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ON THE NOTION OF COMPLETENESS IN PREDICTION THEORYl

by

I.Suciu and D.Timotin

The Wiener-Masani approach of prédiction theory for
finite multivariate stationary processes (Wiener and Masani
(1957( 1958)) contains many ideas and constructions which have
generated the later developments in prediction theory of
infinité variate stationary proceéses. One of them is the
idea of considering the time domain of'ﬁhe processes as a
linear space:K;on which the Cx—algebra Mq of g x g matrices
acts. The present and past of the processes is then defined
as the collection of all linear combinations, with coefficients
i Mq ; of the‘states of the process up to the moment t=0.

The correlations are given by a map " from A;xnd into Mq
satisfying some conditions which make (" an Mq—valued 'scalar
product"” on Ji . In the Wieher—Masani schemé}ﬁ:is the linear
space of all random norm square integrable vectors f (w)=

\

i ¢ P . The

=(f1(“0,...,fq(w)) on & -probability space TS

matrices from Mq act pointwise on & ’ and the codelation map

I is given by the Gramian matrix

\f gli5 (S L ) g @art).  fge¥, 141,32 g
SL

This approach is based on the assumption that we are
able to identify a finite number q of parameters of the

phenomenon under study. The experiences-we make in order to
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get information about it can be described by gxq matrices.
(The'results of the experiences yield only the correlation
matrix (‘LAF,BS]; these variables appear after performing the
experiences A and B when the phenomenon is in Ehe ‘given: states
£ amd g,

But it is generally difficult (and sometimes impossible,
e.g. in quantum.theory) to identify a finite number of satis-

factory parameters. Knowing the time evolution up to a moment

t=C of a finite number of parameters is sometimes not sufficient

even to'ébtain relevant information about their own later

- evolution. The problem of considerirg an infinite (or at least
not specificate) number of parameters presents therefore not
'oniy mathematical interest.

.Following the ideas of Wiener-Masani roughly described
above, a mathematicai model: for vredictlon theory of Snfinite
variate stationary processes was proposed by Suciu and
Valusescu (1978, 1979). In this model the time domain of the
proceés is described by the state spéce of a correlated

[

: o 7 e ;
action %f;,dﬁ,ig ;, where the parameter space S s i

(possibly infinite dimensional) Hilbert space, the state spaée

¢ is a>righ£ module over the CX-algebra 7 () of all linear
,bOunded operators on & and the correlation map " takes values
in Z (). In this context it was possible to formulate with

a sufficient degree of'consistency, the notions‘anq problems
of <. .§rediction thecry. The spe;tral (or frequency-domain)
mode i which can be attached in a natural way offers the
possibility to obtain relevant results in prediction theorv
by using recent developments of the strucﬁufe theory for

-operators on Hilbert spaces.
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In this paper we shall discuss the problem of'completness
of correlated actions. This problem has been simplified at
makimum in Suciu and Valugescu (1978); nevertheless it seems
to be important from the theoretical as well as from the

practlcal p01nt of view.

1.. Best estimation in the state space.

Let E,be a complex Hilbert space and denote by <_(E3
the C —algebra of all linear bounded operators on & . A unital
right‘L(%)—module is a vector space Qétogether with an action

(A,h) > Ah(hél, A& Z (%)) of X(%) on ¥ which satisfies

A,. TIh=h, hedl, I=the identity operator on & .

Bye. Afhtg)=AhtAqg . . higed , B cZ(E)
A,. (A+B) h=Ah+Bh , held , A;B & 2.(®)
A,. (AB)h=B(ah) , helé , &A,B ex(8)

An X (§)-correlation on ¥ is a map P from ¢ = J& into 20 (2)

satisfying

FORERECRE S e
5. lh,gl= ‘”[g,h]* , h,g €€

n
oAl e - v g i 2 a¥ 1ih, ) By
=] khJ 1k13 Jrk
A correlated action is a triple {%f,3é,V3 where & -the
parameter srace is a Hilbert space, 1(:—the state space - is
a unital right < (£)-module and  -the correlation - is an

Z (£)-valued correlation on X .



For any correlated action {Tj,XC,P} ’we can construct
the Hilbert Spaceiyéuniquely determined (up'to adequate
isomorphism) by thé following property?

There exists an algebraic embedding h 2 Vh of the right

Z (€)-module T into the right 7 (¥)-module (& ,K) satisfying

My F‘{h,g}=v§vq , h,ge i

M, - <

7 : ¢ 0
when a runs over & and h runs over Rg.

The elements ‘ga'h=v a span a dense subspace in
The construction of ¥ follows the construction of the
Avonezajn reproducing keirncl Hilbert space, starting from the
operatorial kernel V' . Recall enly thét the scalar product
on the generator; of & has the form
22y (ya'h,x-b,g)& =(‘r‘[g,h]a,b)&
¢ We shall call X the measuring'spaée of the correlated
actionugéf,}é,fﬁ.
The basic problem in all prediction or filtering theory
.is to estimate a certain, desired, behaviour of the phenomenon
under study using the information alfeady obtained about it.
We may wish to know the behaviour of the phenomenon at the
néxt mdment from the knowiedge of its behaviour up to the
pfesent moment (prediction), or to prescribe to the phenomenon
a given behaviour (filterinq). and, of course, we look for

the best estimation. We shall try to define in our context the

notions of known behaviour, estimating and best estimation.
First we shall accept some extramathematical conventions.

iWe obtain informations about the behaviour. of the phenomenon

by some received message. We accept that any received message

S




~deseribes a possible state of the phenomenon. So the received

message describes a certain state hell which we call prepared
: stéte.
We assume also that for any finite system hl""’hn of

prepared states in J( and Al,...,AnénZig),,the state

n
h=3> A h
o k'k

mathematical but also technical support; it means that we

is also prepared. This assumption has not only

can perform a finite number of experiences on the received
states in order to prepare a new possible received state.
Consider the information we can extract from a submodule
M of prepared states from the mathematical point of view .
Suppose we have a received state h; what we can measure are the
numerical values (("Eh,g]a,b)g‘ for any possible received

state gc%l@ and a,b in T . These values determine the vector

Viaasiab . for anya € & . So together with the submodule M in
14
¥ we have determined the subspace :Ki\,1= \ .Vh‘gf of XK. We
he M i

shall denote by PM the orthogonal projection from ‘};onto TQ,M.
Now let f be an arbitrary state in I and h a known state in M.
Since all the measured values which appear together with the
possible received state of ¢ have the form

( {w{f,g]a,b);é =(¥a,£'¥p,g)
it follows that if we use h instead of £ the error we expect

to appear in the measuring process is

-

a,f’ X\b,g)_(xka,h’ \Sb'g)‘4 = \4( xk;’f— gha’hj x—b,g) ‘ \'\

\(X

{
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We may take \lx-' £ e h{\ as a numerical measure of the
1} 7 3

errar. BUt

“Xa,f— X.a

’

h“ >’“ ga,:f:'_PM ‘Sa,f“ = \HI_PM) Ya,f |

If we denote

2

(%) (Al a a)=.\uI—PM)g“a’f“

£,M

then

(6 ¢ y2ra)= | (I-pV2 &—(v (1-P)Vga,a,

It follows that (%) defines a positive operator i i. M. on
’.

We shall call /lgf y Ehe error operator of estimation of £
4

by elements from M.

‘ ‘P’r‘o’p‘o‘siti‘on.’ We have

i~ M—hlnf\ [e-n2'een
K.,

where the infimum is taken in the partially ordered set of

" positive operators on X (£).

Proof. From (%) it follows that for any a e & we have

5 : 2 S 2
i o y- = 3 o = =
(L;sfa(a) Wiz=e o)y a’f\\ inf V¥ a,f kA

M
LN 2 Eonit n \
= AnE ke s T, I 7= inf \ = ‘ua i N
] £ £ :
hg""hndi a,’ k=1 Iton .no—_—f, hg""hr?’M \
all~-1an(‘- G S ao=a’ al"’lan{:‘é

Hence for any heM and a &% we have

- 2 __‘\ : =4' - z "\.'2 2 :
( T\-h,e-n)a,a)= 0§, pop W52 (0 20



Let QO:be a positive operator in Z (¥) such that Q{gﬁf—h,f-h]

for any heM. Then

(Qa,a)s inf (({f—h,f—h a,a)=inf |y f 2=

' heM 1 hen ¢ asf-h

3 ' A 0.2 5 2 2

= inf || Tk Xa h | = “(I-pM) T f“ =(Af pyara) .
heM ! i : .

The following definition is now natural;

e IV B
Definition. We say that the state f in L is the best

- estimation by states in M of the state £ 4dn Rlif

Bieoy g g md

A

2) r‘[f-%\,f—f3=é->§’M

In this case relation (%) implies - V?=PMVf; so the best
estimation, if It exists, is unique. But the existence of the
best estimation is not always assured. Moreover, even in the
case when it exists‘it may not belong to M. That is, it can
“not be prebared performing a finite number of experiences

on the received states.

Now it becomes obvious that‘we need “a notion¥of
completeness of the corelated action géf;IC,Pi which should
assure the existence of the best estimation. Moreover,‘it
should provide an approxiﬁating procedure (preferable

recursive) to approach f by elements in M, in the sense that

the errors which appear at each step should tend, in some sense,

to the minimum error operator K;f M
14




2;'Some'ideas for the axiom of completeness

Before stating some possible forms of completeness
we have to be more precise concerning what we have to ask for
such an axiom; that is, what are the main properties and
results concerning prediction theory that we should like to
obtain as corrolaries of the proposed axiom of completeness.
We have already stated such a requirement at the end of the
?receding baragraph, concerning the existence of the best
estimation..As a support for further requirzments we shall
quote some remarks made by N.Wiencr: "Important as is the
method 6f‘pfedicticnwgiven in:sthis ﬁaper it "has striet limi=
tdtions in practice (this dis, in fact, true of any metiiod of
?rediction) and should never be used to determine a curve
thch may be determiﬁédrin a stricly geometrical manner.
Statistical prediction is essentially a method of refining
a prediction which would be perfect by itself in an idealised
case but which is corrupted by statistical errors, either in
the observed guantity itself or in the observation.
Geometrical facts must be pfedicted geometrically and analy-
tical faets anélytically, leaving only statistical facts to
be prediéted statiisticallyl (CE.. Wiener . (1950) ;.pages 70=-71).

We may derive the fact that Wiener'’s methods in predic-
tion and filtering are based on the assumption that the
phenomenon and the measuring system contain sufficiently many
random "corruption"; by comparing different results measured
in sufficiently many different experiences we must be abl 2 to
sharpen the form of "noises". Then the possiblé obtainable

information is what remains from the measured data after



- removing these noises.‘So the notion of completeness of a
correlated action must be related also to the abundance of
"noises" in data.

To be more precise we recall some fundamental facts from ihe

prediction theory of discrete stationary processes. A stationary
. - ; 3 : o " -') "“ . 7 ¥ 'l
process in the correlated action 13,4\,1} is a doub;y infinite

-~ —Z o) oo : i - 5
sequence if L €l¢, such that ﬁ‘lf £ k] depends

only on k and not on n. The function k yﬂ{ kai Y{f £ +kj
is then a positive definite function on the group Z of the

integers with values in £ ({)) - the so called autocorrelation

function of the process. For the process gfn% we shall adopt

the following notations.

IQ?={hé]@,h=5:Akfk » Wwhere k<«n and fk#O only fora finite®
k
qgmber of valuvues of k

i3 s el £ it B L SRR

35 — the error estimation of f n+l by elements fromﬁﬁn.
n+l’

n

Erem. (%) it follows that;;f does not depend on n; we

4

put 4¢2=réf and call it the prediction error operator of the

process gfﬂﬂ.

The shift operator of the process is the unitary operator
P . - .
Ug defined on ¢ = N Ve % by

ns-es n

U )=5;V a

PN -a
Lign fn : h fn+l

It is clear then that ‘ :

and, denoting Vf=Vf ; we have



n
V -"=UeV
-fn_ £ E

%o wn
U fv f L

n=- o

Alco from(x) it follows that, for any n,

P N nie: el /D
e e

where Pn denotes the orthogonal projection from R% onto
'I(:lg—l . Clearly

D ke fet Tha
0sa-cvaEr o vy <Bls e ]

The process $£ % is called deterministic if 4 =0. In this

case }éf=};2 fe= ‘any néz.(yote that this is stronger than the
definition given in Suciu and Valusescu (1578); see the
- corollary to the proposition bélow.)

We say that ff;E is a white noise if /[s.= V[fo,f;). it

is eaSY‘tq check that ifn§ is a white noise process if and

only if rlfn,gﬁ]=~3nm(‘[fo,faj ‘

We say that the processes ngK andf'gﬁﬂ are stationary

only on k and not on n. This is equivalent to the existence

W ‘:k lé g oot s
on the space J“f,g fV g of a unitary operator Uf g such that

r

U =U . We say that the white noise ggﬁ

U 1., =U
f,q\x,f i f.g\kq g
is contained in the process ifnl provided

1) ifn{, Ygga are stationary cross-correlated.
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Bas

- Bropogiitiion. Tf \th% contains {g 2 then Z.Sg <

Proof. We have to prove that, for any héﬂﬁg

Cl e, 1 e A

But,

P LEp-no£)-h]= OLE - (higy)bgy o £)- (ke ) 4g ) =
hes Wi DT (hlgl)l‘f‘fﬁ[gl,glhbme " [£,- (h+a)) g, [

But, since {\ly,g£]=0 for any hc&]{? , we have Re({fr-ngﬂ,gﬂz
=Re P{f ~g.,9,' > 0, so our. relation follows
Ll 2 ; b =

Then

A §= i”'[ql,gﬂé A’;i ‘

Corollary. . .If the process {fﬁ% is deterministicethen, it

- does not contain any (nonzero) white noise.

The converse of the last assertion is not, in general,
true, and it is natural to take it as a first requirement

concerning an axiom of completeness:

Cio

- If the process (£ 2 does not contain any (non zero)
_ SiEng . Y

This requirement is in accordance with the passage from
Wiener quoted above. The prediction problem for the process
¢ ; s . ¢ : :
\fna is not trivial only in the case éfﬁ% contains a white
noise.

If we accept that the possible relevant information about

the process is obtained by removing the white noises contained



- in it, it is important to know if there exists a maximal
white noise contained in the process (We say that the white
noise g=Yg % is the maximal white noise contained in f=§fﬁ}

if, whenever g’=§géi is another white noise contained in

f, g’ is contained in g). So, another str onger requirement
whould be:
C2. Any stationary process f=§fnz contains a maximal

1 1 i =dk \:/
.whlte BOiSe °g zgé ’ Egg.mg Ay :
This is a laticial ‘property of the set of white noises
in K@endowed with the partial order relation given by inclusion
of white noises. We¢ -.do not insist here on the laticial formu-
lation 'of this property.
For a stationary process %féﬂ in consider now
Gf=f%f R £ nt R g
n n

L ClearlylanU 2 and we call G =GO the

innovation subspace of fr . We 'can then formulate requirement

Cé: T-£ ffn3 is a stationary process and Gf is the innovation
\
subspace of gan then there exists g  in J.such that &
— n &
Vgn——U PG: Vf 5

14

Proposition. C >

is equivalent-to C

2

Proof. Suppose anﬁ is a white nbise contained in gfni.

; . 2ok : 82
It is obvious that Vgg;g,G . Let a& & . Then
o)

:'\"' ¥ B o :
(PlEgr9,Jara)=tv  a, Vg a)=(v_ a,p o V, a)
o o - o 6 o
This already implies that, if Cé is satisfied, it gives

e I o R T T e SRR e O
US a maxial wilite noise. Since

s

% : : 2
& \ T = -P )Y -p ) =
\PGYVf a}1 (i(iC ‘n)]f a, (I ‘n’vf a) \4,fa,a)

O (o} o



the second requirement of C2 is also fulfilled. Return now to

an arbitrary white noise contained in \fnﬁ. We have

u Vgoa u 2=( \"\igolg; a,a)=(ﬁ éa,a)

Condition 3) from the definition of a white noise con-

tained in f says that
.Re_(\"[fo,gola,a) 2\ (‘[go,go]a,a)

thexefore

2

(%) Re (V a) \]Vg al

a, By
g G fo &

“O

If,C2 is satisfied, then, €aking in the last relation

for g the maximal white noise yielded by C2 , we see *that,

since D =58
&£y

inequaliﬁyhépplied to (%%) shows that we must actually have

implies 1\Vgoa“ = RPGfoOa]( , the Schwarz

Vg a=P ¢+ V_ a ,'so Cé follows.

= G fo n
Let us remark that Cé insures. the existence of fn=fn—qn

which is easily seen to berthe best estimation of fn by
elements from 162_1 3

Finally, we may ask that the maximal white noise i
..produéed by requirement C2 should allow us to separate comple- |
tely the "deterministic part" of the.process from the part

"corrupted by noises".

Gf
n

<8

: _ : 2
C3. i \fna is a stationary process,. and qx:n=-%
there exists Yy in 36 such that Vv =p f\{(' :
; p -

4] n
(S24]

In this case one can show easily that \\fnﬂ is a
stationary process cross-corelated with ifg\; the maximal

white noise ‘ign\ contained ini&rn] has the property that



% =¥ w Moreover, if u =f -¥' , then gu'§ is deterministic.
g v i g n

*~All these facts form what can be called a "Wold decomposition"

for stationary processes; in operator theory lanquage they

correspond to the usual Wold-von Neumann decomposition of the
*
o

f |k
x\of

isometric operator U

All requirements Cl--C3 are satisfied in the cése treated
by Suciu and Valusescu (1978); that is, if we ask simply that
W= <0 K. Thik seems, however, to be too strong a suppo-
sition, and is not sufficiently ‘motivated by extramathematical
arguments. As we shall see below, there are natural examples
which satisfy C,-C; , but do not verify Wl (2P

In search of other possible axioms, récaLl first ~that
M. is embedded in a natural way in 2(& ,/) where Jcis the

measuring space. We may therefore consider completeness

requirements given by usual uniform structures on I (% ,15).

15t s complete with respect to the operatorial norm
in (%K),
This axiom can be easily formulated without any refe-

rence to &, since L(Vh ﬁ2= “V§Yh“ = u(qb,ﬁlﬂ . Therefore,

o) 4 N =
\F N = r‘lAh,hnl 12 i daevin on M .
r £ .
But i does not assure neither one of requirements
Cl-C3', nor the existence of the best estimation. It is used
in the theory of Hilbert modul¢s (Cf. Dupr€é and Fillmore (1980),

Kasparov (1980)).

2% gﬁis complete with respect to the strong operatorial

N - L e R = ‘{'
copolegy din 2 (254,

This axiom can also be formulated without any reference

s ; A3 q2 b A oy : i :
to IG since.. -\ Jha i =(Vha,Vha)=(V§¥ha,a)=( (lh,h}a,a). But



it is unfortunately too strong for our purposes. Indeed,

it can be shown that such a requirement for 3 already implies

- Propesition..-If ](ﬁ is complete with respect to the strong

operatorial topology, then {{=L(§& ,K).

Proof. Let T <Z(E ,K). We will show that for any finite
dimensional subspace foc & and any: &€»0, ‘there is ho(-':.j(p , such

that Je “\/ =

et e ey
Bobor 1Eon:
Suppose '/io;‘%‘ is a finite dimensional subspace. Since

the linear span of-Vha e T acf is dense in X ; We may

. : W - iy d.Bh st
find L4ie<( 8, 30), HT’\‘@ o—T(‘E. <& }an ( o) consists
only of vectors of the form Vha. Now, let Se k=l be an
orthonormal ba81s in Zfo.

C'( ( b7 (k) - &2 (R
hoose hi ,cgt, fi = (G :L—l,...,nk ¢ suchEthat . = 70 7o
nk : ;
s (ek) Y% (k)f(k) and define A(k)e{(‘é) by A.(k) (ek)=f.(k)
i= l i 5 = ¥
and A( )—O en the orthogonal of S
Then 0
k
n (k) A
Ve o n, em=‘?f 2y (k) i ®m
5. A(k)h(k) k=1 i=1 1
ksl e s
"
S (m)_ 7
—.Q_G_Vh.(m)fi =T’ (e )
i=1 il
ny
g0, 1f hO—Z ZA(k)h( e th? =’I"\¢>£ ,.and the proof
T R (o) =20

Moreover, any submodule M of closed in this topology

is:@f the form & (T, }(;O) where »-=:3Qcis a closed subspace of s



What is more important, one can exhibit natural examples
which do not satisfy axioms 1 and 2, buf which behave perfectly
"well from thé point of view of prediction theory, that q'ss; . -i
they‘have all>properties Cl—C3° These examples are the
Schatten = wvon Neumann classes ffp of compact operators in
.JC(%:,fé), equipped with the naturél correlated action induced
by (% ,%X). If we take all the compact operators they
satisfy axiom 1, but not axiom 2; any other ideal does not
satisfy neither 1 nor 2. But we can easily prove the existence
of best estimatprs, ﬁhe existence of a maximal white noise
contained in any stationary process, as well as a usual Wold
'decomposition theorem. In fact, we may perform all the usual
constructions of Suciu and Valusescu (1978) and check

_wwwtbat they do not lead us outside the class of operators under l
consideration ; the las£ assertion is a consequence of the s i
idealwpropérty. This fact suggests that a com?leteness axiom
for a corfelated action should be more specifically connected
with the prediction theory of stationary érocesses. It should
allow us to obtain properties Cl-C3 and it should cover a

larger class of examples than just :i(éf,}g).

We shall end by propbsing such an axiom, which has the
disadvantage that it is not directly formulated in terms of
‘k@ but uses £he measuring space JK . Thefils suggested by the
proofs of Cl—C3 ih complete correlated actions in the éense
of Suciu and Valugescu {1978}, *and it is sufficient to make

these proofs work in the general case.

3. If heilb,, and P s an orthogonal projection in if@%),
then there exists n!<Jé, such that;Vh,=PVh .

This axiom is satisfied in the case of operator ideals



we have discuséed; as we have already remarked, this fact is
a consequence of the ideal property.

Concerning the construction of an approximation procedure,
let us remark that approximation in the strong operator topology
is always possible and that it can be given by a constructive
procedure (see Timotin (1981)). Suciu and Valusescu (1978)
show that in a special case we may ge£ a strong convergent
series that gives the best estimation. However, it is not
clear what are the conditions that could allow us to obtain
‘some stronger form of convergence, maybe more related to the
specific case of prediction theory. Thisipreblemgis closely
connected that of finding an appropiate éompleteness axiom;
they: bothipoint to: finding some:-sort of uniform: structure on

1@ that would be best suited for prediction purposes.
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