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Summavy

On the base of the result obtained by R Ca“f'ch"lk
. we prove that the mdcroscoplc fields associate to a rarefied

gas are uniformly bounded by the initial value of the molecular

density.

1. Introduction

We know that a rarefied gas, looked from the point of
view of the kinetic theory, is completly described once the
iiolecular density is known. The molecular density is, N ges

neral, a fonction

(%; being an Euclidian 1-dimensional space, e . an-EBuclidian
3-dimensional space and % a.linear oF dimesnional space with
scalar product) measurable and integrable over IY A molecular

density-g- must be a solution of the integro~differential

Boltzmann eqguation, that, in the absence of the external body

forces, can be written in the form:
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where the nonlinear operator Q is defined by:

(1.2) Qi = & \ e £ ) vy d S dF
e
S ey D s P2 y Bz Gom)
the variables v G (*igzx) verifyina the laws of
balance of the impuls and of the kineric eneray,

W= Eﬁk~§ is the relatiﬁe velocity of two partiecles
system.

fﬁ is the cross~sectionjof collision and together with

the molécular mass and the operétor that glve the solution
of the "two body problem" are the constitutive guantities of
the kinetic theory of monatomic gases. For j}'s definiteness

we can determine the intermolecular forces. We consider intei-

molecular forces with soft potential, that .is

a2 e = Wers

b

Wik 3 dsy< 5. »Hox this type eiff poteﬁtials R. B Caflisch \11
hasiipreovedsthe global existence and unicueness of special

periodic solution for the initial values problem

(1.4) S;Qe\x;%\ - Xﬁ(x.%‘)

attached to the whole nonlinear Boltzmann equation (GSl
The analyse of the linear collisional operator has been per-
formed by H.Grad {2}.

We denote by D3 the periodicity cube in 2 = W= and.y
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We take the initial dapd &2>6 /Vh, that is, we suppose that

we perturb an equilibrium state governed by a Maxwellian
molecular density. Now we are ready to write the existence
and unigueness theorem for the solution of the problem Gl

(1.4) (the theorem 4.1 in the paper of Caflisch{l}):

Theorem

Let ©4o(<4)/ . There exist a positive constant 5
such that if \\Y.lly 4S8 , the problem (1.1), (1.4) has a
unique solution in /Vo{ and:
?
(1.5) Ly 2 el e
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where % = 2 : N o= (\'2’¢\L?f\ '"\33 - fomn
- 2A%
an arbitrary positive e The constant c may depend on € .
- A-9 s :
For this model = - T} and C, is given by the

formula (2.20) in \jl\ The norms that appear in precedina

formulas are:
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and the space M)Ck is:
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2. Macnoscopic fields

The kinetic gas may be thought as a continuum body.
The existence of the solution of the prcblem (1.1), (1.49 -in
the /{; space (stated by the preceding Theorem) assure the
. . 0 « & \. ¢ 2 p 0
intearability of fonctions {3 §~(t)ﬂr§) . Prom the point of
view of continuum mechanics it is necessary to define the
macroscopic fields and for this we define first the numerical

density

2. 1] NETAN= % L (aa)ds

"
and then all the fields which are necessary for a continuum
descri?tion of the gas: g (mass-density), VvV (mean velocity
field), MT- (mean bressure tensor field) (mean normal pressure)

% (mean energy flux), & (mean internal eneragy), that is:

(2.2) (:;(hk} \m& %o‘ﬁ;&;&\ 4% = w0 (%)
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where . €l how>) = 3 —~(k,%) is the deviation of the

microscopic velocity from the mean velocity. Because the kine-

tie Eheory assures that the fields defined by (2.2) &6 2.0

Lo o e

verify the balance equations of the continuum mechanics:

\ -
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and the symmetry of the pressure-tensor, the existence and
unigueness of the molecular density stated by the Theorem
quoted in the first chapter imply that this fields describe
the corresponding solution of the problem of gas motion when
we perturb the repose state of the gas by macroscopic fields

)
that correspond to the initial molecular density \ ($§3
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3. Global behaviour of macroscopic fields

Tn connection with the macroscopic description of ihe
gas appears,as avery important problem, the global behaviour
(in time) of macroscopic fields. But as a simple corollary of
the theorem stated in the first Chapter the fields R Mo oo 9.

I S k\)\‘k’

hde s defined by (2.2) ko (2.7 exist and verify the balance
equations of continuum hechanies (2.8) to (2,108}, in the s
o b
Y\ space. The main result of this paper is stated in Ehe

following theorem (that asserts the global time behaviour of

macroscopic fields):

Theorem 3.1

5
Tiet £><4LLVA . There exist a positive constant %
suich ‘that if \\~gc\\d L_S; the macroscopic fields defined
: o
py (2.2) to (2.7) exdist, are unique in '%\1Cn\and verifiy the

following inegualities:
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Ly, B C D, BB belng constants that may deﬁend on the constant
€ (of the formula (1.7)) éf the domain and possibly on the
norm of »KU.

We base our pfoof on the estimations of moments of 0, 1,
2 and 3 erder ef &, Ehat we achieve to the aide of follcowing
Lemmas (and the Sobolev inequality of norms): M gr¥x\n,“(§ <

G A W\ ). e ity B RE ane U =0
Ay WY )

Lemma 3.1

The following formula is obvious
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Lemma 3.2

~
TE —g‘;-/\ioi then:

(3.8) \ \ Su wy3) &z " ‘A\'\-@a\‘\«-
“A 8 \ 0o

Proof. We apply the Schwartz‘inequality and we obtain
2
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Now we make use of Lemma 3.1, Fubini’s theorem and the fact

that & = «;‘J and we have:
\ \ A 2\ : \/ 2
e i C e 0>

m‘\ " \ - \ 4 .gi(g*;;\i;ﬁ) g-glva
Wt - w2 a
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Therefore, denoting /\~f: \\3 ol < , where C

is the constant of (1.7) we obtain (3,8),

Lemma 3.3

iLE ‘&Q J{; and the estimatden (L.7) is true, e Lol

Proof. By a similar way as in the proof of Lemma 3.2

we have
4 :
- L ok 2 N 3)/' =\ \‘( ; g ll
whadleemanl <8 (4l G e www?i&’
R> : e eagiey

and then we appeal the Fubini’s theorem, by the aid of which
we arrive to the calculation of some gimilar terms as in

o)

Lemma 3.2. Thus we obtain 2
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Now we make use of (1.7) and denoting ﬁQ %3 93294 -

we obtatn (3.9



Lemma 3.4

3
1Ese &Q,&d\and the estimation ' (1.7) is true, we have:
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Proof. We proceed analogously as in the proofs of

Lemmas 3.2 and 3.3 and we arrive to:

' N i x B0 R i
b\ aa R G aal oo & B Sal\ R\
> ' :

A we obtain (3.10).

5 A\\ = T (A3 = : :
Denoting o NV oek €0 \1.-‘0;}_ A

Finally we have:
Lemma 3.5
J 2 7l . . & .
Tf ;.@ /{& and the estimation (1.7 s teues
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Proof. The proof is similar to the previous one and

W j =0
we denote fx = %§i§ .ﬁ&.

Now we are ready to perform the proof of the Theorem

w
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proof. of Theorem 3.1. First we observe that due o
the definitions (2.3), (2.2) and to the result of Lemma 3.2
the evaluation of the mass-density field (3.1) is obvicus.
For the evaluation of the behavious of the wvelogcity field

(1 ») . we observe that due to the imbending theorems

sobolev—-Kondrasev the fact that the fleld.‘n(ﬁ\ﬁ> Q*\<cﬂ implies
that v\(kbu) eaﬁ?(xs and his derivatives of higher orders
are square integrables.

We this we evaluate the qenerallzed derivatives of the

ﬂxmtionﬁ%j and finally we obtain (MO is the minimum of n; and Ml -

Ve C;);‘

M7 the maximum of his first and second derivateves) .

(@12 \\Q \)\\‘\\\L-‘Q\) < P Qvé e
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Then byithe useiof sobolev inequality of norms we have

W (ks :
W C ’3\\\*\%@&( \ = \\R %Uc 'ﬁ)&:\.\\

\W(%“) \%Qﬁ

With these using Lemma 3.3 we obtain the estimation (3.2),
where the constant B is <§A§llg

For the estimation of the components of the pressure
tensor field we start from the definition (2.4) and using the
general properties of the norm and the Sobolev inequality of

norms we arrive to:

gy TG 2 m\ \\\ﬁ bl il
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Using the Lemmas 3.2, 3.3 and 3.4 and also the estimation (3.2)

we have:

3.14 e (vl i
(3.14) Wiy (Rad Wy & e
where: € = b o Z’_C«\Bf"\\ \\ Cg\.\\d +C %“%“2#’3\; i\ S‘;o\\::

For the normal-mean pressure field estim;tion we use
directly the previous result and the definition (2.5) end
we obtain an absolute analogous formula to (3.14). For the
estimation of the mean energy flux components we Stért from
the definition (2.6). By a similar reason with the one that

has been performed for the formula - (3.13), we obtain:

s g e, ¢ Em Sl\k& SRk (6,0 35 dal 0
: R
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We employ the estimations of Lemmas 3.3, 3.4 and 3.5 and the
formula (3.2) and we obtain (3.5), denoting c = §§LﬁQu +
% 2J135§A “i@“:”*CfiJzQ\\ \\ i;‘ .

The behaviour of the mean internal eneraqy of the gas
is obtained starting with the definition (2.7) and emploindg
the Sobolev inequality of norms and the result just obtained
i (07 )1
(3.16) \ aub?s'\'\w reo \\ e o Q el (£03)d3 1

Q) SEdives ) e ey
w2
where the last norm is estimated as in (3.13). Then we obtain

the estimation (3.6), where T %£<1ﬁ13lw

4. The problem just solved is relevant by itself
and also by the important contribution that it can bring to
the comparative study of the behaviour of solutions that
we obtain (by Chapman~Enskog expansion) forx Navier_Stokes
fluid and the macroscopic fields. We will analyse this problem

in a futurel paper.
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