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INTRODUCTION

Let i.:X<.~-~>,)‘{,E be an open immersion of integral schemes over the
field € of complex numbers, where X is a scheme of finite type over
@,

In & 1 we show that for every closed point xeXx, the residue
field k(x) of x in XX is € . This fact permits to associate € -valued
functions on (Zariski) open subsets of Xﬁ&(the subset of all closed
.points of XX) to the sections of structure sheave(@)*. We call the

e X >
fine topology of Xx, the weakest torology on Xﬁ’ containing all

Zariski subsets of Xﬁ' and making continuous all above € ~valued func-

tions, where € 1is considered with the natural Haussdorf topology,
The restriction of the fine topclogy of e to X is the usual fine to-
poiogy of the complex algebraic prevariety Xege

The main result cf this paper.is the following: if xexx is
closed andfb - is noetherian, then x has a Zariski neighbourhood

X0
% sl s : ;
in X° of finite type ovsrq:, if(f)x has a compact neighbourhocod in

the fine topology of X§E(§3' Theorem),

In particular if Xx is noetherian, x* is of finite type over ©

if the fine topology of'Xx is locally compact, An equivalent form of

this assertion is the following: a noetherian zubalgebra A of a<ﬁ‘—g£-

gebra of finite type is finitely generated iff the "Gel'’fand topology"

on the set of all maximal ideals of A is locally compact {The Gel'fand

topology on the set Spec max A of all maxiral -ideals of A is the
weakest topology making continuous all functions ?:Spec max A—~>C,
E(g)=(residue of £ in mjeA/m =€, where feh) (%ﬁ, Corollary 5),

The leading idea of the proof of the main result of the paper

is the following: h\'(S}, Prop,l, we:have shown that the obstructions



to the algebrization of a noetherian scheme x* dominated by an
‘algebraic variety consist in the existence of some schemes of finite
type over'X%, of dimension > 2 and with closed l-codimensional points.
Giving a "lecal ferm! ko this' faet, as in §3, Lemma 5, we can reduce
the question of the existence of a Zariski open neighbourhood c¢f finite
type over € of a "noetherian" point xeX* to' the problem of proving that
for an open embedding of a complex“algebraic variety"X in a complex
scheme XX,‘ﬂhich has a closed l-codimensional point xek*, the fine to-
pology of x* around x is not locally compact, excepting the case when
dim XX=1° This last question is treated in §2: in virtue of Lemma 4
from §2, it suffices to consider the question for the case where x*
s nérmal in the closed l-codimensional point xex® for which we can des-
cribe completely the local &lgebraic structure of XX around x (see % 2;
Lemma ‘1); this description permits,vvia an étale morphism defined

in a Zariski open neighbourhood of x in x* and constructed in §2,

Lemma 2, to. reduce the question ( §2, Lemma 3) to an eslementary ana-
lysis of the fine topology of xE around x in the case when X'is a

Zariski open subset of a complex affine space (§2, the last part of

the proof of Propositien 2).



§l. THE FINE TOPOLOGY OF SOME COMPLEX SCHEMES

Firstly we shall establish an extension of a well-known

form of Hilbert Nullstellensatz ever (S

-

Proposition 1, Let A be a subalgebra of an algebra of finite

type A over the field ¢ and mcA a maximal ideal, Then A/m =€,

Proof, The € - vector space A’ has a basis which is at most
cout table, Then A and A7ﬁ'have the same property,

was

Let us suppose, that there exists xeA/m which is transcen-
dental over €. Then the subfield @(x)gA/m is a —&—vector space having
a basis which is countable, This impiiesukhat the set of all poles of
all complex rational functions in cne indeterminate is a subset of €
whick ig at most countable (it is the set of all poles of all rational
functions of a basis), which is not true,

herefore A/m is an algebraic extencsion »f @,

QGE.DC

COROLLARY 1. (seei}S}) = A subalgebra of an algebra of finite

type over € is a Jacobson ring

PROOF', Let A be a subalgebra of A’, where A’ is of finite
type over € and peSpec A. If n dis the ldeal of allvnilpotent elzments
of Aﬂ we have pyh QA and so p includes-gpA, where g_is a minimal prime

ideal of A¢, Then A/nnAg‘:A"/Cr and it suffices to prove Corollary 3

= +
when A is a domain,
If A is not a Jacobson ring, we can find peSpec A and xek,

X¢p, such that x is contained in all maximal ideals of A including p.



Since the ring of fractions Af_}ﬂ is still a subalgebra of an algebra
of finite type, we find a maximal ideal _n_x_'c:l\i%-.] including P A[;i{—].°
- If m=m’0A, we have A/mgA[-éf]/m’ =€ and so, m is a maximal ideal of A
containing P and x¢m, which ‘;s a contradiction,
QeEeDs
Remark 1, With the same proofs as for Proposition 1 and
Corollary 1, one establishes that for any subalgebra A of an algebra
of finite type over an uncountable field k, A is a Jacobson riﬁg and
for any maximal ideal neh, A/m is an algebraic extension of k, This

improvas a result from {1’31, a

COROLEARY 2., Leb.i: X“—-—wxﬁ‘ be ‘an open denss immersion of

e %
tvee over € and %eX” z c¢lcoczad
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point, Then ‘the residue figlg k#x) of x is € and X* is a Jacobson scheme,

Indeed, if U is an affins neighbourhood of x in x* ana
!
: = AJ, v =SNG0
VeunX an affine subset, then A= T ( ,(Oxtad‘) A = T(v, xre},
and A’ is finitely generated over €, If mcA is the maximal ideal corres-
ponding to xeU, then k(x)=A/ = €, A= \“(U)@X*)Na and ("(‘U,(’Dx.,-.')

are Jacobson rings,

In the situation given in Corollafy 2, since X* is .a+Jacobseon
scheme, the map U MU(\X’& ; where X‘Zl is the set of all closed points
of x* , establishes an one to one correspondence betwszen the open
(resp.closed), subsets of X*and the open (resp,closed) subsets of X’f@
(ko B0, challi 8a00),

For any opsn subset UEX*v and every f € V(U, @)ck) we can
associate the map ’E:Uﬂx& —> € given Ly g(x)-—(residue of £ in imlehis)=

y ~t
= @, sinee- %t is Jacobson, f~—+f is a ring homomorphism, whos2 kernel

is the ideal of all nilpotents of (U, ©Oyx) <



e o = o ;
Hence 4f X© ig reduced, f ~—» f is an injective map,
v 3 3 1 féf &y
We: can consider the weaka@ttopology on the set Xa; which
contains all Zariski open subsets of ng and making continuous all above
~N

maps £, where € is considered with the natural Hausdorff topolo We
r [ b A gye

call this topology the fine topolooy of Xx¥,

We have the following elementary properties of the fine
topology, which will be used in the following: -
‘ eme soe oL is a morphism of C€-schemes which are
generically of finite type over €, then f establishes a con-
tinuous map between X, and Yc%b with respect to the fine

topologies.

2y mE RS is affine, then the.fine topology on X%fbis the
weakest topology on Xgi making continuous all functions £
associated as above to a set of generators %&% oflthe
C-algebra F“Cxﬁ‘bx*)‘ ‘
SpinE ;s affine, xe Xzé and U is é neighbourhood of
X, then there exist £>0 and fl,...,fn £ V(“ﬁﬁ(bxx) i
such that e § 3 \ z€ Xi@, /7_7 : \ gb (‘?\5 - (O < €, for all i, \ela—‘n?h

4) Every closed Boint of X"  has a fundamental system of

closed neighbourhoods in X£  with respect to the fine tonology.
5) If Y* is a. subscheme of x* such that Y=Y*GXH#¢, thep
the fine topology of Y* is the restriction to Y* of the fineitopology
GEw, : - L g 52 feg S e
In particular, the restriction of the fine topology of X* to X is the
usual fine topology of the complex algebraic prevaristy ).
6) If 1, :X,«»>X¥  &=i,_._,n are open dense immersions of
C~schemes and X, are of finite type over C, then
Gxamtia Koo oall = sl il -y o open dense immersion,
(XT“-—-*X:)@:(&*\)CQ"*—~—R(}'\i @ and the fine topology on X?x-_-x}’if\‘
is the product of the fine topologiss on Xpréaran,

)Mt e separated schane, then the fine topolody on X%

1s Haussdort,



§2, ON THE FINE TOPOLOCY OF COMPLEX SCHEMES WITH CLOSED

1-CODIMENSIONAL POINTS

The aim of this chapter is to prove an important particular
case of the main result of this paper:

Proposition 2 - Let i:X€— X*beé an open immersion of integral

schenes over €, where X is of finite type over €, X'= X . is a closed: 1=

codimensional point x of X* and @ is noetherian, Then the follo-
fie <) %

FERETER

wing asssrtions are eguivalant:

i) %X is locally compact in the fine topology

ii) % has a compact neighbouxhood in Xf& in the fine topology

$11) :dim X'= 1

¥

iv) Xt .ds of finite type over™ L,

Remark 2, In Proposition 1, as well as in Lemma 1 and 3

%

which follow , the fact that X" - X is a closed l-codimensional poing X

ot x¥ and @Y&x is noetherian, implies that X¥ is noetherian (see [6] ’
_ 5]
lemma 3), but we shall not use this assertion in the pdper ., O
To prove Proposition 2, we nsed some preparatocry facts,
Let i:X <> X* be an open immersion of integral schemes over
» 3 * = : . :
€, where X is of finite type over €, X =X is a closed l-coudimensional
‘ 7"’k @ o k.2 v
point x of X. and x¥ x is a noetherian normal ring.,
Then @X& . is a discrete waluation ring, Let t ¢ ©X*

i i
be a local parameter, By replacing x¥ with a zZariski open neighbourhood

b

of x, we may assume that Tt affine, £ € V(X*,@X%) and t is inver-
tible in r(xl@)O.

Then X = %°§€X* such that t(ﬂ)#—O? and so X is affine, Hence

the ring of fractions !\ (A* @-\r ’é\){l ‘5 = (X Vﬂ We may find
. : !
Seeee i € F(x*{ @X*) such that [ (R Q))\\ c [ "s'h*"a Sedle

Indeed, r(X*!@},‘;‘\)[i{l is of the form [E‘-}.‘ e F‘\-& where‘:‘\a‘jl



wY'...

“{;‘,,--)‘g“(“ V(X* (Ox*) and then V(X*,@XQ [5{:‘1 =2 Q[% i 0ns e
¢ [ o ._,} r(x*, 0,0+ =1
We may assume that fl(x)zf2 (x)xu.=fﬂ(x)=0.
In fact, by Corollary 2, k(x)= €, and we can replace fi
by o= f:?. (x) for every l<i4n

Let us denote A= T‘(Xi‘ Cf)x;’,) and mcA the maximal ideal cor-

responding teo the closed point xeX™, " - The completion
) . A . [} ] .
in m = adic topology A of A = CJ p2 is €~isomorphic with the ring

- 4 A 1] L3
of formal power series Cf{ﬁﬂ , Since Am is a discrete valuation

y §
ring and k(x)=A/p‘: €. We have a natural inclusion of €-algebras
al

ey
N ‘A\ o, 5
et h Tﬂ= Ane 2nd so all elements of A have expansions in power
series in @{f‘i"ﬁ . Rep¥acing T by the power series corresponding
to t, we may: suppose that in € {{T{] we have t=T, If fem with
=22 Al e 2 : > e
a Q}&V in ¢{{7]], then (Rest &)k: 2 C‘%«,T 1
oz k o= ley
&
{ oot - ~cgt
. 4 aith
(L (:cj:scl WL ¢

a
(Restf), € €A nQW™) = A, NQ(A,)

in C((T)) and so
where by
Q(n) (respeQ(Am)) we denoted the field of fractions of A (resp. A )

.By{.ﬂ, Ch,III,$3,5 , Cor,l, we have A n\Q (By) =R and so (Rest f)

o~

¢ €

fw\[,&pf«for all 1>0, Since  (Rest £y —((Re.)t) g41)tr it follows

I(J-zl
(Rest t)&e moforeall 150,

Let us denote B= '€ [t i ... 4n, .-~ (Rest§, L"‘“‘l Vel g orhe subale

¢ ' £ (
gebra of A generated by '%*E)%;J’\P\zﬂ&@%zhs;_ Koan kb %

and n=(t) the ideal generated in E byt ,We have

BE%} = @{J‘E ,'t, ’gl)—-~,§n1 - Ai%l (since %[j{.& 2 (f: v‘.%‘-gl‘,w'-g.b:&xf&\[}{b

and t, fi,@\es’t '§,&)L@§}_ _ for all 141i,k¢n, and 131, Hence
B/, =C, and n=mNB, It follows that B &Py is an inclusion of local
el co s
rings, N Z}:‘LB. & r" “""' w=C and so B, - is a discrete valuation ring,
bz — = — w

~ LR
It is esasy to see that A,fﬁa and so in the field Q("\&\) = Q(Bv_\:)
ueshauea, o (A E =0 (B)aB =B, (cf. {8}, ch,111,83, cor.4), Then in
iInAy :?}E‘%“}\ {\‘BV__‘; &

the field Q(A)=Q(B) we have a= Al

A
LT
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Therefore we establishad the following

el = h *
LEMMA 1, Let i:Xe»X" be an open immersion of integral scha-

mes over €, whHers X is of finite typs over € and x*- X is a closed

l-codinznsional point x-of XE with @X%X normal and ,noetherian.

- Then thars exists a Zariski open zffine neighbourhood U of x in T

such that r(U/@-;g*)=d:[‘-l&h——-:gm---,(Qt%t{-;)v.«..] vhere § Z c“‘)T‘

is a formal pover series in CUTH, Rest §) = f c"““r“ e all
=led e

14k4n and i;er §_1’_1_C1 C[T,‘S\, "“)‘gh,---,(Re.stg‘_\t)__:l.- is the - Stbalgebra

e CI[T“ spaced. by %‘E'-'“—-:'git)"'l'(Rest"g#—\)tv"'}&<k<n >4

Remark 3 . Conversely, in a ring of the type A=
= C(‘T L &M,.(mtﬁg 'X where fl,(Rest 3 ’L are as in. Lemma 1, the
ideal m=(T) is maximal, A is dominated by Qﬁﬂx and 80 A a
discrete vaiuation ring a;d i\[ﬁﬂ: Q[T;:-, R is flnltely
generated over €. Then the open immersion i:X=Spec n\_—}i‘\jc »X* Sfec.A
have all properties given in the hypothesig of Lemma 1.

We. maj poinf out that the proof of Lemma 1 shows. that we
can replace € in Lemma 1 by an algebraically closed uncountable
fleld.

In the situation and with the notations given in Lemma 1
if A= © \:To'S*:---:'&nl---,kMSt&k\l‘"']({:ksy\,izg , the field of fractions
Q(A) 1s generated by T, fl""“'f . Let us suppose that ;
s %H___ L are-algebraically independent over € and
sty s -gh, - are algebraic over the rield € (‘T %n——-:{'m)
Let us denote ®=C Tey R (T ---:(RQSJ‘:%%&)L:"‘-L rehem, U24
the subalgebra of A generated by S R oo (RS G0N - SoniEREn
e For lskim, fy satiufies an equation of the type:

1 & o) s 2

i ‘h,\n% b sl i o 00
where h\l;o,hk>o y \k,' are polynomials in T, !S”,_.,ng
end T, Qn‘TB Sone- P b ,‘,‘ e R g then.:

A[ =
= QE“\iT‘ ,S(,---,gﬂ is finite ever BLT X Q\:‘ T &a.---:‘gm-\



We cen change P¢B, such that P4n and A[_%::-;—] is normal and

finite over %E‘T“ —]. Indeed, with T as before, there exists

Q€A E*-w-—- sueh thet AU‘::-"—-;%& is normal. If Q satisfies
s ‘ Wi
the equation Q +’\> RO S R with ”\)o,---, ‘L‘e BY.‘“'“-.
and - -0, then AL..\, —.-?—l is finite over \_f—u.\3 ?X and
A[ 5 '“‘X >Als '"’”X since Q is invertible in A("F’ i\;s%; ‘
{ \
Hence L‘__ . l belng a ring of fractions of /‘\Y_ ’5 Y

is mormal and it is finite over BY_-*l*i.;"%-K . But Y. can be

- written as T&P&"’: , where «,p¢7. and ? € B\ . Then A[w‘ 15,

"is normal and finite over B[ and we can replace P by ’-P?c'_a

o7 ‘9\?’}
Let us denote by B! the integral elozure of B‘(_.%] in Qln).

The integrsal closure off_é_Bn:zB [ip-l -in Q(A) is the ring ef.frac~

; _@B[%ﬂ

tions Bg of B’ with respect ta S = B\\n « B being a discrste
valuation ring; it fqllowé"'that B’s 18 a free B -;odule ef finmite
rtypéi‘z:(“seévtﬂ » Ch.VI, §8, Cer.i), Let..,Sl"L.'.S’L ,-,,__3%3 basis of the B -
module B;, _ ? . s e
wi,th,,e\“y__‘:.d\\,ey andv.ses. The integral closure of B [}W_"%_& in Q(4)

. Iy A T i
is B L?Fl« and 1t 1s a B{—%,:‘;‘X - module of finite type. Let

Ayt dy 1 be a set of generators of this medule with
Sl R ;
SR L
e e 8! . Then ol‘,-_-;oi‘ oL\,H“--, g {Eane’rate the B[-—]u mo-
‘dule B'. Indeed, if bl¢ B! then b= ¥ ¢ ___Z S o with ag
9 ¥ {
g =1 pt > -\-1 S \

c\“LeE[-‘_—P—X and M €S ; therefore we have /s b"' Z_d\_ak and
¥l = B pL with g'eS and. B ,@Len§;3,31nce the ideal generated
in B‘:—;;—X by A and s B[—E;-X , it follews that b’ can be writ-
- ten as a linear combination of ol with coefficients in B Y_-%-—\

Therefore B' is a finite B[P-\- module.

Since AY,_, ,—':X is normal and finite over BY_——.-—*X
Lok
it follows that B '\'_;F-S = ,f—\‘;?—‘_-‘ ' PX 5

Let us denote m=TA. A is a discrete valuation ring domi-

nating B, . Hence 4 2 Bg and if w mAM‘\B ; then

A& :(B[\!t', e sincém(B!\h, is a valuation ring. Clearly MA[“X“% =n
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Thus in the field Q(A) we have the following inclusion of
rings: B < Bf[é\:l n%’ﬁ. = AI%I%X NAy, = P‘L%,j).

et N :S",ec A[%}/W:S\amﬁl%slw'__ g\p% gl i A
the morphism of schemes associated to the inclusion B'c /\[—%L Then
J is:mn:open immersion. Indeed, T ¢ \'(Wfbw\ =@ vanishes only in
the pointsof W' lying over nB T_%XC—.W ; hence the zerous of T .en-
W' are (finitely meny) closed l-codimensional points of W'. We
have that 3\ Ve e ;—e-W' ( Veand \‘N' are the sets of all non-.. .
zerous of T) is an isomop hism, because B Y_ ] A[ ’ér:l
If xeV is the point corresponding te m A[.._} then j(x) is the
point corresponding te n' and so ©W },(X\ _(O » Hence j(V)=
= };(\lT\) U%y(ﬂ \Nmuﬁé(_xhs an open subset of W' and in Q(A) we have
\"(}(V\,(OW,\ = \"_(k(\lr\, (’)\,{s) {\Q)W",'g(x) = V(\IT,Q)\,)[\()V =T(V,6)since
J(v) is affine (ef.[7}, Lemms 2), it fcllows that J i)s an o‘pen immer-
sidn. In the following we shall identify V with 3 (V) and x with
J &) IE Pl e W is the morphism of schemes induced by the in-
clusion B {:‘P_}c___ SUES » P is unramiried in x. We shall denote
y=p{x).

It foliows that v is a scheme of finite type over W. There-
fore At*‘\;l is a BY_%X ~algebra c¢f finite type. Since I\Y_-‘-T—X is also a
B[ﬂ- algebra of finite'type end P and T generate in B the ideal B,
it is easy to see that A is a B#algebra of finite type.

Since Q(A)=<{I(T,fl,...=,fn) and S\‘T‘, %\»""&‘WIX is a trens-
cendental basis of @A)} over ¢, we can find 4 € CLB Ly ‘M)
such that Q(a)= C (7T, {\,---,-g\m.rss Tn Q(Aywe can write 3' g -

-\
where g',RémcA. Let Rv’rf R o \o‘o be an equation satlsfled by

A\ \5‘ -
‘P\QAF }Wlth 1 € B S and X\P'l(:(‘\ . If we write T‘\)‘ l_‘_’_?g‘t?l.
"F L}
in Bt X , where ‘f‘eB\n and py,b, >0 ., then in A[ e
, B )
/-\‘_‘ \w, y T'\ and R are invertible,,
B) c\\.mu‘mq T with ‘P‘e" We may .,u.Wcse, that R s tavertible n A[‘*t—*&.



=

§ \
Then o=yt in A[—".‘:,%; “-/‘\[’ﬁ;\, where §ewm <A

\ ;
1et us denote A= [T,ﬁ\,--—ti’m,f,~-~,(R%t‘g'@,)u—~-:&‘5ﬁ§\)v"'-X&sﬂ,wm,%i

e @ el . Since in ‘CC(T)“); (‘Restf)teQ(A)ﬁQ@Tikza(A_@\nﬁmzAmand

(’Re.s&g\)&e A[:‘T{X , it follows that for all L34, (Rest{), € Aw NA [%‘:‘X:

b Therefore A2A'2B. Since Q(a)= C (T, &u---&m,‘@) and

AT AT 2 A TS = e L5 Tdu e dn 3 ) 2 €15 TR GG Amigd

the rings A[T“_—,—-‘f and i‘«\’ ‘%4%] have the same field of Afractions.

Thus we can find Q€A‘', Q#0, such that /5\[%::4 —‘-—]=A'£-f-‘:r& A

Y 'Fla
A
e Q\r* S‘Gf CROE S\r =20

is an equation
of QGA'[%I over BT_.—%] with S\.¢o and if in B[—!‘?—'&

i
g s

: L, fr A y
" m—— “ 3 —— s -
s TR with &€ 8\n ana n,% »0 , then in A \-‘“PS” T}

= ’5\'{%,.;7, .f_‘__Lgrand Q ar‘é.invertible.

we have

: o t ey .
By chen, ging p with P3$ we may suppose that @ 1s invewtible

in NTE . 4) | onen a (L, 4] =N[4

‘Let us denote m'=TA', the ideal generated by T in A'. It

A A
reAsults»-Ay_\-:‘Am"Q&"ﬂ, ana, next, A =

—

!, . ThenwQ(a)=Q(a') we
neve ALE] = A[E FINAG = AT F1 0 A = N TS,

e g ) -
The ring A[%X :A'\_;,—] is¥finitely generated 3\_-—“;l - algebra.

There are finitely many elements from {,.--(Rest{),,. .%bﬁgenerating

AY%X over %Y’\;ﬂ . Since in A, for all £30 we have the relations

W‘“t'g)f {(W"{‘ﬂ{“**“;&"\" with=o; €€ and (Res‘t-ﬂo =4 , it follows "

that A{%\ has qczenerdior of the form (Re,stg)f!\ over B[—;ﬂ ,for { suf-
ficiently big.

Therefore we proved the following

LEMIA 2. Let $ioooy §imsFrnner - T € CHTH . Suppose

that Ti_ﬁ\,--‘-,{.m are algebraically indenendent over € and

L

S ”...,_,gw are algebraic over thc field G('T,SA,-—-,%M)

A= G: ‘.Tl S‘“-.- 1&“4 ~"/(RLS{'S'§~.\)L) ;-'—\1 14k gn

. Denote
ARSI

, X %4 and



B Q{Ti{«.-.qﬁ‘m,mf (Qeﬁﬁﬁt..‘&i%ﬁmt&e’\ ¢-svbalgebras of € i{fﬂ\ generated
(b :

o

by the indicated elements., Then A is finitely generated over B and

- e a 11 4 :
there exists p¢B, P& TB, such that A[L|is generated as B [i|-alge-

bra by an element of 'A. The morphism V=Spec A[-‘_‘;X SRR

X G s }\ . . . . . 2
=y fb?“q@[’z\;‘l ts unramified at the peint x corresponding to the

maximal ideal TA E-‘J‘;X .

Remark 4. As we have shown in the proof, P can be choosen
such that W is quasifinite (more precisely, such that N=~-§{xj —
—2 W ~9\“\r(x’)?§ is finite). Moreover, in Lemma 2 we may choese P
such that ® 18 étale, hut we shall not use this fact in the fol-
lowing. &1

Concerning the above morphism N Lo W we may prove

LEMMA 3. Tn the situation and wiin notations given in Lemma

3 w . 4 P
2, the morphism ¥ —> W induces a homeomorphism witli respect to

the fine topologies between a fine open neighbourhcod of x in V

and a fine open neighbourhoed of wmin We.

Proof. - Firstly, we shall show that the ring 3.in Lemma 2
is factorial. Indeed, B[-f-r-x:&[ﬂf,“r,%h---,fm'x is a ring of fractions
of the polynomial ring € U7, §i---ifwl and so it is factorisl.
Let peB be a prime ideal of height one. If p#n=TB, t'hen'AJ;_B[—f{l
is & prime’ ideal of height one in BY_%_—] and so there exists ¥V €®

_ such that .\B_B\'_'f'gl is gene-
r'ated by - P, . We may suppose that ¥, is not divisible by T in
(5 ([T]} o i oRach, Af 'P\‘—Td'(?\ , where >0 and R¢€ CT]|
“is not divisible by T, then R :%~ ¢ A (d)n CLry =Q("=@ﬂ‘%\l = Ba
and so REB[:‘F]REE:B . Then - R is a generator of p B‘C'l:—'l_
Hence suppose that T, not divisible by T in € fEL . 52 Rerp then
there exist Pe¢B and B>0 such that = "T?P,_'fP’P . In C UTH )

3
A
e i r, and so X & Cinad) - B, M8, ) = By e
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t.hen ..z%: e%vinb{i‘_—‘l =% . Therefore p is generated by Py
By Lemma 2, T(¥,6)has a generator f as T(W,04) - algebra

and V(W,@WB is §dctorial, as a ring of Pfractions of B. The kernel
p of the canonical homomorphism At T (W,04) Xl — T@;(’J\,\, defined

by h(X)=f. is a prife ideal of height 1, because dim T (W, 0y) =

= dim V(NV,0,). since TW, 0, )IX)  ia factorial, p is generated

by & polynomial RET(W by)[x] and so TG = V(W"Q).W)/(R)
Therefore W:N —»\W is the morphism sssociated to a homomornhism
of the type V(W,(’J\xﬂ *“%r(‘“)@w\\__ﬂ(). Since W is unremified at x
then the g-vector space (W 1) Dq/(&) ®_ riw, 64 T(w @W)/ F(W,04)
is of dimension one. If y=W(x) and R(X) = cka"‘" cie kK oo

whers &, ___, &, €\ (W, 0y) , this means that the equation in X
(:L,L(‘\v\ Xj:’* i e, (WY R+a\)zchas f(x) € € as unique solution and with
multiplicity one (where %q++e+;9 are considered as functions on .
N

4 Using the implicit function Theorem or the formula of resi-
dues for analytic functiéns, be an find E,g> 0 and a complex con-
tinuous function% of . hixa variebles, defined in an open neigh-
bourhood in €*™ of the point (a8, -, %, )) € € ’“')
such that for we W y with \o.- (w) - a; (\9\ 43 for al) 0414k, we have
\?\(%(w\,---,&% W) -f(0O\ <t and <« (w) ?\i“(a (W)z___-,ak(\u\‘) i

e or ¥ A (W) R (o (8, e (W) + a, (\“\ =0
In particular, ?\(Q‘,(\Q, - %5 ())) = §&). Via the above homomorphism h,
V is the closed subscheme of the scheme W x S;Sec ¢ Tx| defined by
the equation R(x)=0. Then V., -{xj is the closed algebraic sub- -
variety of the varietyﬁwm«“’ﬁx@ , defined.also by R(X)=0, because
X is the unique point of V lying over y, and so

T\"'\V%’%ﬂ:\ia-f\xﬁ —>Wi-34§ is the projectien on W -y 4§ . OF
course, t:he natural inclusion of sets Vg & Wgx€ is_defined

by ¥ wm—> (w(v), {(0),

\";
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Let us denote Wg={w eWQ\\c\;(WW&L(‘Q\‘iS , for all Qgi¢k
and \18,%. {ve ‘m\ la (“(“"3-‘*1(@\’*9, \“3(‘9\)"%(@\4&, for 21l Os;iék?s.
Then WS and VS,‘&. are fine open neighbourhoods of y &and x and
“rr(Vaﬁ’ ) «Wg . we shall define the following mep ¥ Wg ——> \4’5#_
in the follewing manner: if w e Wy -X% y, then S(w) is the point
of V,-{2] ¢ W, x€ corresponding to (w,“ﬁ(%(w\,-“, G )Y £ W % €
(this point satisfies the equation R(X)=0) and §(y)=x. It is clear
that wS = i‘”s and we claim that § is continuous. In fact, it suf-
fices to prove that all functions corresponding to a set eof gene-
rators of the g¢-algebra \“(v,@v) composed with § are continuous

€ - valued functions on Wg . since f is a generater of the TN, 0 -

-algebra r’(\l,(ov\)and 0] cinctions cop responding to

TN, 0y < r(\f,@q) . are continuous, we must prove that %

«ml 8 Continueus. It is cleér because $§9 (w) = »‘(« WY, ooo, &y G
for “We Dy "%‘*573 i ’\i(\'.?)(“s\’ = {0 = % (cnb(%,ﬁ, =y T Q) and
K,%, ~--» &4 &re continuous,

If we take sbove fl,S > o0 with the supplementary property
that for eny weW, such that |a(w)- Q;(maglthere exists a unique solu-
tion ﬁ of the equation &,(L(W)’\k~\-“t&{(W)ﬂkag(w).=d,\w%ﬁx \i"g(m)\/\gr

then we have SW-= kV
8,
Q.E.D.

Remark 5 - Using the structure Theorem for étale morphisms,

W R T e
one can prove that an étale: mornhlsm of finite type of noetherlan
C-schemes cmnerlcally of finite tvpe over C, is locallv homeo-—

morphism. with respect to the fine topologies. O
The last preparatory fact for the proef of propositien 2 is

the following:

LENMMA 4. Let 1:X<>»X"be en epen immersion uf integral schemes

over ¢, where X is of finite type over € snd X¥-X 1is a closed l-co-

dimensional point x'of X* such that @X‘“ o is neetherian. Then the
i




e

normalization morphism e Vo B is a proper continuous map

R A : ’ ] e )
between ‘)‘\ and xc&, with respeect +to the fine topolegies, 1Ff XZ‘Q is

locally compact,

}Drdof. If suffices to prove that for a. Zariski open affine
neighbourhood U of ’x,é > Sl F\\\a“(u) ; '\3‘4(0) =YY e ¢
is a proper map bstween U& and ch, with respect to the fine to-
poliegles (cE. 4} Ch T, §10, Prop,3), since 7( =i ) ——> X - %
is proper,

Hence we may assumz that X*is affine and let us denote
A EOEE ) = R Gan) and XM= o™ (),

The fibers of P are finite since Ouv. is noetherian (of di-
mension one. , cf, {3}, ch,vir, §2, Cor ..1)., It suffices to prove that
{7l e Xv(;j 15 a closed subset in the fine topology, then piz) e
is closed in the fine topology (cf.[4), Ch.I, 810, 2B L) .

If ZOF') $#6  , then xep(z) and

?(Z) Sl F(Z - ?-‘ (3‘*)) is closed in X, , since Z-"fl(’ﬁ
is closed in XS‘ and \j\x'&.: X‘é@ == N is closed with respect to

the fine toupologiss, as finite morphism of compliex algebraic varieties
Then p(Z) is closed in XZ-’« X © 5.171 in the fine topolegy.

Suppese that L0 ?“(13 ‘~3f) P S be ths
podnts of x*H lying over x, For every i, 14i¢n, there exists a fipite
subset S\ 5;\,———,“&.&;73 of V(X*H, @X-\{,N) = A
and &, >o such that 1§y ()<, .. \§ $in, (RO} <8 and for

every zez, there exists j, 14j¢n; ywitn §“3 (3@\

(where f;s are considered as functions on Xcg ) , because
Xk + Replacing S-U\ by -SE- ﬁ"i ve may assume that §&;=1
(9

feraall. 1 l&iang,
! = g
Leta. A = P\[.N,S‘L‘s,»wl{gteni L&y sng be the A-subalgebra

o : :
of A generated by %gg\?‘ Wl xei‘a\'\‘\ ..o The dnelusieon



AHE.’ Aj 2 A give a factorization of p, KEN 1, X = Spec A/~P—i~v‘> XT
with q surjective and p* finite.

Then q(z) is clesed in X . Indeed, for all i,j,l¢i¢n,
18j¢n,, fij are functioens on X”ir and \fij(z')\f;l for-all 1,7,
and all zkqg(n~ (y)), for any l4i4n and ch(z)g there exists j,
1¢j¢n;, such that \§y (i’)\zi . Therefore g (p'(x)) = "*(x)
does not meet the closur Qi/q(Z) L X in the fine topology. We
have i(i)t:i(*”)m\ﬁ '(X)=x and q(z.) is closed in X{x in the fine
topology, because 1\74&: X‘éf_«—a»)(/m is a finite morphism of complex
algebraic varieties. From these two properties of q(z), it results
that q(Z} is clesed in _Xim in the i’lne topology.

\Shaw that y S A prcgur n»th.owa mads betaeean X u' ¥ and xct
Yo' prove that p(Z) is clesed 5{& e +allY Wi th respect to

the fine topologies.lLet K & X"fQ be a compact subset. If

n
= o the generators 33" of A' give a closed
Z s g o gﬁ(\w ot SR 0

immersion of X™in ¥xSpec € U7y, ..., ,,,J end so the fine topology

on X’&‘ is induced by the product of the fine topelogies on

O S\)\.Q @YT\,---, m3) o = K& % €™  of course, the natural inclu-
sion of sets < W % e given by the map
‘Z\ A (\3 '\) —-—l‘gts(?xy --_3 For any 1,3‘1‘1141‘1, ‘i(JQI& let
§‘5 3-\- a(ki) [s “- +_--fc»L0§ -o be an equatlon with akeA, satis-
fied by fij’ FOI' 'ﬂe ‘3’ ‘ (K) syeh that fij(i)%o we have the equa-
litys :
&) (!
@-rm =4 (\° o b (Kn
Il e S N\ i
£y (‘\) 55 R)

Since all functions a%’are hounided on kK,it follews from
w o+s N >O

Y. -~
L e S V]

vner

ﬂ)

here that flj must be bounded on p”l(K)c Hence

such that for all L,J, 14i4n, 14j4m; ~end all ’»\e V*(K‘), \%L‘X(.")\)\é\"\

= - dr
Denote 3)\.\=5",{\ te @ \2\¢ Hz( . Then the subset 7' (K) ?xc& =



=1L =
o K KDY and 50 1,
=X s "“""“J‘“‘“M D is compact in the fine topology. Since
X’Z‘}‘ is locelly compact and Xég‘:g being affine, - is Hausdorff
with respect to the fine topolegy , it follows that p* is 8 proper
Ig % e 4
map between }{(f and "{zit DY [ﬂ, Gl 1, %l(},% Prop.7.
R-E.D.

Proof of Proposition 2. It is clear that i) is-eguivalent

ith ii}. The assertion iii; is equivalent with iv), by {51
Theerem Dy L Jie

Since iv}=»1), we shall prove ii) =»iii).

If o X*»—a»}( is the normalization morphism, for all po:mt
xMe X¥H lying over x, @Xmi S is, noetherian ring, by Krull-Akizuki
Theorem. Ry lLemma 4, p is proper with tespect to the fine topolc-y
gies on x’f*“ W& o Dhen by $al, h I, §10,2, Prop.6, all x%¢ *”&‘”’“‘
lying over x have compact neighbourhoodsin the fine topology. By
restricting X* to s Zariski open neighbourhood 7r of o point x™
lying over x, if we prove the assertion ii) = iii) for
:\:\{*(\‘f‘(x\ = N* ang x%evV¥ it follows dim V=1 and so
dim xF=1 (c:f‘.[S], Lemma 1 a)).

Therefore we can suppose that X¥* is nermal.

By lemma 1, we may replace X¥* bya Zariski open naighbour- |
hood of x in X¥* and suppose that Xﬁ'lrz Spec € Y;T, %M--i—. g'n,, ~= =
o B g”QU“:ls\dw\m Ly Where i -c;“°‘\)“\“.L ¢ € 1)
Koz X ~S\u.cq ET:T '&i,‘~~,§y\-l and x is the closed point of X™®
corresponding to the maximal ideal generated by T in .
C \\_T,-ﬁx,-—-,%“,--;, (Q"S’k Sfﬁ)u*“‘& tchgn, =) e

By hypothesis x has a compact neighbourhood Us:Xf"l in the

fine topelegy. The £i8dd of fractiens of € 1T .. §i - (Restfod, .}

; . B e ®ay Ree) 19N 13

is genersted ewer € by T, iy, . --stw and we may assume that
T;&\.-m,&\m are glgebraically independent over €, and

{Smu gk £. are algebraic over the field ¢ (T ‘SH“‘“I-SW\)

Let us denete (5 - S?u. QY_T %n"—:% "—1(’9*‘&&’9«3%1-”-&«4&3%« LeA
< ) -



e B

'\(n_w_\f_;f = SY&QG:[‘E’\-HTi‘g‘M"'l%N-&, y ?-Y%- Y the point correspohding to
the maximsl ideal generated by T in (gtyigti““'ng;~~q@$igke,ujl
—3 el ewm, Ut and X X*—»Y*  the natural mop hism of
schemes given by the inclusion of rings. It is clear that &x?(x),
Then, by Lemma 3, there exists a fine open neighbourhood of x in
x* which is homeomorphie with a fine open neighbourhood of y'in

%

Y® . Since x € Xﬁﬂ . has a compact neighbourhood, then y é‘{?{

has alsoc a compact neighbourhood.
We shall prove that this fact is not possible if m=adim ¥ *—4 34,
Indeed, the compact neighbourhowd of y cohtains a
neighbourhood of the type: y and allf\e‘{gi)q\¢_% . satisfying

somé inequalities:

L3y O &8 L ;\
....... =W T‘”" YO\ = \ U\‘) caas \é "l
Cy ! '
Q?&.’S‘Q g ‘)\ \Q el T<’V\3L <
where ¢ il’ €y >© and j.k,1 are finitely many indexes such

that 14],kém, d=l. (Of counse, we conuldered P f‘ (Qmstgk){CT'(%*Q7;
as functions on Xci)a If we put (R%i %&)e :'§k ’

then for all-130, we have (Rest %{«)LG\\ = [(Rest )0, () ‘(‘C(gl“.sl\‘<"\')
Hence, by changing¢ , we may suppose that the compact neighbourhood
of y contains a neighbourhood K of the type: y and all :
twe‘féL, w\¢\} , satisfying some 1nequallt1es«

' (i M| ¢ €

s e el

‘4\ (’Q\Q_S‘t .g,ﬂ’ (’r}‘)\ggk i< g we Q.,(‘L>&

where ¢€,g, >o end where for any k, l<k¢m, we have a unique
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inequality \(Q&St&%)QJFO\ézék(with £, >1).since X is closed in
the fine topology, it féll@ws that X is compact.

Lot Cf;(ﬁ be the Zariski closed subset given by the
equations §h» Ef‘CQQ“T{ =0 l¢k<m, Since yeC and y is a clo-
sed l-codimensional point in Y*}{Vk is an irreducible component

of C. Then ¢*=C -{y{ is a Zarkiski clobed subset of Y* and so

2
%’ i -
S {Me \f&\ S T C\ B ”*m\; , Tor all k, 1¢k<m |
is closed in Yc& in the fzne tonology, Since Céi €« §Q-§°§
C
(S%¢,Q;L_~ ,\“~-ﬂ§wib +18 a complex algebraic variety,

the map “'ﬂ"m 3\@3 %}Q;CL\%$O 12\ ¢ 2«,75 M—-,»C;CQ(\\“\‘,
defined by 'ﬂ(*k\ (‘& }_' wi"‘ e Q,(m\’“:t> @i ;
eotablluhes a hom@omorphzam betweog' —~§0§ and Céa“\g
Since C((ﬁﬁi is compact, it follows TDE -3}  is compact,
which is-not true.

Therefore m=0 and so dim X =dim X=1.

Q.E.D.
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§%. THE MAIN RESULT

In this section we shall establish the following

Theorem, let 1:X«—» X" be an open immersion of 1ntegral

schemes over €, where X is of finite type over € and xe ¥* a

e PN A A O

closed point such that Qﬁx%x, ie noetherian. Then x has a Zarisk

’ 2

}_6 °

open neighbourhood of finite tvpe over § iff "'x has a compact

neighbourhood in the fine topology.

To prove Theorem we need the following

lemma 5. Let i: A<—> X" be an open immersion of integral

schemes over ¢ , where K is of finite type over ¢ and x € Xﬁi such
ﬁéﬁﬁ"QDﬁ?:ﬁ ig noetherian. Then the following assertions are equi-

velent:

nmnssasarn S

1) x has a Zariski »»nen neighbourbcod of finite type over ¢

14 if p:Y’~w>X* is a finite morohism of s-chemes such that

Y is integral, genericully’ of finite type over € and contains clo-

sed l-codimensional points lying over x, then dim Y=1.

'ggégg. It is clear that i)=»ii}, by [5] , Lemma 1. we will
prove ii) == i) by induction on dim X? If dim X%Ely then X* is ofv
finite type over € (cf.[5], Th.3.1)). .

Suppose dim X¥*> 1 and let {X.%:'Zc el . Chy = s

be & saturated chain of closed irreducible subsets. We have n32,

since, otherwise, n=1 and x is a closed lxcodimensional point of

Xy - henee. by a3, dim.x%zl, which is a contradiction. By changing

Z. 1, We may suppose that zh_&(\Vﬁ-% ¢ In fact, in.th@ local

e S .
wtegral

of thevsubscheme Z, _, in X¥, wk have

P

: o~
noetherian ring O x
34 & /\‘ : Z'W"Z_
. = ~ & 7 .
a maximal chain of prime ideals m>p>0 corresponding to

L AR S i . By a theorem of Mchdam (see (12|, Prop.l),

=2



S

we may find a maximal chain ef prime ideals 1*'13@_30 such that p
does not include the prime 16@&1*»3 of C’X A corrgsponding
to (finitely many) irreductible components of X’-X containing
mez . Then we may change Z% A and replace it by the closed
irreducible subscheme of X* corresponding to !

Therefere we can apply the . _ induction hypothesis to Zn;g
(which centains the open €-subscheme of finite type Loy UK *’5/)),-
since dim 2, Rxéwm)’\ ahd Z, . has still the property ii) of x*.
Then x has a Zariski open neighbourhood V in 2y 9 of finite type
sven €. Dhen {xj=7 MNezZ MNe . cZ NNV 45 2 setursted cherm
of closed irreducible subsets of V and so n-l=dim V=dim Lo

£.[5], Lemma 1). Since 4im Gy = A ) =

= chm Kot e ok B : it follews that n=dim X*. Therefore
; \?QSS%{MMQLJ(. have
all may1mal chalns of closed irreducivle subsets of X *Ythe same
length,

It Ze s s any closed integral subscheme, passing through
X, we can find a maximal chain {x} = ZoGLyC cac © L= K
of closed irreducible subsets of X¥ such that Z=2“%7\ fer certain k.
Since Q= J‘lm‘ol.c K(Zﬁ) £ dimn a\;@; e
e chm.a.l.&\’\';’im_):o“w\x*, where K(Z;) is the field of rational

-

functions on the integral subscheme Z., (see [5], proef of Lemma 1),

we have dim Z; = dimm, cal. MAZY) =k, since Alm.@ 7.7 = codim,, Zi=h,
u-\l ZL-H

Therefore the generic point o c:'{j’la has the follewing proverties:

dlim @ 2 s and o\\m.ak.k&k({;\ =L , where %L(fb) =Gy

is the residue field of 3. -« By{5], Remark 1, applied for i=n-1,
V=2 o Yo to i s it results that Zzzk is generically algebraic
over €. Hence by the induction hypothesisg, x has & variski open
neighbourhood in Z, which is of finite type over €. Thus ®z)1

is a ring esssntially of finite type over €.

it folleows that for every prlme ideal Py Of ¥_ (&5 (OX “



£

.

i
3

o

the ring Q?X%X/é' is essentially of fimite type over €, and so
3
universally japanese. By a Lemma of Maret (see(11], Lemma 2 ), the
integral closure of Q?K% - in its field of quotients is noetherian.
i
mherefore ’:f- Ay ){;"{\H ¥ 3 ; . . o
Therefore i ?, 2 K is the noermalization morphism
£ KA : el . e -rvﬁl g S (;:B .
of X7, then far all points x ¢ X lying over X w* 18 a
) /i
noetherian ring. All points x"¢ %*% lying over x areclosed in x *™
but not of codimension ome, since, otherwise, using the fact that
: g e S 2k ; ‘c&ﬂfxf&z&‘&

Lhere exist finitely many x“ ¢ X lying over x, by a¥procedure
one constructs an integral scheme Y, which is finite over X¥ and
dominating it, having cleosed l-ceodimensional points lying over >
by ii), it follows that l=dim Y=dim X%, which contradicts the
assumption dim x%>1.

et x™ e ¥™ be 2 roint lying over ¥ and W=p  DPDacn Dhy R0

a meximal chain of prime ideals of @\,m~4 W « Then. k224%;let
TS Sy
1 .
we denote bydxy =Z . cZ,C ... C Zy = K ~ the corres-

pondiig maximal chain of closed irreducible subsets. Since
‘3\‘2:& “.‘ 7;-%,.‘\ *}'\3(~7'@~-a‘> is integral, F(Z%’{) #* X%CL\'\C\\ K(K%_OZ\’:\(?(ZQ:D
is a finite extension (by {14}, Theorem 3%,10), it follews that a0

has a Zariski open neighbourhoed W in Z‘%L_,\ y which is of finite

&

type over €, because xep(Z ;e\_‘) - has this property. Then

%3"73“-3 LW CLMWce...c ‘Z(u{(\\‘f\.’:\fwl i8 a maximal chain of cleosed irre-~

ducible subsets, of W, end so k-l=dim W=dim Z , . Since O z,
_ s

: : ; A

is noetherian, by changing 7, , we may assume that zz,wr\v ) +<;)

(in the same menner as above). Then dim Z&m = el (Z.&M\ﬂ ‘f‘ (X)) =
= b \3“ (%) =4 = dim Ly, =4, since f‘(x) is a @~scheme of finite type

i 0 - 4 : : Y
and codim sz,\wzi .Therefore k=dim y %% , and so dim @X.—ﬁﬁl xw;c\\\m)(

Then, by [‘51, Lemma 4 , it follows that x™ has a Zariski open
neighbourhoeod W, w of finite type over €. Then

AR, * T 1\ . © s 3 :
W= K «-\5 (\ ) S\V\lx}‘\) 18 & Zariski open neighbourhoed eof x, of

: ELIES S s =
finite type over €, since \‘5‘(\?@ el VN, and ?\ ! ‘\‘f‘@(}) — W

X -4
; S GE G xl (\N)
is finite.
Q.E.D.
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£\

Remark 6. Lemma 5 is true for an arbitrary base field. 1

O TR

Proof of Theorem - Suppose thast x has a compact

neighbourhoed ¥ in the fine topolegy. By restriction ¥ ¥ to a
Zariski open neighbourhcod of X, we may assume that X¥®is affine.
Letpe R s ha o finite morphism of schemes such that ¥ %
is integral, contains an open subscheme Y of finite type over ¢
and & closed l-codimensional point y lying ower x. Then Y ¥ is a -
closed sgbsehém@'of & scheme of the type X%‘gg&?e@ Qitﬁ},-qull

P . : Yo ks .
a closed topological subspace of x:i T i vk

6]

ans so Y& i
respect to the fine topologies.Then {F;x<$“) N Y}i is a

E 5 6 e .
neighbourhood of y in Y}Q y 8nc so there existe €>o0 , such that
e D) e

topclogy, where 33& = ij;é QZ\ Yi\éil{ j moreover 1% is compact.

L3

: is 8till a neighbourhcod of y in Yzz in the fire

(&)
(g

It is cleay thét Qh{%y is noetherian, since QQfo,is noetherian

and Y® is of finite type over X* Since Yy is a closed l-cedimensio-
nal point of Y*, then{y% is en irreducible component of 5 v

If Z is the union of all components of Y- ¥ different from §y},

and y/* =y*. 7 y then Y is an open subscheme of ¥ '* of Tinite type ovd
and ¥ ¢ x§y§, where y is still a closed point of codimensional

one in YJ%. Applying Proposition 2 to the open immersion %»¢4-Y’f

it follows dim Y*¥=1. gSince Y'® is an open subscheme of Y , we

have dim Y=dim y*¥=1 by (5], Lemma 1. From Lemma 5 it results that

-

x has a Zariski open neighbourhood of finite type over € .

Corollary 3 - Let f:X ——>V be a dominant morphism of schemes

over €, where X is of finite type over €, Y is redueced and Ne X -

is a closed point such that @Lf} is noetherian. Then v has
3 0y,

compact neighbourhood in the fine topology.

COROLLARY 4. 1et f:X ~—»Y be a dominant mornhism of schemes



over € , where X is of finite type over ¢ and Y is noetherian.

Then Y is of finite type over € iff the fine topoleogy of Y is locally

compact .

We left to the reader to establish these consequences of the
Theorem ., using the fact that & g-scheme dominated by a § -acheme
of finite type is generically of finite type (cf.[5], Lemma 5).

From Corollary 4 results easy the following

Corollary 5. A noetherien subalgebra A of a € - algebra of

finite type is of finite type iff the Gel'fand topology on the set

of all maximal ideals of 4 is locally compsct
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