact sequences:

o —b T)'( ———&TWS l)(.——:»N —— O and

EAY A

o =0 ..D—w-%‘-’OE)g(l)-—’—%T@b.v—-vo we obtain:
(1) ci(N.);éva ;
: o8, 113
(2) ¢, (3)=15(H )+K(68+K)-n
(3) (—Ksciﬂﬁ))+(cz-ql(k))+cgzao(ﬂ_)
But we have by the self-intersection formula {Lascu-iumford-Scott,Maths Proc. Camb,
Piil, Sees(9(1975), 1b7-123.):
(4) (c?(ﬁ)-ﬁ);(X»X=H)=25. To compute intersection numbers write K=Q-2H,
We obtain from (2),(4):
(5) (92°H)=14. Substituting (1),(2) in §3) and taking into account. (5) we
have: (6) cb=-2(cz’K)w48. By R-R we haves
ALY 0 =-1/24(c.+K). But HC(O =0, i=1,2,3. Indeed 4H4(O ) zz(o ) i
) ==1/24(c_+K). Bu : sl=o, A=l » Indee _)=H _})=0, Since
! X 'Z‘ . e 2 I&s ’ "% 1 9. s
3 0
X is arithmetically Cohen-Macaulay and H.(9K>ZH (%K(K)):O since (K-H<H)=-8. So (7)
gives (cz'K)=f24 and from (6) ¢, =0 Thus in (o) we have n=8 as claimed,Since we
have seen that bi=92~b2=2 aﬁd;7Qﬁ¥T°* by Poincaré dgality b3=6; Qe€ade
r4 is not possible.Indeed, by lemma 0,2 such varieties must be arithmetically
: : : m :
Cohen~ffacaulay in P , with n>6, so by a result originally due to Hartshorne (see
(2] th.5.1) these must be complete intersections, which is not our case,
IV. s=1. These are just hypersurfaces of degree 5.

maserr oo

§4¢ Varieties of degree 6

Let XCP be a linearly normal, nondegenerated variety of degree 6. As before,
we discuss the possible values of the codimension s=n~r. By 0.4 we have s&éSw

. s A :
I. If s=5, g=0 so as above X is either the Veronese embedding v (P ) or a ra-
2 g )



9

: 3 '
tional seroll X2P(0_ (2,) @ «vv & oﬁ)l (a:))y 2" 2;=65 a: 3 Yyiel,eca,r and oK(rz) is.
g ; i

=4

the tautological sheaf, We have 2LrL 6 and for r=56 X iz the Segre embedding of

5 AL

WixﬂP in P . Any other is a linear section of this one; they are arithmetically

Cbhen~Macau1ay and their homogenous ideal is generated by 15 hyperquadrics(o.650.2)¢

II.. s=4. As above, for g=1 we first have elliptic curves. By [?l] they are

RSSIS Shel

arithmetically Cohen-Macaulay and theyr homogenous ideal is generated by 9 hyper-
quadrics., The corresponding Hilbert scheme is smooth, of dimension 36,

If 22, by cor. 1.3, X is either a Del Pezzo variety or an elliptic scroli.

3 - »

By the work of Fujita [9i}(lskov3kih L}?] for 3-folds) the Del Pezzo varieties of

£
o

degree 6 are: -~ the Del Pezzo surface, which is the blowing-up of P with center

-z ' de i A F
3 points, Hz3L*E(—PZ425; - the Segre embedding of P xP xP in P ; —]P(ng) pro-

2 ; 2, :
Jeetivised tangent sheaf to [P ,'QQ(R) being the tautological sheaf; - P xIP iem~
2 _ :
bedded Segre in P .Again by o.2 any such variety is arithmetically Cohen~ilacaulay
and the corresponding hcmogenous ideal is generated by 9 hyperquedrics. As we shall
see in a moment, elliptic secrolls do not occur here,
IIT. s=3. Ia virtue of o.5 we can have g=0,1,2. For g=1 only elliptic scrolls

¥

are in question. Por r=2, we have by 0.3
2 ; 2Ei

6’:—.(Co+b?):we+2b and b>/9+3 s0 eéo..ﬁﬁ]t’h.&lﬁ Pe377, gives e>/-—1; but ¢=-1 implies

2b=5 which is absurd, so e=0, b=3, R-R gives hp(Oﬁ(H))mé and they do exist by [16)

' : : | e 1 -

10;,01t. As in the case of degree 5, we obtain h (%K/E§ﬁ=36, h (%K785>30 so the

Hilbert scheme is swmooth, of dimension 36. Again they are not arithmetically Cohen-

Macaulay., By lemma 3.1, for r};} such' scrolls’ do not exist,

3

Consider g=2. We first have curves of genus 2. By[S] cor.l.11,1.14, they are arith.
metically Cohen-slacaulay and their homogenous ideal is generated by 4 hyperquadrics.
As above, the corresponding Hilbert scheme is gsmooth, of dimension 29,

Let now r=2 and apply th. 2.1. It follows that X is either a blowing-up of £~

ot : 3 EAS R ! i 7 cesignd < 5 =
with center P 2 H=4L=2P, =P, —, .. «PG (vhich we shall also call Castelnuove
Q : Gl z et



AL T

- & ) v o s A ) = - 5 ey M g e ey ~ = = . 2 PEL
U“rdkbw) or 2 geroll over ascurve of genus 2, By Lemma 365 scrolls ae not oceur,

The Castelnuovo surfaces are arithwetically Cohen—ijacaulay end their homogenous

§ N Y1

ideal 1s oenerated by 4 BYyPETY vedricse
: & e J

_Let r= 3. We have:

9

Lemma 4.1l. 4 3-fold of degree 6 with g=2 is a double covering % s =Rl

>

: i *
such that if we put B=p, (0 (1)) , P= (1)) we have 0_(H)={ (E@F) and
uch that if we pub E=p (081( )) » F=p, (QEL( )) we have ,Xf ) { (E&r) an

. G
the ramification divisoxn RE |H|. Such varieties do exist in P 3 they have the

anticanonical class very ample and Betti nuubers b,=0, b

K
o )

4 V8 3
J,# ;
and § (#) give a base of P10(§).
proof, Remember from corT. 1.4.that the auguhoblon mapping ¢ %LZ 1ves
G . Rk
; A s £ - :
a morphism to P with general fiber & smooth quadric, say Q. ¥e show that the

nes e i ; % 2%
linear 3'stem§n«Q§ is basepoints free and maps X onto P . From the exact sequence:

OMO{(—-%) w-voxwvo& BRETE T

4 ; ! ! ;
we infer H (8 .(-q))=o (since H (0 _)=0). Then consider the exact sequence:
VS RRAD X : :
0——w0 (-Q) —* 0 (H-q) ——= 0 _(H-Q) —=o
x§ Q) j{<' P JT} )
Tl O 0 ;
1% follows h (0 (E-G))=h (O,ijQ)) and it is enough to prove.that O
D : H

ig spanned by global sections, Doing the same once again we can assume HEics

L

a curve (of genus 2). Since the degree of H-Q is 4, QﬁfH—Q) is generated by

e
global sections and nonspecial, so by R-R h (?ﬁfﬂ—@)):}. So we have a morphism

:X —»P ~ which is surjective since (qu) =1, Now combine Sand Noto

‘+’ '.:L‘)t H"Ql.

_ 4 : .
obtaln a . morphisn {”:X —® P X , corresponding to sSomne subsysten of 111,
It particular f is finitg. ©f degree (H~QéH—Q“Q):2 . We have =K =ZH~Q=Hy i—Q

80 |_K| is very ample since lHl is and lH—QI is basepoints free. The ramifi-
; X
cagior divisor R is given by the formula: (1) e =.§ 5 +R and we immedi-

: % i X [?A(_E
tely obtain QK(R)=.£ (E®@F). Since H (?Zgzo , b =o. Now apply exactly the

o)

Lot

game method as in lemma 3.4 to see that any nonsmooth fiber of‘f ig an ordinary

cone and there are exactly 6 such., The same computation via R-R gives c_ =¥ =2



!

(we leave the details to the reader). As in the proof of 0 4 (the classes of}).

H and Q form a base for Pic(X), with intersection numbers (Hg)né, (HliQ)=2,

S g . ; : : e
(H-¢)=(¢")=0. By Poincars duality we obtain Esmq. Now start with a double coverin

: oL el SR : ' : '
f:X — P'kP , ramified (2,2) (with smooth discriminant divisor) and we shall

o G

prove that gxfﬂ)zf (EQ@E) is very ample and maps X to P with degree 6, Put
Brar. (B ipies (”) and think of them as divisor classes. Pirst of all remark
that the ramification divisor R belongs tolE'+F'] since £ R belongs to|2E+27|
Formula (1) gives K =-E'-2f', so f%(is ample (X is a Fano_variety,_seev[jlﬂ)0
In particular H (0 )=o for i=1,2,3 by .duality and Kedaira vani*shing, so we have:
()0 gle. We want to prove first that h (0 (E))=7. We,claim +that a smooth
(Qél 2'| is a quadric and 0 ( ')I =0 (1 Indeed, adjunction formula gives
0 (xy) X = d il -0d (meibell wissam e Sh St
o8 ( +Q)l( ( 2r! ”Q, and O ( )’Q, %(( )l iz ample., From [7}“}1, 2u2;

a

ide PollomanQuisia (smooth) quadric and 0 (F')k}zOr(l) as claimed, Now consider

o
~A

the éxact sequence:

() o ~—=0(F)—2eqg (B) —> 0 (#") —>o0

.

By duality and Kodaira vanishing we have: H (o (8))=8 (0 (Fi))=0 for gl 2t
; e X

0 crmy 1 e - e RO A% . = E YT .-’ -
h (Oafyf))zﬁ. By R-R we obtain: (4) a;?i(%<(ﬁ))zl/12(haﬁ_go e g )+1/18(qwcz)+xi(

03]

and  (5) b:‘xox(é"):1/12@"‘5"—% 2pt-X )+..1/:x.a(;mca)+xc y (2)

¥ ’X‘
1=%X0 =K o But K =H+F', so:(6) 24= (~K.c_)=(Hec )s(m'ec:
7;& 1/24( c?v) w K =Ht7', s0 (6): @n= (x °*2,) (m vl)ﬂw cL),

=

Intersection numbers are easly computeds (H-H-K- 2H-K )=Z(E+F~EE+SEﬁ3E+4F)=58.
and (E’ Pt=Ke. 2" -K )-¢(¢-~+3p» E+48)=14 . Summing (4) and (5) and taking into
account () we obtain arb=lo, so by (3) we have a=7, b=3. And clearly (H3)=

can prove that &_(H) is very ample., Consider the diagram

e where %xm_lg the morphism corresponding to the
g iy ‘
b complete linear system X} and Y is the image
ity _‘,@4— : .
7 i (V) ’ :)J
PR o I 0 e = FAE) T TR ey
ok e vince {E+F) =3, the resuliing mor-



= ) L¥e v

A ) S
nhiom q is 2 double covering of P .F and P 1s finite and birational., We war
: . . G0 2 ~ & ,» 1 e ai L) = » : =
show that Y is normal, gokfhllls an isocmorphism, To prove this we shall see that

any! fiber of g=p° q fisi integral,hence normali simée il isvaquattic Ao e-thselis

; : = ; SRS ‘
ig normal. It is evough to show that any fiber of go‘hﬁfngz isiinegr aliit LetiD

be a fiber of pof, Since (D1HeH)=2(B- BE+F-E+F)=2. we can only have D=D'4D'' or
i ; ‘

“(Egmt)
e
~ - 10 ') %S
=(F'l Py )D, sdidmoer il (D ) is 2-dimensional, h (o (#')[ ,)=n (‘\:X_(ﬂ)“)’ )73

D=2D', with D', D'' integral. In any case, 1;-.(1)',Allwzz):((aurp')}

i S
and 0 (r')| , is adple, so by a result of Kobayashi- dete LlC)] it follows D'=|P
; D

a nli ) e gl /'[ & "]t b aa junction we have: o , - =0 i \::C' K -f-D’ 5 =
‘ ( )]D _(fz\ ) 3 J Jur { ) ( 3) Dl ( El / _2(< = )ID/
__'3 ("'27{“—" D' 30 U (D' \ d~' "!(‘ 2 ( 1). But then D' iS Qe th ul DJ”‘Lnf’ 29 j.
k—-», \ & )"DI < X ) i ’ pg, = a1x

can be contracted, The .same applies:to D'', so in case D=D'4+D'' the curve D'nd"’

1 1 1 !

would be contracted to a point which is impossible, If D«ZD', we have a morphism
' making the diagram commutative:
pta {)«(C g’ -‘L . 53 3 r .
K2~ P which is cle arly-absurd, - Phe lemma is
v
-
(',Cvn”tbi e : ¢
= e i completdy proved.
T '( :

1

homogenous ideal is generated by 4 hyperquadrics,
Case I”Zq.is impossible. Indeed, exactly as above, we would obtain a morphisnm
4% ' ! el ;
from X to P X[ , corresponding to some subsystem of JH], which is absurd,
IV.eis=2.: By 0.5 We:can have g=0,1,2,3; 4, First: for g=1 only elliptic sctolls of
dJmen%lon o e ) could possibly occur. But in this case we would have a 2-dimensional
which
elliptictacrol ladnt P Vilust be the (isomorphic) projection of one qf th009 discussed
in the previous case. This is impossible, for instance by a theorem of Severi asser-
ting that the Veronese surface v (P7) is the only one which projects isomorphically

4 w

from P to P . However in our case the formula in [}o}p 434 ig isuffiedients

Consider now g=2, r=2, X a Castelnuovo surface, By th.2.1l we would have (H'EK)=m4)



4
| (Kx

is: impossible too.

)
Assume g=3. Consider first a curve of degree 6 and genms 3t B o T
e s s £

& quadric cone since this would imply it is a complete intersection, which

the case. There are 2 types of such curves (see
of type (2,4) on a smooth quadric. They are not
The other type

is given by the following:

Lemma 4.2

)=2 contradicting again tthe formula in I}GI p.434 for surfaces in'Wé. So =2

it

>

s not. on
is not
[?6}p093 )t the first is a curve.

arithmetically Cohen-iacaulay.

- 3 : :
in P” which is

see also [ 6 - €Xe2y De43o ) Any curve of degree 6 and genus
? 5 J :

not on a guadric is linked to the twisted cubic by 2 cubic surfaces

- In particular it is arithmetically Cohen-iiacaulay.

Proofi.

By R-R the family of cubic surfaces containing C has dimension 2 3 ‘and

by hypothesis they must be -irreducible. It follows that C is linked to a -possivly

H
(0]
st
<
o
$de
o
)
@

<

want to prove that for suitable choice of S

or singular-curve C' of degree 3 by 2 cubic surfaces, say S-and §'.

and

We

’

S'y C' is integral. Denots by

m(P,C) or m(P,S) the multiplicity of:a point'P on the curve C or the surface S. By

Bertini's

there dis.a . £ix point ¥ .ensC such.that. Gl consists always in 3 lines throushk V.
L O

implies any S is a cone with vertex V, so their

lines, a contradiction. Since m(P,CUC')<3, we

theorem, we have m(P,CL}C')sg},G Indeed; the only unpléasant case

intersection would be a union

have m(P,S)-m(P,s' )< n(2,cuUC! )& 3,

80 there are smooth cubic surfaces containing C (the same argument as in [20]),
ko .

So we have C+C'=3H on a smooth cubic surface S.

If any C'éi‘}ﬁ«Cl is reducible,

say C'=1+Q, L a line and ¢ a conic, L must be a fixed component of l3H—Cl. But

dile]:l and on the other side, the exact sequence:

S 0,(3) —= 0.(3) ——= o

so dim|3H-C |2, This is

wWe

a contradiction. By
we must have pd(C')mo, 500"

can write down a vresolubion for O

the formulas

is the twisied.cubic,

11a

from the reso

N



tion of:the twisted cublc,
® f‘
(x-%) o ST G 1) i
Do

i

The Hilbert scheme of curves

of dimension 24.
Now let r=2., By th. 2.2

2

4”"’3M3’ H=dL-Py =00 oD,

io

‘over a curve of genus 3. The

OEAHE

of degree 6 and genus 3 in P”

S

::/'2

@4

0 (-3) « -0, —>= 0 —>0
&j i 4 w"i) D (:

X is either a blowing-up of P with center

scrolls do not occur by the following:

over

Lemma A4.3. A

S
scroll X"a curve C of:

genus 3 has degree 9

Proof, By 0.5 a curve
uppose the
hyperelliptic. &4

Co

of genus 3 iw

section C

lieg'will givesa‘pencil of

OiS a

degree -2 (reducible) curves, consisting of

is irreducible,

smooth)

(these are known as Bordiga surfaces) or a scroll

either a plane curve of degree 4 or it
plane curve of degree 4. In particular

péncil of hyperplanescontaining the plane in.which

2 fibers

of the ruling (2 rational curve cannot dominate thé base which has genus 39
AT o A 5 i
Consequently the pencil is without basepoints and gives a morphlcw e X 2Pl
; : Rl Es
'MSt ‘tf\g oy’ L('c Ylaf Y'U&’V\C} /3(/(_, :'"\C 5 F):.:_t (:_J
e tStonmardctorisationiof Fyisay T L—%0" igtaideouble covering of P~ so it is
hyverelliptic -a contradiction, Suppose-now degree of 602,6. This gives:
Nolo 1 2 o
(cyem)=(c «oo+n.9):_s+b;;6 so bpesb and' (H ):(CC+bF) =-e+2b3 e+12 . The theorem

i 2ae
of Nagata L24] ies e>/—3 s SO (H )29 and we are done, g.e.d.
' Consider hnow the Bordl d surfaceb, Wé have: ' .
Lemma 4.4. 4ny Bordiga surface: X is arithmetically Cohen-liac

aulay, having

hhelres

olution (% %) (with EQ instead of Péli

This is a

Lemma 4. 5. Let

consequence of 0.2,

X be a nondegenerated linearly normal

lemma 4.2 and the following:

surface in P

with ¢ m3,

Then its generic hyperplane

sl
3e

; g e 3
ction H is not on any quadric in P,

T ORE S

0) w"‘""“’b‘ : :}Y\( 1 ) o :/)\:( 2 )
L o £

: e
Since H (P (1))=
(P d{1))=o

and we quOﬂqu 09 Jw(Z))fo it follows . H (P

~*~”ﬂ&fjf/(z) T

o 4w

Assune the contrary and consgider the standard exact sequence:



X is on a ( nondeg “rmyed) hyperguadric, say Q. If Q is smooth, by Klein's thec-

s

rem X would be a complete intersection}which is absurd, If Q is cone with vertex

i
@ point, Bertini's theorem implies that some integral memher of |H| is on a cone

; : . 20
invwa. If Q is cone with vertex a line, again H is on a cone in P, In any case H

L{!-\ 2.

—?

A a AR « e .
would be a complete intersection which is not case, The lemma is proved, In par-
ticular such surfaces do exist, for, instance by Lg5]th; o2l or teking 1o
points "in general pesition" in [P and showing 4L-P &...~RK> is very ample, see {
B, PO, 73)- It.follovsncg])that the Hilbert scheme of Bordiga surfaces is
) 3
irreducible, smooth, of dimension 35. :

Suppose r=3, VWe have:

; 5
emma 4.6, Let X be a 3-fold of degrec § with g=3 (they do exist in P ).

; ; ; o 2 SR
There s & nonk=2 cally free sheaf E on P~ such that 2p(5) and 0 (h) is *Ha
P 4

<

EE o - - . 5 ‘ . f ’
taaiolovLOQL sheaf, & 1s given by an extension {(4+) o——0 ~— B—s] (4) =—w o

o i
where Y is a subscheme of P consisting of lo distincdl points. E is stable and it

.

o ¥ 2/ : =
has ¢, (E)=4, c,(8)=10 . If 1 is a generic line inp Bllao (oo (20
4 Py | - L

Proof.%e shall show that the 2djunction mapping = | makes X 2 P -bundlc
(2R Rl
P A 5

over I . Remember that H is a-Bordlga surface, so,that the ad junction mapping
. 2 { :
akes it a blowing-up of P with c enter lo ofinary olnts, ‘Note also the relations
B § J
i 3 ¢

: : : 2 :
on H: (H-H+§H;=4, (K?;3=—l, (Kén+gﬁ):»3, (H+Kq):1, {H»Kﬂ)z-z. We have the exact

sequence:

) e O

» O (} EK lQ_(2H+T ) — 0 (H:&

X ki

) )=0 bécause (H-H- ﬂ+§() (H-X ) wmzo

o
or yfi

So. b (?X§2H+%Xg)= h (?H(H+K§?)c3. Now any fiber of‘f ig a line.lIndeed, we have:

(2H+%i2H+K ‘H)=(H +K ) =l. If D would be a 2-dimensional fiber of Y ,it must be

= 9
WVCL¢CL£
o U e o 3 > s e Tl B T Sl e Qe e Sy o S i
-an exceptional plane since its tracse Ot ds o an. esmcent Sonal daae o mat tioen we have

P 3 e e DR S L et R Ea o e
a morphism \f making the diagram comautative



%3

D ; /’243’ D0 \{3 15 e .-«bun@

Now apply %&Pto the exact sequence:

o] ~——;MM“¥* QT (H) = QWIE{) —— 0 0" obt aine

1
st T AV S TRV =2 since R © =0
i *““"9'0§;Q nﬂ,_,w91§25h))~,,fﬂ\{%CT§IJ> S e sin R &SX-O

rand E= %'(W ﬂ)\l locally free of raik 2. Remember that on H we have H=4L -

b

L

'Y

- It foliows that%i (0 (n))ls just QLYK4), with Y= {Pi""’PiOE .

[3

50 E is given by an extension (+). Restricting to a line L in [P not passing
through any 001n+ PL , we obtain ci(E):4. Since X5P(E) we see just by the defi-

nition of Chern classes: 'H )«c (u)(da+K° n»ﬂ}+01(m {2H+K '2?4%X'H)=Q 330 that

' b D
5= ACS<M/+CL( )=0 ani ¢, ( )=1lo. We have b (P , JWA4))$h (H,Oiéﬁ)):i. This implies

: < e o ;
(E’ j\( ))=¢ and from the extension (+) follows n (P, E(-2))=0. In our case

this means that B is stable. Then the generic splitting of B must be OL(Z}QO.(E)

by the Qrauert-illlich theoren ] Phe lemma i3 vroved.

BEl
s

-
_Any snch 3-fold is arithmetically Cohen-dacaulay by o.< and hias the same re—..-
5. 5 >

solution () (e "1astead of P ). In'particular LZS] th, 6,2 ensures they do exist

- :
in 'P~., Their Hilbert scheme is irreducible, smooth, of dimension 4

£l

O:

2

r74 is impossible, for .instance again by Hartshorne's theorem [25] Tl e Le
Let g=4. A curve of degree 6 and genus 4 in wb is the complete intersection

of a quadric and a cubic (use R-R). So by 0.2 we have for any r 1 the complete

§ 145
intersectios of type (2,3).

V. ‘e=l, These “are just the hypersurfaces of degree 6,

#inal remark, For reader's convenience we indicate briefly how to obtain in

the same manner the list of nondegenerated, lincarly normal, smooth varieties of
degree 5;4(in fact one knows all of them, without the smoothness condition see

DRI ol Y O 7 . st G 44 T £ and » & 3
{90]and !581 )« For degree 1 we have the projective sgpace it.cil and For degree



; e
2 @ hyperquadric. For degree 3 we have 85;2. For s=2, g=0 so0 by cor.l.1 (or better
: i3 _ S S ; A .
-T7] ths. 2,1, 2.2, 3.8 ) X is (P xIP  embedded Segre, its hyperplane section W&Z
2p(0 4(1) @)O 4(2)) or the twisted cubic. for degree 4, s£3. If s=3, g=0 and we

have P ,;w embedded Segre, its hyperplane section W(Oqi(l) ®0_,(1) 2)), two
: i

2)) and F&P(0_, (1) @0 ), the Veronese sur-
1(2)) o ?4( )'C) ffﬁ(B)" b erone ur

=

serollar surfaces WsP(0  (2) @ ©
| P(0,,(2) @ 0

25 : 4 .
face viﬁw ) and the Veronese curve VA(@ )+ If s=2, g=1 remark that any elliptic

al

L9 .
curve of degree 4 in P is the complete intersection of 2 quadrics. So by 0.2 we

have for any r 1 the complete intersections of type (2,2). e o
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