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Optimal Control for

the Stefan Problem

by Zhou lieike and Dan Tiba

I. Introduction

Let O be a bounded domain of an Buclidian space RN
with sufficiently smooth boundary I' . We denote V = B
the usual Sobolev space, s H“l(!l) its dual via £he inner
product (.,.) of space H = L2([1).

If X is a Banach space, with norm |.lX , then
LP(0,T;X) is the Banach space cfjall continuous, X-valued
functions on [o,T] and Wl’p(o,T;X) is the Sobolev space of
all functions f: [o,m] ~ X such that £, £ € LP(0,T;X).

We shall be concerned in this paper with the followirg
distributed control problem:

T ' 2
(P) Minimize { ( % |y - ydl + Y (u))ak

5 R

over the set of all continuous functions y§€ Wl’Q(o,T;H)

and u € Lz(o,T;U) subject to the following equations:

(L.1) vt(t,x) = Aglt,x) = Buls)(x) + £(&,x) a.e. Q,

vt x) € (A (y\(t,x)) G Oy
(@sch wile,x) = vo(x) | aaen Ol
(1.3) ydt,x) =00 a.e.



Eg) o

: = : : 2 ;
where ﬁ is a given maximal monotone graph in R~ , oLl -

] - o, +cw] , £, y5 and v, are given, Q and ). denote the
eylinder (Y x ] o,T[ and its lateral face [ﬂ X ] o,T[ i
respecti?ely.

We have found necessary conditions for optimality
in problem (P). They are obtained by using an abstract ap-
proximating scheme of the control process. This method is
employed by V.Barbu [i] s [2] who has studied the distribu-
ted control problem for semi-linear parabolic equations and
the boundary control problem for linear equations with ron-
linear boundary conditions. See also D.Tiba [7} for a similgr
argument in the case of nonlinear:hyperbolic control problems.
‘ For the investigation of the boundary control problem
governed by the equation (l.l) we quote Ch.Saguez [6] .
We shall assume that the following canditions are
satisfied.
1°., The maximal monotone graph (3 is everywhere

defined and verifying :
10 () - ) y-a) > silanls

for 83t w,z€ R .

2°, Bt U — H ig linear, continuous. U is a
Hilbert space of controls.

3oL vq € 1%(0,T;H) .

v E g = p"l(vo) eV .



e

5°, ¥ tH— ] -0 4 + o{] is a proper, convex,
lower semicontinuous function.

It must be emphasized that (l.1)-(1.3) represent the
general description of free boundary problems. In particular,

when the graph is given by.
P ¥y

Tis X, B e T,
(1:6) {3(r) = (’f’,O] ; 3 F ‘r =5
K(r~ro)— P if Eq

where K, p are positive constants, the problem (1.1)-{1.3)
redueces to the Stefan boundary problem (see e.g. [6] or{:SJ
B9 )

In expressing necessary conditions for problem (P)
«.we shall use the generalized gradient of Clarke [ﬁ] s defined
by
(a7 D/;(y) = Conv{we g oW = 1imV{$(yn)}

Y ¥

when P'is assumed locally Lipschitz.

The main results of the paper are stated in section 4.

2. Approximating Control Problem

Let 8, T[] be the operators from Lz(o,T; H) dnto

itself, defined by Og =1y, g = v, where y and v satisfy:



(I e BMy=a , ¥ E\(& () aoe. @
(2.2) vi(o) = a7 | : Sen ]
(2.3) y(t,x) = 0 S

Let P be a fixed C function on the real axis such
that ff’“l’f ,f(c)zo for 15131, p (B) =
=p (~5).

Denote X’z P -ox1, According to asgsumption 12 ’ z’ is

a maximal monotone graph. We define the mollifier of (3 by

F)E(y)

i

[Iy(y— €% p (3)aE =

(2ud) it ¥ ~2f ){’(G)f\‘y"(’) iE
=y v,
" where X}{ = j’((l +5X’)‘1) is the Yogida regularization
of T

Taking P instead cof P in (2.1), we define the
operators 96 ' T& in the same way.

. ) s
Lemma 2.1. Let assumption 1° be satisfied. Then

dom(6) = dom (1) = LQ(O,T; 1) anda 0,7 are weakly-

strongly continuous from LQ(O,T; H).in' Clo,Tg H) end

s : : > :
C¢(o,T; V') respectively. Moreover the following estimates

hold.

(@esh @ + |0g | ¢ c(1+1gl )
12(0,T;H) T(0,1;V) 1°(0,T;H)



1Tz | <C(1+ |2 )

(2.8) |(TT &) =
L%(0,T5v) L (o,T;H) 12(0, ;1)

o |

for all g € LQ(O,T;H), where C = C(e<, IVOI : lyol )
H v

ig a constant.

Proof.
Let A ¢ H — H, dom(A) = H_((L) ) H*((L), be
given by .

Ay e A y ®
Consider the following problem.
(2ol mla il v K9 (5) 3 elt) sase [l opli ey
(2.8) il G0l w
which is ecguivalent to.

%
(2.9) :;A(‘c) = (il{vo & (O[g(s) - A,\YA(S)J ds} .

Here Ak is the Yosida‘approximation of operator A.
Since ﬁ&, ﬁ;\ are Lipschitz, Eq. (2.9) has a unique soclution
yAQ Wl'z(o,T; H) and there exists YAG Wl’z(o,T; H) such

that .
t

(2.10) VA(t) S fo [g(s) = AAyx(s)] ds € p(y}) 5

Multiplying (2.7) by (y,),, respectively ﬁ(yhtt)),

a standard argument involving (l.4) implies the estimates:



(o (y,) s e xny = | < i
[ )4 12(0,1;H) | A5 o, W) '
el )
Lo, 0 1) 5
(2.12) | (v, )] 2 - e < C(1+lgl 2 )
Le(o, sV ) L (o, el Lo(o, 10
where C = C( X | lvol by ) is a constant.
4 - V’

a yA} bounded in

©0
L (o,7; H), the Arzela-Ascoli theorem yields:

Since in (2.11) we alsc get { A m

Coana) - L Sy y strongly in C(o,;1:H),

U
o0
weakly™ in L (o,T; V)

(2.24) oy =2y strongly in ©{(e,T; H),
C2.15) (y/\)t =il weakly in LZ(O,T;H) ;
(2:16) W vE p(y) strongly in C(o,T; V)
el oo o
wealdly™ 4n Lo s MY
(e s weakly in L°(0,T; V¥ ) .

Then, letting A >0 in (2.7) and (2.8) we see
that y is & solution to problem (2.1)-(2.3) and therefore

dom( 6O ) = dom (TIT) = LQ(O,T; )



e

If y and z are two solution to problem (el )

we}have!
(2.18) F (y)t "'P(Z)t ""A(y 4 Z) 9 O‘

Taking the inner product in 7 by P(y% - {3(5)

in the above equation, we infer that

2
ra|y(t) = z(8)]| £

2
(2.19) g5 |ply(s)) - pz())]
i %®

Vv H
£0 » G b [O,T]

and therefore y = z, i.e. B8 and Nl are single valued.
Moreover, from thig it follows that the limits y'and v
are independent of the cubsequence B

Bettive N0 in (2.13) and (2.12) we obtain
(2.5) an; (2.6),

The weakly-strong continuity of © and T is an

easy consequence NOoW.

Lemma 2.2. Let Erige € L2(0,T; H), Z —> 8

weakly in L2(0,T; H) as € >0, Then:

(220 6&(g€) —> O g strongly in C(2,T; H)

F* o 09, () 7\
wealdy” dn b syl ¥

ke2m) i ea(gg))t —> (Gg)t weaklv in LZ(O,T; H) ,

(2.20) 'ITE(gE) = S (&(9 (g)) strongly in C(o,T; v

5 o % o
weakly” in L (o,T; H)
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ozl (MGl — v, weakly in L%(o,T; v¥)

Thisg is a variant of Lemma 2.1.

Approximating control problem. For each £€> 0 we denote by

12: H -—9:]—90, +cxﬂ the regularized function of ﬁ/ 5
2
(2.24) e lh) = dnf { ‘B | b = v] +¥(v)p 'véii}
E 2 q
We consider the control problem

T ) 2
(ré) VMinimize fo ( %— | y(£) - yd(t)lH + % lu(t)~u“(’c)|U +

+ ?% Gult)) dt

in yeW:22(o,T; H) and w € T2(8PT;U). subject to the following

equationss:

(2.25) pg(y(t,x))t - A y($,x) = Bu{t)(x) + £{t,x)

Bees Q 4
(2.26) y(o,x) =y (x) PR ] T
Coof)  ~wltix) =0 St b

where u* is an optimal control in problem (P) and y> €

€ Wl’g(o,T; H) is the corresponding optimal state. We have:

Lemma 2.3. For each €>0 problem (P;) has at least

one solution (yé, ue)e,wl,2(o,T;H) x LQ(O,T; ).

Froof.

It is a standard argument since the functional



L
42 5 LQ(O,T; U) — ]-OO ,‘%oo] defined by -
T 2 2
(2428) d% ()= J;( % |ee(Bu 4+ f) = yd{H + % [u—uﬁlu +
Y (w) av

is coercive (uniformly in € !) and weakly lower semicontinuous

on LZ(O,T; T

Lemma 2.4. Let (%5’ u.) be a solution to (P ). Then

(2.29) Vi =0 y* strongly in C(o,T; H)

R )
weskly  im L 10,2 %) ,

(2.30) W= u® strongly in LZ(O;T; W)

Proof.

Since (yh' u.) is a solution to (P ), we get

T 1 2
fist g GV gl

o1

2
N % lu (%) - u*(t)tu + Y (ug (1)) at <

o et g e g0
\}o~_-2- e Lt —de + EU‘ \'\< 1

with C a2 constant independent of € .

1
Since d) are uniformly coercive we obtain {113}
3
bounded in LZ(O,T; U). Extracting a convenient subsequence,

again denoted € , we infer

(=g u et g weakly in Lz(o,T; U)
¢

~

and by lLemma 2.2:



S

(2.32) y, — =0 (02) stronzly in Cle,i; i)
and weakly™ in Loo(o,T; Wi

Passing to the limit in the above inequality, it
yields .

T ‘ 2 2
i 0 L ¢,.0 EH o)
L(§‘y Sl e - Oy et <

2
Iyx—ydlﬂ £ (o)) b

7N
o \
poj s

: o : : !
Since (y*, u*) is an optimal pair for (P), we deduce

W= L emd a2 20 (2,20,

3. Necegsary Conditions

z 0 B ,
Lemma 3.1. Let assumption 1° be satisfied. Thexn,

for alll giic LZ(O,T; H), there exists a linear overator

v 6, (g) : 1°(0,7; H) —> 1L°(o,t; H) defined by :

(1) vE . (g) = weak - lim Oe (g + Aw) - 6e(g)

A—>0 A
Moreover
. %
(3.2) o f(8() v 0 (&) w(t) - afve, (8) w () as =
. 0
= J' wis) ds ,
0
% t : o ¥
(3.3) |v6€(g) w | < Cf}w (s) | dia, é[os‘l‘] -
12(0,t; H) 0 e
SR roof. ‘
: : A R B
Denobe -y = Ge(g et AW o e F,(y e ee(g)

and v = P (y) . We have .
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it

' T
) A i
(24) vie v - AL(y -y) = A fow .

Multiply by (y>¥ y) and use 1% e get o

S

o t
- 5% : 1 ad . A
(8ol ice [y il - y(’c)iH ~ % e (B L(yh-ﬁ ¥)s XO (y'= y))§
t
€ [ omay o

e Ao
Bat ol = X”K_X . Then by (3.5) we infer ,{J' zx}

(0]
bounded in L“’(O,T; V) and {zi}bounded in Lz(o,T; B

Therefore
it A :
; z" e strongly in C(o,T; H)
(9]
weakly® in Lw?o,T; v,
N 9 X 2 I
z —> S weakly in B (o,Ts H} .

Since (f’is Lipschitz of constant % te is Lixed)

Lo
A
using the Lebesgue theorem,; we get

we see that vounded in LE(O,T; H). Moreover,

A ¢
NV =
i S X7 S
X P .

weakly in LQ(O,T; H)

Dividing by A and passing to the limit in (3.4) we
obtain (3.2). The solution in (3.2) is unique, 80 {,zg} is
convergent on the initial sequence. As concerns (3.3), we

atart freom

porssy

b 2
Wi T Ay = y)=rw

multiply by v%A v in the scalar product of v¥ and
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deduce ¢
X X
—]2= —%; e ] Lok h (v = v,y = ) MwlE)]| .
e : ' g
e e R BeC. [o,T_
vE

By hypothesis 1°, it yields:

+ :
fw(t) |

| 22 <o | :
v

1°(0,%; H) 0

and (3.3) follows.

Remark 3.2. By virtue of (3.3), the operator v6.(g)

may be extended continuously from Ll(o,T; v™®) into Lz(o,T;H),
lbstill satisfying inequality (3.3). So, we can define the
operator
% e 2 o0 £
el L (o Ty ) = L (0,0 W)
the adjoint of v6.(g8).

lemna 3.3. for.all g, g € L2(0,T; H) it holds

(a.6) - vele)™a £ Gilal
s L (%,7;V) 12(+4,T;H)

and the equality

() p=- VO (2 a

is equivalent to the following one .



Sisiin

(3Bl 9 (56( Qulelle, + Ap =g s 0 s
plD,x) = 0 BeaiCin il s
Eroofl

The proof is based on the definition of the adjoint

and we omit it.

Lemma 3.4. For each € > O there exists péé.ﬁ”(o,T;V)

such that
(3.9) p, = =V 6 (Bug + £}y, - ¥4)

(3.10) B¥ p (8) = 3¥(u () + u, () - w () ace. [o,1] .
Since (yé, UE) is an Optimal pair for (B ), by a
stoendard argument we infer .

v
(3.11) [ (3, (8) - y4(8), v (Bugr DIBu(H)) +

v @Y (ue(t)) + u (%) - v (t) , w(t)) at =0

for all w € LQ(O,T; e

Summarising the above lemmas we can write .

it Sk 0 .0
Proposition 3.5. Under hypotheses 1 =5, for sseh € > 0,

problem (P%) has at least one optimal pair (yg,’uE)EEWI’Q(O,T;H)X

% L2(0,T; 0, Dheme oxiste  pg € L (0,73 V) such that &

€ : E

¢ _
a2 v(a(yé). (pe)t . NP e Y Bailin 0,
ye(o,x) = yo(x) ; pE(T,x) = 0 Biee LYy

¥ (t,2) = 0, plt,x) =0 Bl Ly



A

i Ll - fid &
BY p (8) = 3% (ug(t)) + ug(t) - wi(s) sies fo,ml
Homeower . 5. > y% atnongly dn  Clo 0s H)
s u® strongly in LQ(O,T; U) and
) e P strongly in Clo Ty H) ,

e o0 :
weakly in. L Co,Ws V),

(3240 sp. ). == pi weaklv in 1%(0,T; H),
where:
(Beinl) =8t pll) € Du (%)) BsCia [o,'l‘] :
Prcof ,
"We have to prove (3.13)-{(3.15). Multiplying (3.12)
by (pe)t'and noticing that v(f(y)Z-o( > 0, we get .
{pg} bvounded in b o ms W),
{ (pg),} voundea in 1%(0,1; H) .
From bhie it follews (2:.13), (3.14). Relatioﬁ (3.128)

is an easy consequence of the demiclosedness of maximal

monotone operators.

Remark 3.6. We can compare Proposition 3.5. with

some results of Saguez |6 Ch.4. However in some outtgtanding
2 3 »

: . 3
cases more can be said about the adjoint state p .

4. Examples

Example 1. The Stefan problem

We shall congider p given by (1.6).

We make the only assumption:
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Ga.1) mes {(t,x) €9 Ytz = ro}- = 0

which seems quite reasonable from the physical point of view,

Theorem 4.1. Under assumptions 102 and (4.1) there

exists pFe Wl’a(o,T; H) N LQQ(O,T; V) which satisfies

together with v, u° equations (1.1)-(1.3), (3.15) and

(4.2) VB (y™(5,2))p5(6,%) + &27(5,%) = ¥ (£,%) - yg(t,x)

8.6, Q ,
(4e2) p(T,x) = O e
(4.4) p(t,x) = 0 o

Proof
We have to pass to the limit in (3.12). This is a
difficult point because both the sequences {V{f’(ye)} i
{(pe)t} are at most weakly convergent.
For convenience, we suppose k2> 1, so we can choose
o =1 and p(r) = r + X“(r) .

A detailed calculation gives

e w> e & ro
(4.5) X;(r) X Ly s é[ro =, =8 r;]
£
mr - mr, S ry - Ec{
1 +&m
e
O s I‘O ~EI‘O
i il vl —&dy ». ~€x.)
(4.6) VX;(I') 51 - 0 0 0
il r<.r o &d’

\ l+enm



e

N = S > =
where m =%k - 1 2.0, & Eo e > r, e

We deduce .

(4.7) (r - rO)VX;(r) = ¥ {r) - glx)

where:
| o ro P> ro e Erb
(4.8 . ge(r) = 0 I~G(ro ~£J; ro -iiro)
L
Ty 4B, Sl

It follows .

(r - 2)VPAE) = (2ory) (14 FY (D) =

‘ 4 5

=1 -1, + (r-r,) Slv-»;;;(rw £0)p(0) ac =

apt 2
=B st b E Svy;(r -£6)0 p(6) a6 +
-1
>

+ Y (2) - 85 (w)
where .

£ 1 2
(4.9) Sl == fg(r-ee)f(@)de.

..l €

Since g; is Lipschitz, we have

lEV\{"(I‘)l $¢ 1, hence
€ ‘ez E .
hi(n) = &[ang"E(r—ﬁO)@j)(e) ae —> ¢

unieommly dn .

Next we can write o
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A AN /7 . \ — :.E s s At A - -
(4.10) kyE (TZ,X} - I‘O)V (:5 (ye('u,x)) = /3 (ye(u,h)) - .z.o -

- & (g, (5,0)) % B (5 (5,3)) .

The term.{ g‘g(yé)} is bounded in L°°(Q) by
(4.8), (4.9).

A5 concerns FF(yé) we know from Lemms 2,2 that
G 1) ‘%E(yé) -M§F(yx) weakly™ in ﬁw(o,T; ) .

However by (4.5) we get

‘XZ(T” o x gl ), Yo

that. e lfﬁ(r)i L L

Singe Y¢ 1s bounded in Lw?o,T; Hi(fl)), the
Sobolev embedding theorem gives {(f(yé)}bounded in “L%(Q).
with some s 2. |
Becausg yg(t,x) = (b)) a.e. Q, we can deduce eagily
that ff(xi(t,xﬁ)w%-ﬁ(y%(t,x))a,e. Q . Here we use (4.5) and
(4.1) essentially.

Now, it is wellknown that it yields (4.12) {§%§9"9ﬁQyﬁ)

strongly in L2(Q).

From (4.10) we see that.
: o : i
s G - 2098y, ) - (pe)y —
: .5 %
— ({E\y ) - ro) py + W
weakly in Ll(Q), where w ig the weak limit in LZ(Q)

(on a subsequence) of giz(yé) . ('pg),U s

A / CZ¥? CZfo—



Sl B

On the other hand, by (2.25) we obtain?

[J (3(‘7& % Pk(y,dt) Uy, - ¥, )dx at -

T T ,
- Ilukx\yé« yA)(y€~ yA) dx dt :fgjoﬁ(u&_ vy Yo (yéw yk)dx b

Integrating by parts, we obtain the equality &

(4.14) j’(pt'(ye(w,x)) - Ay, (1,0) (7, (T,%) - y,(2,%) ax -

fjm(y) p(v\)) ((7)y = (7p)y) ax a6 +
b

%5 4
+ ( ( Pv(y - V})' dxdt = J JB(u - uy )(y - y)dkdu
0 LL
”aklng intio account (4.12), (4.11) and

(4.14) we infer i y*  strongly in 'LZ(O,T; V)

From (3.12), (3.13) we have

€ ;
V}%(yé). \pé)t —> 0 weakly i B (o, 1 .
It follows
‘_ > = - :

(il Gy —iw.) V@Y, ) (pe)y (=)
at least in distributions. In fact the convergeince isg true

in the weak topology of L“(Q). Combining (4.13) and {(4.15)

we establish .

5 ® % ‘ :
(4.16) (ﬁ (y%) = x ) pp +w=(y -x) . L, awe.Q,
Using again (4.1) and the fact that gg(ye) is
bounded in Iﬁ%@), we deduce that ge(yé) 3 g(yx) strongly

i L2(Q), where



e T v (t,x) > 5
¥
g(y"(t,x)) =
ig defined a.e. Qe
Then w(t,x) = gly™(t,x)) . pﬁ(t,x) L

After a short calculation, we arrive at .

% 3 5
((&(y ) - ro) pp * W = 8. Py S8 O
with .
3%
sy (%) - T yx(t,x))'ro
gliiealii= .
k(:f;{('t,x)—ro) yo(t,x) e
that is slt,x) = V(%(yx(t,x)) oLy s ro) e .
By (4.16), we obtain :
¥ R % 3% % '
G =) WY a0 - e piei 0
As Y £ r, =&.e.Q from (4.1), we have
Yo = Vﬁ(y’x(ﬁ .0 (i g.e. Q
? v « Py 9 28 °

Therefore we can pass to the 1limit in (3.12) and
prove (4.2)-(4.4).

Exemple 2. The conveX case

e {3 is more regular, for instance locally Lipschitz,
hypothesis (4.1) is not necessary.

The mein assumptions are now .

i) f is locally Lipschitz on R =2nd-supplies o

‘Vﬁ(Y)- gL @ (f&(y) + yz e il ) gee R,
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(4.18) {3 = § - rb
where ﬁ sl LR :}m o +cw] are convex functions defined
on the whole real axis .

To begin with, we state .

Proposition 4.2, Under hypothesis (4.17) if (y,u” )

, o :
is an optimal pair of (P), then there exists }fié wls {o,%8)

N 0,T; V), n€1Y(Q) such that

(4019) h ok APX = Brx o yd BeCo Q s
%
p (2,x) =0 Bk
p(t,x) =0 8.6, E

€ ' ;
(4.20) Vp(35,) - (pg)y —> B « weakly in LH(Q).

Proof

The argument we use is similar to the one given in
Barbu [1], Theorem 2.

By (4.17) it follows after some computation involving

(20 et

t . y (2 2]
aly) . w6 Llpledl v+ #.1 )
with C a constant independent of € .

We denote for every£>0 and n a positive integer
"le o ¢ i Nedi o2
B, = (x,60€Q; |y, (hyx)] n } :

& ey o ; # ; ) .t

We have ‘V(;(ye(x,t))‘ & €, for (x,t)éiﬁn k.

Let E Dbe an arbitrary measurable set of Q.

We have .

-
-



%)

e b l@oglavgao] € 6y [ ey | axet +
e : T

(%(yg)i b lpde] v 0 j Q yE{ sl lm b 8 S

Since iff(%i)} ; %_(pe)t} are bounded in LZ(Q) and

i oD e
{y{} is bounded in L (o,T; H () we see that the family
£ s ;
(pS)T’V(%(yC) dx dt} is equicontinuous and in virtue of
[ ) | i
. : ! 1
he Dunford-Pettis criterion, weakly compact in L (R
fhis finishes the proof.
Yy o~ s 7 A 5 T f e v = A 7Y '3) 1 f
el die e (-;LL»:(‘_;.E‘ 1 YO t};lm seg ( Ll [}, (4 il 3

(y%,u%) is an optimal pair for problem (P) then there

}fgé J1’2(0,T; BiA Tf]o,wg V) such that.

i
<!
N

{53
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b
S~

i
)
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—~
5

s

g
-

e}

&

m

“

s

-

DF(??‘:{E(‘E,X)) 2 p%:”(t’x) 2% Z}p;{(t,x)
p}: T,X) =10 Ao ;.,ﬂ,

pd(t,px) =0 BeCoe Z:a $

4

< = g i E, R s % frsd 2 i
where D pois the Clarke generalized gradient of the locally

et et

] by
Lipschitz mapping ﬁ &

ge
]
(O

'9@

Wo shall use a ftrick due to Tiba [7]

For the sake of simplicity we first take [1 CONveXe.
We have to identify function h in  (4.20). We are interested
to pass to the limit in the product V‘jj(gzi. {pé-t‘ Punction

e

v is convex too. We write .
O



(ged, = 20
where - ~ are the positive and the megative part of

Be v D P
(Pﬁ)t up to an additive constant, sueh that they are strictly
positive.

On a certain subsequence we haves:
5 :
(Q),

-f- e - .
Pe =00 W 5D Y weakly in L

A more precise calculation of trg‘(y), available

@

for locally Lipschitz functions Y o s .

&3 g s ST 'fL
(4.21) V?;.E(y) = V\ﬁ((l“*‘t\é) (.V"te)l__ P(G)de
“eo 1 +£ TY((I+¢ g")"l(y* £6))

Since X’is convex, instead of \7X'we can set.ag',
the subdifferential cf X_‘

From Lemma 2.2. , it is Known that Yy, —e-yx strongiy

in LQ(Q). The Egorov theorem shows that for every ¥ > O there

is QQ C Q with mes (Q %'Qq) <'q and ye-a yx uniformly
on Qy .
% A 1
We study the weak convergence of §7g'(yé) o p:
in LQ(QW). Consider any f¢& LQ(Qﬂ)'

Then

1 4 ‘]
G de L L @ M @
K20 épe )
: v

gvx_e(yg) ; pz L qt = [
"

PESEE o



SRt

1 | 2 ;
As on Q“.we have. (I +€Y) (yé —E0) uniformly

bounded, we need to consider only the integral .

(eney = py . oy ((X +ey) Ny, -€7e)) .t axdt, ee [-1,1]

Q
Define the saddle function o
, py(y) p> 0
K(Pv}') = { 3

which is closed, proper. The subdifferential of X is given by <
(4.23) 3K(p,y) = [—-)"(w, P 9"}((3/')_] , (pyy) € dom (3 K)

We denote by 5%lthe realization of the maximal
monotone operator &K in L2(Q“)‘x LQ(QQ) . By (4.23) we-

imfer

(4.28)  [peen My, -€9), peayt.i]e Sk (py
(@ el Yy, = ') face Qy

We remark that o

(4.25) [- M) p: .GX‘(.)J"‘?’ [-—X’(yx), &1:,‘]

(4.26) [ 5%, (T +ep 7Ly, -] = [V ¥*]

weakly in LZ(Q )iz La(Qm).

i

We can also verify the following condition:

. - i 2 -1
(4.27) ,\'1;_3;0 ( Lp:,. (T+ex) 1(1Y£*h76)] - [p: o AT 300l S
—kle);’ ; [-X'((I +E’."')“l(3’£”*?f-9)), p: »BX‘(-)] - [-‘3(((1 +
e sl oyt ]

e

0
v

=

2 2 N
L (Q}\) x 0 (&,l)
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becauge (I +£K’)‘1 (y& e e e
: il 2z s e ;
X((l RENE) g -€¢6)) —>y(y") uwniformly on Qil.

Applying a wellknown property of monotone operators

(Barbu [3] , p.42) we get from (4.24)-(4.27) that :
(4.28) [-p (%), 1] €3% (v, ¥
therefore ‘E(t,x) € v+(t,x);gx(y§(t,x)) B @i Q)

As the maximal monotone operators are demiclosed, from
= -'l L 3 TR ) { | € <
(I+qﬂ (y¢ =€8) —> ¥ Lmuomﬂyzé Qqami{gxﬁ%)}
bounded in Lz(Q;,() we dnfer (4.29) ax(y )} —=> BE}(y)
weakly in Lz(Qq) for every 7> o.
e show thnat n(t,x) = v (t,%).b(t,x) @a.e.Q .

Assume that h(t,x) ='v+(t,x). bl(t,x) Z el b,x) .

Yy (t,x)) 2Le. 0
Let C20 be some constant. In a similar manner we

prove thav

2 € . 4+
lgsed) iy ) = B by

weakly in LZ(QW?, with bc(t?xﬁ é:vx(y*(t,x)) Bete B &

On the other hand, by (4.28) and (4.29) we get

. € v
‘—

weakly in LQ(Q\).



s
We obtain the equality .

.}. . - ..{,.
(4. 08) b 506, b= (v eyb., ave. A

for every C 20.
o3
Family {bc} is bounded in L (QT) since 3y~ is locally

bounded on the real axis. By (4.30) we derive o
+
Yo e :‘_."C o2
v (hl bc) (bc b)

and m.aking C-= 0 it yields bcv—» blmniformly on leo
(We can suppose v (t,x) = m > o0 on lefrom the ILuzin theoren,

et e e : + -
modifying with a positive constant p. , p, if necessary) .
Now let C,, 02 > o be two arbitrary constantc. We have.

Al e S ;
(pE 4+ 02)33’(%:) —s (v 4 02) . bcz

+ (C 2 C-L) ob

; .
+ = e
(p& B a0, — cl)ab (%5) - \V + Cl). b 5

1

weakly in L2(Q_0. That ia o

e + ” : :
VvV + 02). b02 = (v + Ll). bc + (62 - Cl)b

and equivalently 3

" G G (6.0 )b
v (bc - B ) + peb, = 1P * 5=Cq) b

2 1 2 &

Take C. = 30

o =20 and divide by 02 :

1

i




LnE

b -~ b

If ¢ =0, it yields that _..QQE.F.,__@. has & limit @.e.,
which we denote h3 .
= + 2 .
(AOjl) V e h3 = 3 (b — bl) BeCo Q W o
Take again C, = N 3 ¢, and dehote hV? the limit

we obtain in this case. We have.

4 + i

@ s e ) ()
e V3 ;

On the other hand, from .

e B 0 T "R Bge e
3C 3C 3C-

when C = 0, we deduce .

2hyz

V3

(4.33) b, =

Relations (4.31)-(4.33) show b = b, a.e. 0 .
: 2 -
NQK. return Howth se 2 I e 7 °
W, ‘return. e sequence D 37((yt )

Reasoning in the same way, we pLrove A

(4.38) Baytly) ~> B=v.D

weakly in LQ(QW) .

Subtracting (4.234) and (4.23) we obtain
3 ;i o ™ i
(pede oo () 2 = py - b€ By )

weakly in LZ(Q,I).



=

fhen v +>0, we infer in (4.19)

h('t,)ﬁ) é pé{ G:) (yﬁ) deCo Q °
t

In the case (4.18) is valid, the argument follows the
game lines and instead of @ﬁ ,.the gubdifferential of a convex
function, it appears Df;, the generalized gradient of the
locally Lipschitz function .

This ends the proof.
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