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Bet e recall some fa and notation from [5} 161,

Fach Fréchet @(X)-module M over the nuclear ~dchet algebra
) of sections of a Stein space X has a distinguished
closed subset g (X, M) of X, with a good homological caracteriza-
tion in terms of topological Tor's, and which is the generali-
zation of Taylor’s joint spectrum of an n-tuple of commuting
Gperatore. If oMY s a morphism of complex spaces and if M
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will be denoted by M™.

T would likse to express myv gratitude to F.-H.Vasilescu
whose constant encouragement and useful discussions led to thes
results.
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2. The functorial selection: We shall present now another

uniqueness result which enlights the difference between the

spectral theory in commuta +ive Banach algebras and that on
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Banach (or Fréchet) spaces. Namely, Arens and Calderon s . lemma
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passing from an open set to its envelope of holomorphy .
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