INSTITUTUL DE MATEMATICA PENTRU CREATIE
STIINTIFICA SI TEHNICA

ISSN 0250 3638

OPEN EMBEDDINGS OF ALGEBRAIC VARIETIES IN SCHEMES, II.

by
Adrian CONSTANTINESCU

PREPRINT SERIES IN MATHEMATICS
No.45/1982

BUCURESTI

Man 12799

OPEN EMBEDDINGS OF ALGEBRAIC VARIETIES IN SCHEMES, II

by

Adrian CONSTANTINESCU*)

June 1982

THE

^{*} Department of Mathematics, National Institute for Scientific and Technical Creation, Bd. Pacii 200, 79622 Bucharest, Romania

INTRODUCTION

Let $i:X \hookrightarrow X^*$ be an open immersion of integral schemes over the field $\mathbb C$ of complex numbers, where X is a scheme of finite type over $\mathbb C$.

In \S 1 we show that for every closed point $x \in X^*$, the residue field k(x) of x in X^* is $\mathbb C$. This fact permits to associate $\mathbb C$ -valued functions on (Zariski) open subsets of $X_{\mathbb C}^*$ (the subset of all closed points of X^*) to the sections of structure sheave $\mathbb O_{X^*}$. We call the fine topology of X^* , the weakest topology on $X_{\mathbb C}^*$ containing all Zariski subsets of $X_{\mathbb C}^*$ and making continuous all above $\mathbb C$ -valued functions, where $\mathbb C$ is considered with the natural Haussdorf topology. The restriction of the fine topology of X^* to X is the usual fine topology of the complex algebraic prevariety $X_{\mathbb C}^*$.

The main result of this paper is the following: if $x \in X^*$ is closed and X^* , is noetherian, then x has a Zariski neighbourhood in X^* of finite type over X^* , if X^* of finite type over X^* , if X^* has a compact neighbourhood in the fine topology of X^* (§3, Theorem).

In particular if X^* is noetherian, X^* is of finite type over \mathbb{C} if the fine topology of X^* is locally compact. An equivalent form of this assertion is the following: a noetherian subalgebra A of a \mathbb{C} -algebra of finite type is finitely generated iff the "Gel'fand topology" on the set of all maximal ideals of A is locally compact (The Gel'fand topology on the set Spec max A of all maximal ideals of A is the weakest topology making continuous all functions $\tilde{f}: Spec \max A \to \mathbb{C}$, $\tilde{f}(m) = (residue of f in m) \in A/m = \mathbb{C}$, where $f \in A$) (§3, Corollary 5).

The leading idea of the proof of the main result of the paper is the following: in [5], Prop.1, we have shown that the obstructions

to the algebrization of a noetherian scheme X dominated by an algebraic variety consist in the existence of some schemes of finite type over X*, of dimension > 2 and with closed 1-codimensional points. Giving a "local form" to this fact, as in $\S 3$, Lemma 5, we can reduce the question of the existence of a Zariski open neighbourhood of finite type over C of a "noetherian" point xeX to the problem of proving that for an open embedding of a complex "algebraic variety" X in a complex scheme X^* , which has a closed 1-codimensional point $x \in X^*$, the fine topology of X around x is not locally compact, excepting the case when dim $x^*=1$. This last question is treated in $\S 2$: in virtue of Lemma 4 from $\S 2$, it suffices to consider the question for the case where X^* is normal in the closed 1-codimensional point xeX for which we can describe completely the local algebraic structure of X around x (see § 2, Lemma 1); this description permits, via an étale morphism defined in a Zariski open neighbourhood of x in X^* and constructed in $\S 2$, Lemma 2, to reduce the question (\S 2, Lemma 3) to an elementary analysis of the fine topology of X^* around x in the case when X is a Zariski open subset of a complex affine space (\S^2 , the last part of the proof of Proposition 2).

§1. THE FINE TOPOLOGY OF SOME COMPLEX SCHEMES

Firstly we shall establish an extension of a well-known form of Hilbert Nullstellensatz ever C:

Proposition 1. Let A be a subalgebra of an algebra of finite type A over the field C and mcA a maximal ideal. Then A/m =C.

Proof. The C - vector space A' has a basis which is at most countable. Then A and A/m have the same property.

Let us suppose, that there exists $x \in A/_m$ which is transcendental over $\mathbb C$. Then the subfield $\mathbb C(x)\subseteq A/_m$ is a $\mathbb C$ -vector space having a basis which is countable. This implies that the set of all poles of all complex rational functions in one indeterminate is a subset of $\mathbb C$ which is at most countable (it is the set of all poles of all rational functions of a basis), which is not true.

Therefore A/m is an algebraic extension of \mathbb{C} .

Q.E.D.

COROLLARY 1 (see [15]) - A subalgebra of an algebra of finite type over C is a Jacobson ring

PROOF. Let A be a subalgebra of A', where A' is of finite type over C and pespec A. If n is the ideal of all nilpotent elements of A', we have pan NA and so p includes anA, where aA is a minimal prime ideal of A'. Then aA aA aA aA and it suffices to prove Corollary 1, when A is a domain.

If A is not a Jacobson ring, we can find peSpec A and $x \in A$, $x \notin p$, such that x is contained in all maximal ideals of A including p.

Since the ring of fractions $A\left[\frac{1}{x}\right]$ is still a subalgebra of an algebra of finite type, we find a maximal ideal $\underline{m}' \subset A\left[\frac{A}{x}\right]$ including \underline{p} $A\left[\frac{A}{x}\right]$.

If $\underline{m}=\underline{m}' \cap A$, we have $A/\underline{m} \subseteq A\left[\frac{1}{x}\right]/\underline{m}$, = C and so, \underline{m} is a maximal ideal of A containing \underline{p} and $\underline{x} \notin \underline{m}$, which is a contradiction.

Q.E.D.

Remark 1. With the same proofs as for Proposition 1 and Corollary 1, one establishes that for any subalgebra A of an algebra of finite type over an uncountable field k, A is a Jacobson ring and for any maximal ideal mcA, A/m is an algebraic extension of k. This improves a result from [15].

COROLLARY 2. Let i: X - X be an open dense immersion of schemes over C, where X is of finite type over C and xeX a closed point. Then the residue field k(x) of x is C and X is a Jacobson scheme.

Indeed, if U is an affine neighbourhood of x in X^* and VcunX an affine subset, then $A = \Gamma(U, \mathcal{O}_{X^*_{red}}) \subseteq A' = \Gamma(V, \mathcal{O}_{X_{red}})$ and A' is finitely generated over \mathbb{C} . If \underline{m} cA is the maximal ideal corresponding to $x \in U$, then $k(x) = A/\underline{m} = \mathbb{C}$. $A = \Gamma(U, \mathcal{O}_{X^*})_{red}$ and $\Gamma(U, \mathcal{O}_{X^*})$ are Jacobson rings.

Q.E.D.

In the situation given in Corollary 2, since X^* is a Jacobson scheme, the map $U \leadsto U \cap X_{\operatorname{ct}}^*$, where X_{ct}^* is the set of all closed points of X^* , establishes an one to one correspondence between the open (resp.closed), subsets of X^* and the open (resp.closed) subsets of X_{ct}^* (cf. [9], ch.IV, §10).

For any open subset $U \subseteq X^*$ and every $f \in \Gamma(U, \mathcal{O}_{X^*})$ we can associate the map $\widetilde{f}: U \cap X_{\operatorname{CC}}^* \longrightarrow \mathbb{C}$ given by $\widetilde{f}(x) = (\operatorname{residue} \ \operatorname{of} \ f \ \operatorname{in} \ x) \in \widetilde{\mathbb{R}}(x) = \mathbb{C}$. Since X^* is Jacobson, $f \longrightarrow \widetilde{f}$ is a ring homomorphism, whose kernel is the ideal of all nilpotents of $\Gamma(U, \mathcal{O}_{X^*})$

Hence if X^* is reduced, $f \longrightarrow \widetilde{f}$ is an injective map.

We can consider the weakest topology on the set X which contains all Zariski open subsets of X_{cc}^{*} and making continuous all above maps f, where C is considered with the natural Hausdorff topology. We call this topology the fine topology of X*.

We have the following elementary properties of the fine topology, which will be used in the following:

- 1) If $f:X \longrightarrow Y$ is a morphism of C-schemes which are generically of finite type over C, then f establishes a continuous map between X_{cl} and Y_{cl} with respect to the fine topologies.
- 2) If X^* is affine, then the fine topology on X^* is the weakest topology on X_{cc}^* making continuous all functions \tilde{f} associated as above to a set of generators $\{f\}$ of the C-algebra $\Gamma(x^*, \mathcal{O}_{x^*})$.
- 3) If X^* is affine, $x \in X_{c\ell}^*$ and U is a neighbourhood of x, then there exist $\xi > 0$ and $f_1, \dots, f_n \in \Gamma(x^*, \mathcal{O}_{X^*})$ such that $U \supseteq \{ \tilde{\mathbf{z}} \mid \tilde{\mathbf{z}} \in \mathbf{X}_{cc}^*, | f_i(\tilde{\mathbf{z}}) - f_i(\mathbf{x}) | < \epsilon, \text{ for all i, 1 \le i \le n \right\}.$ 4) Every closed point of \mathbf{X}^* has a fundamental system of

closed neighbourhoods in $X_{\mathcal{Q}}^*$ with respect to the fine topology. 5) If Y^* is a subscheme of X^* such that $Y=Y^*\cap X\neq \phi$, then the fine topology of Y* is the restriction to Y* of the fine topology election of the second of the second

In particular, the restriction of the fine topology of X^* to X is the usual fine topology of the complex algebraic prevariety X d.

- 6) If $i_{\alpha}: X_{\alpha} \hookrightarrow X_{\alpha}^{*}$, $\alpha = 1, ..., n$ are open dense immersions of \mathbb{C} -schemes and X_{α} are of finite type over \mathbb{C} , then $i_1 \times ... \times i_n : X_1 \times ... \times X_n \longrightarrow X_1^* \times ... \times X_n^*$ is an open dense immersion, $(X_i^* \times ... \times X_n^*)_{ct} = (X_i^*)_{ct} \times ... \times (X_n^*)_{ct}$ and the fine topology on $X_i^* \times ... \times X_n^*$ is the product of the fine topologies on X, 1 < a sn.
- 7) If X^* is a separated scheme, then the fine topology on X^* is Haussdorf.

§2. ON THE FINE TOPOLOGY OF COMPLEX SCHEMES WITH CLOSED 1-CODIMENSIONAL POINTS

The aim of this chapter is to prove an important particular case of the main result of this paper:

Proposition 2 - Let i:X \leftarrow X be an open immersion of integral schemes over C, where X is of finite type over C, X*- X is a closed l-codimensional point x of X* and \bigcirc X*, X is noetherian. Then the following assertions are equivalent:

- i) X_{ct}^* is locally compact in the fine topology
- ii) x has a compact neighbourhood in $X_{\mathcal{Q}}^*$ in the fine topology
- iii) dim x*= 1
 - iv) X* is of finite type over C.

Remark 2. In Proposition 1, as well as in Lemma 1 and 3 which follow, the fact that $X^* - X$ is a closed 1-codimensional point X of X^* and $\mathcal{O}_{X,X}$ is noetherian, implies that X^* is noetherian (see [6], 1 lemma 3), but we shall not use this assertion in the paper.

To prove Proposition 2, we need some preparatory facts.

Let $i:X \hookrightarrow X^*$ be an open immersion of integral schemes over \mathbb{C} , where X is of finite type over \mathbb{C} , X^*-X is a closed 1-codimensional point x of X^* and $\mathcal{O}_{X^*,X}$ is a noetherian normal ring.

Then $\mathcal{O}_{X^*,X}$ is a discrete valuation ring. Let $t \in \mathcal{O}_{X^*,X}$ be a local parameter. By replacing X^* with a Zariski open neighbourhood of x, we may assume that X^* is affine, $t \in \Gamma(X^*,\mathcal{O}_{X^*})$ and t is invertible in $\Gamma(X,\mathcal{O}_X)$.

Then $X = \{ \mathfrak{F} \in X^*, \text{ such that } t(\mathfrak{F}) \neq 0 \}$ and so X is affine. Hence the ring of fractions $\Gamma(X^*, \mathcal{O}_{X^*})[\frac{1}{t}] = \Gamma(X, \mathcal{O}_{X})$. We may find $f_1, \ldots, f_n \in \Gamma(X^*, \mathcal{O}_{X^*})$ such that $\Gamma(X, \mathcal{O}_{X}) = \mathbb{C}[\frac{1}{t}, f_1, \ldots, f_n]$. Indeed, $\Gamma(X^*, \mathcal{O}_{X^*})[\frac{1}{t}]$ is of the form $\mathbb{C}[\frac{1}{t^n}, \cdots, \frac{f_n}{t^n}]$ where

 $f_{1}, \dots, f_{n} \in \Gamma(X^{*}, \mathcal{O}_{X^{*}}) \quad \text{and then} \quad \Gamma(X^{*}, \mathcal{O}_{X^{*}}) \left[\frac{1}{t}\right] \supseteq \mathcal{C}\left[\frac{1}{t}, f_{1}, \dots, f_{n}\right] \supseteq \mathcal{C}\left[\frac{f_{1}}{t^{\alpha_{1}}}, \dots, \frac{f_{n}}{t^{\alpha_{n}}}\right] = \Gamma(X^{*}, \mathcal{O}_{X^{*}}) \left[\frac{1}{t}\right].$

We may assume that $f_1(x)=f_2(x)=...=f_n(x)=0$.

In fact, by Corollary 2, k(x) = C, and we can replace f_i by $f_i - f_i(x)$ for every $1 \le i \le n$.

Let us denote $A = \Gamma(X, O_{X^{(k)}})$ and mcA the maximal ideal corresponding to the closed point $x \in X^{(k)}$. The completion in \underline{m} - adic topology $\widehat{A}_{\underline{m}}$ of $A_{\underline{m}} = O_{X^{(k)}, X}$ is C-isomorphic with the ring of formal power series C[[T]], since $\widehat{A}_{\underline{m}}$ is a discrete valuation ring and $k(x) = A_{\underline{m}} = C$. We have a natural inclusion of C-algebras $A \subset C[[T]] = \widehat{A}_{\underline{m}}$, and so all elements of A have expansions in power series in C[[T]]. Replacing T by the power series corresponding to t, we may suppose that in C[[T]] we have t = T. If fem with $\widehat{f} = \sum_{k=1}^{\infty} C_k T^{(k)}$ in C[[T]], then $(Rest \ f)_k = \sum_{k=1}^{\infty} C_k T^{(k)}$.

is equal with $\frac{f-c_it-...-c_et^e}{t^e}$ in C((T)) and so $(Restf)_e \in C[[T]] \cap Q(A) = \widehat{A}_m \cap Q(A_m)$ where by

Q(A) (resp.Q($A_{\underline{m}}$)) we denoted the field of fractions of A (resp. $A_{\underline{m}}$). By [3], Ch.III, §3.5, Cor.1, we have $\widehat{A}_{\underline{m}} \cap Q(A_{\underline{m}}) = A_{\underline{m}}$ and so (Rest f) $\in A_{\underline{m}} \cap A[\frac{1}{4}] = A$ for all 1>0. Since (Rest f) $= ((Rest)_{\ell+1} + c_{\ell+1}) + c_{\ell+1} + c$

Let us denote $B = C[t, f_0, ..., f_n, ..., (Rest f_k)_{\ell}, ...]_{\substack{i \in I_k \in$

Therefore we established the following

LEMMA 1. Let $i: X \hookrightarrow X^*$ be an open immersion of integral schemes over C, where X is of finite type over C and X^* - X is a closed 1-codimensional point x of X^* with $\mathcal{O}_{X^*,X}$ normal and noetherian. Then there exists a Zariski open affine neighbourhood U of x in X^* , such that $\Gamma(U,\mathcal{O}_{X^*}) = C[T,f_1,...,f_n,...,(Rest f_k)_{\ell_1},...]$ where $f_{\ell_1} = \sum_{i=1}^{\infty} c_i^{(k)}T^i$ is a formal power series in C[[T]], $(Rest f_k)_{\ell_1} = \sum_{i=1}^{\infty} c_i^{(k)}T^{i-\ell_2}$ for all $1 \le k \le n$ and $1 \le 1$, and $1 \le k \le n$, $1 \le k \le n$, 1

Remark 3. Conversely, in a ring of the type A= = $\mathbb{C}[T,f_1,...,f_n,...(\text{Rest}f_k)_{\ell}...]$ where f_i , (Rest f_k) are as in Lemma 1, the ideal $\underline{m}=(T)$ is maximal, $A_{\underline{m}}$ is dominated by $\mathbb{C}[T]$ and so $A_{\underline{m}}$ is a discrete valuation ring and $A[\frac{1}{T}] = \mathbb{C}[T,\frac{1}{T},f_1,...,f_n]$ is finitely generated over \mathbb{C} . Then the open immersion i:X=Spec $A[\frac{1}{T}] \longleftrightarrow X^* = Spec A$ have all properties given in the hypothesis of Lemma 1.

We may point out that the proof of Lemma 1 shows that we can replace C in Lemma 1 by an algebraically closed uncountable field.

In the situation and with the notations given in Lemma 1, if $A = C[T, f_1, \dots, f_n, \dots, (Rest f_k)_{\ell}, \dots]_{\{\leq k \leq n, \ell \geq 1\}}$, the field of fractions Q(A) is generated by T, f_1, \dots, f_n . Let us suppose that T, f_1, \dots, f_m are algebraically independent over C and f_{m+1}, \dots, f_n are algebraic over the field $C(T, f_1, \dots, f_m)$. Let us denote $B = C[T, f_1, \dots, f_m, \dots, (Rest f_k)_{\ell}, \dots, f_{k \leq m}, \ell \geq 1$ the subalgebra of A generated by $f_1, \dots, f_m, \dots, (Rest f_k)_{\ell}, \dots, f_{\ell}, \dots, f_{\ell}$ for $1 \leq k \leq m$, f_k satisfies an equation of the type:

where 1 + 20, $p_k > 0$, p_k

We can change P&B, such that P&m and $A[\frac{1}{T},\frac{1}{P}]$ is normal and finite over $B[\frac{1}{T},\frac{1}{P}]$. Indeed, with P as before, there exists $Q \in A[\frac{1}{T},\frac{1}{P}]$ such that $A[\frac{1}{T},\frac{1}{P},\frac{1}{Q}]$ is normal. If Q satisfies the equation $Q^{2}+P_{Q^{-1}}Q^{2^{-1}}-+P_{0}=0$ with $P_{0},\dots,P_{Q^{-1}}\in B[\frac{1}{T},\frac{1}{P}]$ and $P_{0}\neq 0$, then $A[\frac{1}{T},\frac{1}{P},\frac{1}{P}]$ is finite over $B[\frac{1}{T},\frac{1}{P},\frac{1}{P}]$ and $A[\frac{1}{T},\frac{1}{P},\frac{1}{P}] \supseteq A[\frac{1}{T},\frac{1}{P},\frac{1}{Q}]$ since Q is invertible in $A[\frac{1}{T},\frac{1}{P},\frac{1}{P}]$. Hence $A[\frac{1}{T},\frac{1}{P},\frac{1}{P}]$, being a ring of fractions of $A[\frac{1}{T},\frac{1}{P},\frac{1}{Q}]$, is normal and it is finite over $B[\frac{1}{T},\frac{1}{P},\frac{1}{P}]$. But P_{0} can be written as $T^{2}P^{2}P_{0}$, where $A_{0} \in \mathbb{Z}$ and $P_{0} \in B[\frac{1}{T},\frac{1}{PP_{0}}]$ and we can replace P by P_{0}^{P} .

Let us denote by B' the integral closure of $B[\frac{1}{p}]$ in Q(A).

The integral closure of $B_{\underline{n}} = B[\frac{1}{p}]_{\underline{n}} B[\frac{1}{p}]$ in Q(A) is the ring of fractions B'_{S} of B' with respect to $S = B \setminus \underline{n}$. $B_{\underline{n}}$ being a discrete valuation ring, it follows that B'_{S} is a free B -module of finite type (see[3], Ch.VI, §8, Cor.1). Let $A_{\underline{n}} = A_{\underline{n}} = A_{\underline$

with α_i , $\alpha_i \in B'$ and ses. The integral closure of $B \left[\frac{1}{T}, \frac{1}{P}\right]$ in Q(A) is $B' \left[\frac{1}{T'}\right]$ and it is a $B \left[\frac{1}{T'}, \frac{1}{P}\right]$ — module of finite type. Let $\left\{\frac{d_{P+1}}{T''}, \frac{d_{P+1}}{T''}, \frac{d_{P+1}}{T''}\right\}$ be a set of generators of this module with $\alpha_{P+1}, \ldots, \alpha_{Q} \in B'$. Then $\alpha_{Q}, \ldots, \alpha_{P}, \alpha_{Q+1}, \ldots, \alpha_{Q}$ generate the $B \left[\frac{1}{P}\right]$ — module B'. Indeed, if $b' \in B'$ then $b' = \sum_{i=1}^{P} \frac{\alpha_i}{A_i} \frac{\alpha_i}{A_i} = \sum_{i=1}^{Q+1} \frac{\alpha_{Q+1}}{T''} \frac{\alpha_{Q+1}}{T''} \frac{\alpha_{Q+1}}{T''}$ with α_{Q+1} and $\alpha_{Q+1} \in B \left[\frac{1}{P}\right]$ and $\alpha_{Q+1} \in B$; therefore we have $\alpha_{Q+1} \in B$ and $\alpha_{Q+1} \in B$; since the ideal generated

ten as a linear combination of d_i with coefficients in $B\left[\frac{1}{P}\right]$.

Therefore B' is a finite $B\left[\frac{1}{P}\right]$ - module.

in $B\left[\frac{1}{P}\right]$ by A and T' is $B\left[\frac{1}{P}\right]$, it follows that b' can be writ-

Since $A\left[\frac{1}{T}, \frac{1}{P}\right]$ is normal and finite over $B\left[\frac{1}{P}, \frac{1}{T}\right]$ it follows that $B'\left[\frac{1}{T}\right] = A\left[\frac{1}{T}, \frac{1}{P}\right]$.

Let us denote $\underline{m}=TA$. $A_{\underline{m}}$ is a discrete valuation ring dominating $B_{\underline{n}}$. Hence $A_{\underline{m}} \supseteq B'_{S}$ and if $\underline{n}' = \underline{m} A_{\underline{m}} \cap B'$, then $A_{\underline{m}} = (B')_{\underline{n}'}$, since $(B')_{\underline{n}'}$ is a valuation ring. Clearly $\underline{m} A \lceil \frac{1}{P} \rceil \cap B' = \underline{n}'$

Thus in the field Q(A) we have the following inclusion of rings: $B' \subset B' \left[\frac{1}{T}\right] \cap B'_{n'} = A \left[\frac{1}{T}, \frac{1}{T}\right] \cap A_{\underline{m}} = A \left[\frac{1}{T}\right]$.

Let V = Spec A[], W = Spec B[], W = Spec B and j: V -> W' the morphism of schemes associated to the inclusion $B' \subset A[\frac{1}{P}]$. Then j is an open immersion. Indeed, T & T(W, Ow) = B' vanishes only in the points of W' lying over $\underline{n}B \begin{bmatrix} \frac{1}{p} \end{bmatrix} \in W$; hence the zerous of T on W' are (finitely many) closed 1-codimensional points of W'. We have that $\{V_T : V_T \longrightarrow W_T \mid V_T \text{ and } W_T \text{ are the sets of all non-arests}\}$ zerous of T) is an isomop hism, because $B' \left[\frac{1}{T} \right] = A \left[\frac{1}{T}, \frac{1}{P} \right]$. If xeV is the point corresponding to $\underline{m} A \begin{bmatrix} \frac{1}{p} \end{bmatrix}$ then j(x) is the point corresponding to n' and so $O_{W,j(x)} = O_{V,x}$. Hence j(V) == $j(V_T) \cup \{j(x) = W_T \cup \{j(x) \text{ is an open subset of } W' \text{ and in } Q(A) \text{ we have}$ $\Gamma(j(V), O_{W'}) = \Gamma(j(V_T), O_{W'}) \cap O_{W',j(x)} = \Gamma(V_T, O_V) \cap O_{V,x} = \Gamma(V, O_V) \text{since}$ j(V) is affine (cf.[7], Lemma 2), it follows that j is an open immersion. In the following we shall identify V with j(V) and x with j(x). If $p:W' \longrightarrow W$ is the morphism of schemes induced by the inclusion $B \left[\frac{1}{p} \right] \subseteq B'$, p is unramified in x. We shall denote y=p(x).

It follows that V is a scheme of finite type over W. Therefore $A\left[\frac{1}{P}\right]$ is a $B\left[\frac{1}{P}\right]$ -algebra of finite type. Since $A\left[\frac{1}{T}\right]$ is also a $B\left[\frac{1}{P}\right]$ -algebra of finite type and P and T generate in B the ideal B, it is easy to see that A is a B-algebra of finite type.

Since $Q(A)=C(T,f_1,\ldots,f_n)$ and T,f_1,\ldots,f_m is a transcendental basis of Q(A) over C, we can find $q\in C(T,f_1,\ldots,f_m)$ such that $Q(A)=C(T,f_1,\ldots,f_m,q)$. In Q(A) we can write $g=\frac{q'}{R}$, where g', $R\in mcA$. Let $R^p+\gamma_1R^{p-1}+\ldots+\gamma_{p}=0$ be an equation satisfied by $R\in A[\frac{1}{p}]$ with $f:\in B[\frac{1}{p}]$ and f:=0 . If we write f:=0 in f:=0 in f:=0, where f:=0 and f:=0, then in f:=0 in f:=0 and f:=0 and f:=0, then in f:=0 and f:=0 and

Then $g = \frac{f}{(TP)} \lim_{n \to \infty} A \left[\frac{1}{T}, \frac{1}{P} \right] = A \left[\frac{1}{TP} \right]$, where $f \in \underline{m} \in A$. Let us denote $A' = C \left[T, f_1, \dots, f_m, f, \dots, (Rest f_k)_k, \dots, (Rest f_k)_k, \dots, (Rest f_k)_k, \dots \right]_{1 \le k \le m, k \ge 1}$

 $\begin{array}{c} c \ C \ \llbracket \text{TI} \rrbracket \end{array} & \text{Since in } C \ C \ \Pi \) \ (\text{Restf})_{\varrho} \in Q \ (A) \ \cap C \ \llbracket \text{TI} \rrbracket = Q \ (A_{\underline{m}}) \cap \widehat{A}_{\underline{m}} = A_{\underline{m}} \text{ and} \\ (\text{Restf})_{\varrho} \in A \ \llbracket \frac{1}{2} \rrbracket \qquad , \text{ it follows that for all } l \geqslant 1, \ (\text{Restf})_{\varrho} \in A_{\underline{m}} \cap A \ \llbracket \frac{1}{2} \rrbracket = A. \quad \text{Therefore } A \geqslant A \geqslant B. \text{ Since } Q \ (A) = C \ (T, f_1, \dots, f_m, g) \quad \text{ and} \\ A \ \llbracket \frac{1}{2}, \frac{1}{p} \rrbracket \supseteq A' \ \llbracket \frac{1}{2}, \frac{1}{p} \rrbracket = C \ \llbracket \frac{1}{2}, \frac{1}{p}, T, f_1, \dots, f_m, f \rrbracket \supseteq C \ \llbracket \frac{1}{2}, T, P, f_1, \dots, f_m, g \rrbracket \ , \\ \text{the rings } A \ \llbracket \frac{1}{2}, \frac{1}{p} \rrbracket \quad \text{and } A' \ \llbracket \frac{1}{2}, \frac{1}{p} \rrbracket \quad \text{have the same field of fractions.} \end{array}$

Thus we can find Q<A', Q\$\forall 0\$, such that $A\left[\frac{1}{T}, \frac{1}{P}, \frac{1}{Q}\right] = A'\left[\frac{1}{T}, \frac{1}{P}, \frac{1}{Q}\right]$ If $Q' + \delta_1 Q'^{-1} + \dots + \delta_r = 0$ is an equation of $Q \in A'\left[\frac{1}{P}\right]$ over $B\left[\frac{1}{P}\right]$ with $\delta_r \neq 0$ and if in $B\left[\frac{1}{P}\right]$ we have $\delta_r = \frac{\delta'}{P'} + \frac{1}{T} + \frac{1}{T} = \frac{\delta'}{P} + \frac{1}{T} + \frac{1}{T} = \frac{1}{T} + \frac{1}{T}$

By changing P with P8' we may suppose that Q is invertible in $A'\left[\frac{1}{T},\frac{1}{P}\right]$. Then $A\left[\frac{1}{T},\frac{1}{P}\right] = A'\left[\frac{1}{T},\frac{1}{P}\right]$.

Let us denote $\underline{m}' = TA'$, the ideal generated by T in A'. It results $\widehat{A}_{\underline{m}} = \widehat{A}'_{\underline{m}'} - \mathbb{C}[T]$, and, next, $A_{\underline{m}} = A'_{\underline{m}'}$. Then $\mathbb{Q}(A) = \mathbb{Q}(A')$ we have $A[\frac{1}{P}] = A[\frac{1}{T}, \frac{1}{P}] \cap A_{\underline{m}} = A'[\frac{1}{T}, \frac{1}{P}] \cap A'_{\underline{m}'} = A'[\frac{1}{P}]$.

The ring $A[\frac{1}{P}] = A'[\frac{1}{P}]$ is finitely generated $B[\frac{1}{P}]$ - algebra. There are finitely many elements from $\{f,...,(Restf)_e,...\}_{e\geq 1}$ generating $A[\frac{1}{P}]$ over $B[\frac{1}{P}]$. Since in A, for all \$\frac{1}{2}\$0 we have the relations $(Restf)_e = [(Restf)_{e+1} + A_{e+1}]T$ with $A[\frac{1}{P}]$ and $A[\frac{1}{P}]$ has a generator of the form $(Restf)_e \in A$ over $B[\frac{1}{P}]$, for f sufficiently big.

Therefore we proved the following

LEMMA 2. Let $f_1, \dots, f_m, f_{m+1}, \dots, f_n \in C[[T]]$. Suppose that T_1, \dots, f_m are algebraically independent over C and \dots f_{m+1}, \dots, f_m are algebraic over the field $C(T_1, \dots, f_m)$. Denote $A = C[T_1, f_1, \dots, f_m, \dots, (Rest f_n)_{k_1}, \dots, f_{k_m}]$ and

 $B = C[T_i]_{i_1, \dots, i_m, \dots}$ (Restfine I have a subalgebras of C[T] generated by the indicated elements. Then A is finitely generated over B and there exists P&B, P&TB, such that $A[\frac{1}{P}]$ is generated as $B[\frac{1}{P}]$ -algebra by an element of A. The morphism $V = Spec A[\frac{1}{P}] \xrightarrow{W} W = Spec B[\frac{1}{P}]$ is unramified at the point x corresponding to the maximal ideal $TA[\frac{1}{P}]$.

Remark 4. As we have shown in the proof, P can be choosen such that π is quasifinite (more precisely, such that $V - \{x\} \longrightarrow W - \{\pi(x)\}$ is finite). Moreover, in Lemma 2 we may choose P such that π is étale, but we shall not use this fact in the following. \square

Concerning the above morphism $V \xrightarrow{\pi} W$ we may prove

LEMMA 3. In the situation and with notations given in Lemma 2, the morphism $V \xrightarrow{\pi} W$ induces a homeomorphism with respect to the fine topologies between a fine open neighbourhood of x in V and a fine open neighbourhood of $\pi(x)$ in W.

<u>Proof.</u> - Firstly, we shall show that the ring B in Lemma 2 is factorial. Indeed, $B \lceil \frac{1}{7} \rceil = C \lceil \frac{1}{7}, 7, \dots, 7_m \rceil$ is a ring of fractions of the polynomial ring $C \lceil 7, 7, \dots, 7_m \rceil$ and so it is factorial. Let pcB be a prime ideal of height one. If $p \neq n = TB$, then $p \neq B \lceil \frac{1}{7} \rceil$ is a prime ideal of height one in $B \lceil \frac{1}{7} \rceil$ and so there exists $P_i \in B$ such that $p \neq B \lceil \frac{1}{7} \rceil$ is gene-

rated by P_{a} . We may suppose that P_{a} is not divisible by T in C[T]. In fact, if $P_{a} = T^{\alpha}R$, where $\alpha > 0$ and $R \in C[T]$ is not divisible by T, then $R = \frac{P_{a}}{T^{\alpha}} \in Q(B) \cap C[T] = Q(B_{\underline{n}}) \cap \hat{B}_{\underline{n}} = B_{\underline{n}}$ and so $R \in B[\frac{1}{T}] \cap B_{\underline{n}} = B$. Then R is a generator of $P_{a} \in P_{a}$. Hence suppose that P_{a} not divisible by T in C[T]. If $P_{a} \in P_{a}$ then there exist $P_{a} \in B$ and $P_{a} > 0$ such that $T^{\beta}P_{a} = P_{a}P_{a}$. In C[T], $T^{\beta}P_{a} = P_{a}P_{a}$ and so $P_{a} \in C[T] \cap Q(B) = \hat{B}_{\underline{n}} \cap Q(B_{\underline{n}}) = B_{\underline{n}}$;

then $\frac{P_3}{T\beta} \in B_{\underline{n}} \cap B[\frac{1}{T}] = B$. Therefore p is generated by P_4 .

By Lemma 2, $\Gamma(V, \mathcal{O}_V)$ has a generator f as $\Gamma(W, \mathcal{O}_W)$ - algebra and $\Gamma(W, \mathcal{O}_W)$ is factorial, as a ring of fractions of B. The kernel p of the canonical homomorphism $A: \Gamma(W, \mathcal{O}_W)[X] \longrightarrow \Gamma(V, \mathcal{O}_V)$, defined by h(X)=f. is a prime ideal of height 1, because $\dim \Gamma(W, \mathcal{O}_W)=0$ = $\dim \Gamma(V, \mathcal{O}_V)$. Since $\Gamma(W, \mathcal{O}_W)[X]$ is factorial, p is generated by a polynomial $R \in \Gamma(W, \mathcal{O}_W)[X]$ and so $\Gamma(V, \mathcal{O}_V) = \Gamma(W, \mathcal{O}_W)/(R)$ Therefore $W:V \longrightarrow W$ is the morphism associated to a homomorphism of the type $\Gamma(W, \mathcal{O}_W) \longrightarrow \Gamma(W, \mathcal{O}_W)[X]/(R)$. Since W is unramified at X then the $\mathbb{C}_{\mathbb{C}}$ -vector space $\Gamma(W, \mathcal{O}_W)[X]/(R) \xrightarrow{\mathcal{O}_{\mathbb{C}}} \Gamma(W, \mathcal{O}_W)/R \Gamma(W, \mathcal{O}_W)$ is of dimension one. If $Y=\mathbb{T}(X)$ and $R(X)=a_{1}X^{k}+\dots+a_{n}X+a_{n}$ where $a_{1},\dots,a_{k}\in\Gamma(W, \mathcal{O}_W)$, this means that the equation in X $a_{1}(Y)X^{k}+\dots+a_{n}(Y)X+a_{n}(Y)=0$ has $f(X)\in \mathbb{C}$ as unique solution and with multiplicity one (where a_{1},\dots,a_{k} are considered as functions on $W_{\mathbb{C}}$).

Using the implicit function Theorem or the formula of residues for analytic functions, be an find ξ , $\xi > 0$ and a complex continuous function ξ of $\{k+1\}$ variables, defined in an open neighbourhood in \mathbb{C}^{k+1} of the point $(a_o(y), \dots, a_k(y)) \in \mathbb{C}^{k+1}$, such that for $w \in \mathbb{W}$, with $|a_i(w) - a_i(y)| < \xi$ for all $0 \le i \le k$, we have $|\xi(a_o(w), \dots, a_k(w)) - f(x)| < \xi$ and $|\xi(w)| \le (a_o(w), \dots, a_k(w)) + \dots + a_i(w)| \xi(a_o(w), \dots, a_k(w)) + \dots + a_i(w)| \xi(a_o(w), \dots, a_k(w)) + a_o(w) = 0$

In particular, $\frac{1}{3}(\alpha_{\omega}(\gamma), \dots, \alpha_{k}(\gamma)) = \frac{1}{3}(x)$. Via the above homomorphism h, V is the closed subscheme of the scheme W x Spec $\mathbb{C}[x]$ defined by the equation R(x)=0. Then $V_{\mathcal{C}}-\frac{1}{3}x^2$ is the closed algebraic subvariety of the variety $(W_{\mathcal{C}}-\frac{1}{3}y^2)\times\mathbb{C}$, defined also by R(x)=0, because x is the unique point of V lying over y, and so

 $\pi|_{V_{\mathcal{C}} = \{x\}} : V_{\mathcal{C}} = \{x\} \longrightarrow W_{\mathcal{C}} = \{y\}$ is the projection on $W_{\mathcal{C}} = \{y\}$. Of course, the natural inclusion of sets $V_{\mathcal{C}} \subseteq W_{\mathcal{C}} \times \mathbb{C}$ is defined by $\forall w \longrightarrow (\pi(v), f(v))$.

Let us denote $W_{\varepsilon} = \{w \in W_{c} | |a_{\varepsilon}(w) - a_{\varepsilon}(y)| < \delta$, for all $0 \le i \le k$ and $V_{\delta,\epsilon} = \{v \in V_{ce} \mid a_i(\pi(v)) - a_i(y) \mid < \delta, \mid f(v) - f(x) \mid < \epsilon, \text{ for all } 0 \leq i \leq k \}.$ Then W_{δ} and $V_{\delta,\epsilon}$ are fine open neighbourhoods of y and x and $\pi(V_{\xi,\epsilon}) \subseteq W_{\xi}$. We shall define the following map $9:W_{\xi} \longrightarrow V_{\xi,\epsilon}$ in the following manner: if $w \in W_{\delta} - \{y\}$, then Y(w) is the point of Va-{x'} & Wax & corresponding to (w, \(\alpha_o(w), \dots, \alpha_k(w) \) \(\in \text{W} \) (this point satisfies the equation R(X)=0) and P(y)=x. It is clear that π ?=1 $_{W_c}$ and we claim that ? is continuous. In fact, it suffices to prove that all functions corresponding to a set of generators of the C-algebra T(V, Ov) composed with ? are continuous $\mathbb C$ - valued functions on $\mathbb W_\delta$. Since f is a generator of the $\Gamma(\mathbb W,\mathbb O_{\mathbb W})$ --algebra T(V, O,) and all functions corresponding to $\Gamma(W, O_W) \subseteq \Gamma(V, O_V)$ are continuous, we must prove that f? is continuous. It is clear because $f(w) = 3(a_0(w), ..., a_k(w))$ for we De - {y}, (f ?)(y) = f(x) = { (a. (y), ---, a, (y)) \$, a, ..., ak are continuous.

If we take above $\ell, \delta > 0$ with the supplementary property that for any weW, such that $|\alpha_i(w) - \alpha_i(y)| \ell_i^2$, there exists a unique solution $\frac{3}{4}$ of the equation $\frac{3}{4} + \frac{1}{4} + \frac{$

Remark 5 - Using the structure Theorem for étale morphisms, one can prove that an étale morphism of finite type of noetherian C-schemes generically of finite type over C, is locally homeomorphism with respect to the fine topologies.

The last preparatory fact for the proof of proposition 2 is the following:

LEMMA 4. Let $i: X \hookrightarrow X^*$ be an open immersion of integral schemes over \mathbb{C} , where X is of finite type over \mathbb{C} and X^*-X is a closed 1-co-dimensional point X of X^* , such that $O_{X^*,X}$ is noetherian. Then the

normalization morphism $p: X^{*H} \longrightarrow X^{*}$ is a proper continuous map between $X^{*H}_{\mathcal{C}}$ and $X^{*}_{\mathcal{C}}$ with respect to the fine topologies, if $X^{*}_{\mathcal{C}}$ is locally compact.

Proof. If suffices to prove that for a Zariski open affine neighbourhood U of $x \in X^*$, $p \mid_{p^{-1}(U)} : p^{-1}(U) = U^H \longrightarrow U$ is a proper map between U_{cc}^H and U_{cc} with respect to the fine topologies (cf. [4], Ch.I, §10, Prop.3), since $X_{cc}^{*H} - p^{-1}(x) \longrightarrow X_{cc}^{*H} - \{x\}$ is proper.

Hence we may assume that X^* is affine and let us denote $A = \Gamma(X^*, \mathcal{O}_{X^*})$, $A^H = \Gamma(X^{*H}, \mathcal{O}_{X^{*H}})$ and $X^H = p^{-1}(X)$.

The fibers of p are finite since $\mathcal{O}_{X_{\circ,X}^*}$ is noetherian (of dimension one , cf. [3], Ch.VII, § 2, Cor..l). It suffices to prove that if $Z \subseteq X_{\circ,X}^{\times H}$ is a closed subset in the fine topology, then $p(z) \subseteq X_{\circ,X}^{\times H}$ is closed in the fine topology (cf. [4], Ch.I, §10,2,Th.1).

If $Z \cap p^{-1}(x) \neq \phi$, then $x \in p(Z)$ and $p(Z) - \{x\} = p(Z - p^{-1}(x))$ is closed in $X_{\mathcal{Q}}$, since $Z - p^{-1}(x)$ is closed in $X_{\mathcal{Q}}^{n}$ and $p|_{X_{\mathcal{Q}}^{n}}: X_{\mathcal{Q}}^{n} \longrightarrow X_{\mathcal{Q}}$ is closed with respect to the fine topologies, as finite morphism of complex algebraic varieties. Then p(Z) is closed in $X_{\mathcal{Q}}^{n} = X_{\mathcal{Q}} \cup \{\pm\}$ in the fine topology.

Suppose that $Z \cap p^{-1}(x) = \phi$. Let x_1, \dots, x_n be the points of X^{*N} lying over x. For every i, $1 \le i \le n$, there exists a finite subset $\{f_{i_1}, \dots, f_{i_n}\}$ of $\Gamma(X^{*N} \cap Q_{X^{*N}}) = A^N$ and $\mathcal{E}_i > 0$ such that $|f_{i_1}(x_i)| < \mathcal{E}_i, \dots, |f_{i_{n_i}}(x_i)| < \mathcal{E}_i$ and for every $z \in Z$, there exists j, $1 \le j \le n$; with $|f_{i_1}(x_i)| > \mathcal{E}_i$ (where f_{i_1} are considered as functions on X^{*N}), because $x_i \notin Z$. Replacing f_{i_1} by $\frac{1}{\mathcal{E}_i} f_{i_1}$ we may assume that $\mathcal{E}_i = 1$ for all i, $1 \le i \le n$.

Let A' = A[...,fij,...] let A' = A[...,fij,...] be the A-subalgebra of A^{H} generated by $\{fij\}_{1 \le i \le n, 1 \le j \le n_i}$. The inclusion

 $A^{n} \supseteq A' \supseteq A$ give a factorization of p, $X^{*N} \stackrel{!}{\longrightarrow} X' \stackrel{*}{=} Spec A' \stackrel{p'}{\longrightarrow} X'$, with q surjective and p' finite.

Then q(z) is closed in $X_{\alpha}^{\prime *}$. Indeed, for all i,j,l&i&n, l&j&n_i, f_{ij} are functions on $X_{\alpha}^{\prime *}$ and $|f_{ij}(z^{\circ})| < 1$, for all i,j, and all $z' \in q(p^{-1}(x))$; for any l&i&n and $z' \in q(Z)$, there exists j, l&j&n_i, such that $|f_{ij}(\pm')| > 1$. Therefore $q(p^{-1}(x)) = p'^{-1}(x)$ does not meet the closure q(Z) in $X_{\alpha}^{\prime *}$ in the fine topology. We have $q(Z) \in q(X^{n}) = p'^{-1}(x) = X'$ and q(Z) is closed in X'_{α} in the fine topology, because $q(X^{n}_{\alpha}: X^{n}_{\alpha} \longrightarrow X'_{\alpha}$ is a finite morphism of complex algebraic varieties. From these two properties of q(Z), it results that q(Z) is closed in $X_{\alpha}^{\prime *}$ in the fine topology.

that q(z) is closed in X''''_{ck} in the fine topology. Show that p' is a proper continuous map between X'''_{ck} and X''_{ck} . To prove that p(z) is closed X''_{ck} , we shall with respect to the fine topologies. Let $K \subseteq X''_{ck}$ be a compact subset. If $m = \sum_{i=1}^{n} n_i$, the generators $\{f_{i,j}\}_{1 \le i \le n_i} \{f_{i,j}\}_{1 \le i \le n_i} \{f_{i,j}$

$$1 = -\frac{\alpha_{mij-1}^{(ij)}(p'(\bar{z}))}{f_{ij}(\bar{z})} - \frac{\alpha_{o}^{(ij)}(p'(\bar{z}))}{f_{ij}^{mij}(\bar{z})}$$

Since all functions $a_k^{(ij)}$ are bounded on K, it follows from here that f_{ij} must be bounded on $p^{-1}(K)$. Hence there exists M>0 such that for all i,j, $1 \le i \le n$, $1 \le j \le n_i$ and all $3 \in p^{-1}(K)$, $|5i|(3)| \le M$ Denote $\overline{D}_H = \{ \frac{1}{2} | \frac{1}{2} \in C$, $|\frac{1}{2}| \le M \}$ Then the subset $f^{-1}(K) \subseteq X_{ik}^{(ij)} = M$

= $X_{CC}^* \times C_{is}^m$ is compact in the fine topology. Since X_{CC}^* is locally compact and $X_{CC}^{\prime*}$, being affine, is Hausdorff with respect to the fine topology, it follows that p' is a proper map between $X_{CC}^{\prime*}$ and $X_{CC}^{\prime*}$, by [4], Ch.I, §10,3, Prop.7.

Q.E.D.

Proof of Proposition 2. It is clear that i) is equivalent with ii). The assertion iii) is equivalent with iv), by [5], Theorem 3,1).

Since iv) \Rightarrow i), we shall prove ii) \Rightarrow iii).

If $p: X^{*H} \to X^*$ is the normalization morphism, for all points $x^n \in X^{*H}$ lying over x, $O_{X^{*H}, X^{*H}}$ is noetherian ring, by Krull-Akizuki Theorem. By Lemma 4, p is proper with respect to the fine topologies on X_{cc}^{*H} , X_{cc}^{*H} . Then by [4], Ch.I, §10,2, Prop.6, all $x^n \in X_{cc}^{*H}$ lying over x have compact neighbourhoods in the fine topology. By restricting X^{*H} to a Zariski open neighbourhood Y^* of a point X^{*H} lying over x, if we prove the assertion ii) \Rightarrow iii) for $y^* \cap p^{-1}(x) \longrightarrow Y^*$ and $y^* \in Y^*$, it follows dim $y^* = 1$ and so dim $y^* = 1$ (cf. [5], Lemma 1 a)).

Therefore we can suppose that X * is normal.

By Lemma 1, we may replace X^* by a Zariski open naighbour-hood of X in X^* and suppose that X^* = Spec $\mathbb{C}[T, f_1, \ldots, f_n]$ $(Rest f_k)_{\ell_1, \ldots, \ell_k \leq n, \ell_k$

By hypothesis x has a compact neighbourhood $U \in X_{cc}^{*}$ in the fine topology. The field of fractions of $\mathbb{C}[T,...,f;,...,(Restf_k)_{c,---}]$ is generated over \mathbb{C} by $\mathbb{T},f_1,...,f_m$ and we may assume that $T,f_1,...,f_m$ are algebraically independent over \mathbb{C} , and $f_{m+1},...,f_m$ are algebraic over the field $\mathbb{C}(T,f_1,...,f_m)$. Let us denote $Y^* = \operatorname{Spec} \mathbb{C}[T,f_1,...,f_m,...,(Restf_k)_{c,---}]_{i \in k \leq m}, l \geq 1$

 $Y=Y_T^*=Spec C[\frac{1}{T},T_1,\dots,f_m], y=Y^*-Y$ the point corresponding to the maximal ideal generated by T in $C[T,f_1,\dots,f_m,\dots,f_m,\dots,f_m]$ and $Y:X^*\longrightarrow Y^*$ the natural mop hism of schemes given by the inclusion of rings. It is clear that y=Y(x). Then, by Lemma 3, there exists a fine open neighbourhood of X in X^* which is homeomorphic with a fine open neighbourhood of Y in Y^* . Since $X \in X_C^*$ has a compact neighbourhood, then $Y \in Y_C^*$ has also a compact neighbourhood.

We shall prove that this fact is not possible if $m=\dim \Upsilon^*-\Lambda \geqslant \Lambda$. Indeed, the compact neighbourhood of y contains a neighbourhood of the type: y and all $\eta \in \Upsilon^*_{\mathcal{C}}$, $\eta \neq y$, satisfying some inequalities:

$$|f(\eta)| \leq \varepsilon$$

$$|f(\eta)| \leq \varepsilon$$

$$|f(\eta)| \leq \varepsilon$$

$$|f(\eta)| = |(\sum_{i=k+1}^{\infty} c_i^{(k)} - i - \epsilon)(\eta)| = |f_k(\eta) - \sum_{i=1}^{k} c_i^{(k)} + T(\eta)^i| \leq \varepsilon$$

$$|f(\eta)| \leq \varepsilon$$

where $\xi, \xi_j, \xi_{k\ell} > 0$ and j, k, l are finitely many indexes such that $1 \le j, k \le m$, $1 \ge 1$. (Of course, we considered T, f_j, $(\text{Rest} f_k)_{\ell} \in \Gamma(\times, 0_{\ell})$ as functions on X_{α}^{*}). If we put $(\text{Rest} f_k)_{\alpha} = f_k$, then for all $1 \ge 0$, we have $(\text{Rest} f_k)_{\ell} (\eta) = [(\text{Rest} f_k)_{\ell+1} (\eta) + c^{\binom{k}{2}},] T(\eta)$ Hence, by changing ξ , we may suppose that the compact neighbourhood of y contains a neighbourhood K of the type: y and all $\eta \in \Upsilon_{\alpha}^{*}$, $\eta \neq y$, satisfying some inequalities:

$$\begin{cases} |T(\eta)| \leq \varepsilon \\ |(Rest f_k)_{\ell}(\eta)| \leq \varepsilon_k & i \leq k \leq m, \ \ell_k \geq 1 \\ |(Rest f_k)_{\ell}(\eta)| \leq \varepsilon_k & i \leq k \leq m, \ \ell_k \geq 1 \end{cases}$$

where $\xi, \xi_k > 0$ and where for any k, $1 \le k \le m$, we have a unique

inequality $|(Restf_k)_{\ell_k}(\gamma)| \leq \epsilon_k$ (with $\ell_k \geq 1$). Since K is closed in the fine topology, it follows that K is compact.

Let $C \in Y^*$ be the Zariski closed subset given by the equations $f_k - \sum_{i=1}^k c_i^{(k)} T^i = 0$, likem. Since yet and y is a closed 1-codimensional point in $Y^*, \{y\}$ is an irreducible component of C. Then $C' = C - \{y\}$ is a Zarkiski closed subset of Y^* and so $C'_{\alpha} = \{ \gamma \in Y^*_{\alpha} \mid \gamma \neq y : f_k(\gamma) - \sum_{i=1}^k c_i^{(k)} T(\gamma)^i = 0 : for all k, likem \}$ is closed in Y^*_{α} in the fine topology. Since $C'_{\alpha} \in Y^*_{\alpha} - \{c\} = (S_{pec} \cap C_{q} \cap T_{q} \cap T_{q}$

Therefore m=0 and so dim X*=dim X=1.

Q.E.D.

§3. THE MAIN RESULT

To prove Theorem we need the following

Lemma 5. Let i: $X \hookrightarrow X^*$ be an open immersion of integral schemes over C, where X is of finite type over C and $X \in X_{C}^*$ such that $O_{X,X}$ is noetherian. Then the following assertions are equivalent:

- i) x has a Zariski open neighbourhood of finite type over C
- ii) if p:Y -> X* is a finite morphism of schemes such that
 Y is integral, generically of finite type ever C and contains closed l-codimensional points lying over x, then dim Y=1.

<u>Proof.</u> It is clear that i) \Rightarrow ii), by [5], Lemma 1. We will prove ii) \Rightarrow i) by induction on dim X. If dim X=1, then X is of finite type over C (cf.[5], Th.3.1)).

Suppose dim $X^*>1$ and let $\{x\}=Z_0-Z_1-Z_1-Z_1-X^*$ be a saturated chain of closed irreducible subsets. We have n>2, since, otherwise, n=1 and x is a closed 1-codimensional point of X; hence, by ii), dim $X^*=1$, which is a contradiction. By changing Z_{n-1} , we may suppose that $Z_{n-1}\cap X\neq \emptyset$. In fact, in the local noetherian ring $O_{X^*,Z_{n-2}}$ of the subscheme Z_{n-2} in X^* , we have a maximal chain of prime ideals m>p>0 corresponding to $Z_{n-2}\subset Z_{n-1}\subset X^*$. By a theorem of McAdam (see [12], prop.1),

we may find a maximal chain of prime ideals mop on such that p does not include the prime ideals of $C_{X_{n-2}}$ corresponding to (finitely many) irreductible components of X_{n-2} containing Z_{n-2} . Then we may change Z_{n-1} and replace it by the closed irreducible subscheme of X_{n-1} corresponding to p.

Therefore we can apply the induction hypothesis to Z_{n-1} (which contains the open C-subscheme of finite type $Z_{n-1} \cap X \neq \emptyset$), since $\dim Z_{n-1} < \dim X^*$ and Z_{n-1} has still the property ii) of X^* . Then X has a Zariski open neighbourhood Y in Z_{n-1} , of finite type over C. Then $\{x\} = Z_0 \cap V \subset Z_1 \cap V \subset \dots \subset Z_{n-1} \cap V = V$ is a saturated chain of closed irreducible subsets of Y and so Y and so Y and Y are considered as Y

If $Z \subset X^*$ is any closed integral subscheme, passing through X, we can find a maximal chain $\{x\} = Z_0 \subset Z_1 \subset \ldots \subset Z_n = X^*$ of closed irreducible subsets of X^* such that $Z = Z_k$ for certain k. Since $Q = \dim_{\mathbb{C}} A \setminus_{\mathbb{C}} K(Z_0) < \dim_{\mathbb{C}} A \setminus_{\mathbb{C}} K(Z_1) < \ldots < \dim_{\mathbb{C}} A \setminus_{\mathbb{C}} K(Z_n) = \dim_{\mathbb{C}} X^*$, where $K(Z_1)$ is the field of rational functions on the integral subscheme Z_1 , (see [5], proof of Lemma 1), we have $\dim_{\mathbb{C}} Z_1 = \dim_{\mathbb{C}} A \setminus_{\mathbb{C}} K(Z_1) = k$, since $\dim_{\mathbb{C}} Q_{2_{i+1}} Z_1 = \dim_{\mathbb{C}} Z_{i+1} = k$. Therefore the generic point $\chi_1 \in \mathbb{C} Z_1$ has the following properties: $\dim_{\mathbb{C}} Q_{2_{i+1}} Z_1 = k$ and $\dim_{\mathbb{C}} A \setminus_{\mathbb{C}} K(\chi_1) = k$, where $k(\chi_1) = k \in_{\mathbb{C}} K(\chi_1)$ is the residue field of $\chi_1 \in \mathbb{C}$. By [5], Remark 1, applied for $k \in_{\mathbb{C}} K(\chi_1) \in_{\mathbb{C}} K(\chi_1)$ is generically algebraic over \mathbb{C} . Hence by the induction hypothesis, $k \in_{\mathbb{C}} K(\chi_1) \in_{\mathbb{C}} K(\chi_1)$ is a ring essentially of finite type over \mathbb{C} . Thus Q_{χ_1,χ_2} is a ring essentially of finite type over \mathbb{C} .

It follows that for every prime ideal p, 0 + b c 0 x* x

was to her a

the ring $\mathcal{O}_{X_{,x}^*x/p}$ is essentially of finite type over \mathcal{C} , and so universally japanese. By a Lemma of Marot (see[11], Lemma 2), the integral closure of $\mathcal{O}_{X_{,x}^*}$ in its field of quotients is noetherian.

Therefore if $p: X^{*N} \longrightarrow X^*$ is the normalization morphism of X^* , then for all points $x^N \in X^{*N}$ lying over x, $O_{X^{*N}, x}$ is a noetherian ring. All points $x^N \in X^{*N}$ lying over x are closed in X^{*N} but not of codimension one, since, otherwise, using the fact that there exist finitely many $x^N \in X^{*N}$ lying over x, by a procedure one constructs an integral scheme Y, which is finite over X^* and dominating it, having closed 1-codimensional points lying over x; by ii), it follows that 1=dim Y=dim X^* , which contradicts the assumption dim X^* >1.

Let x H ∈ X H be a point lying over x and m=p op; o-- opk=0 a maximal chain of prime ideals of $\mathcal{O}_{X^{kN} | X^N}$. Then: k>21. Let us denote by $\{x\} = Z_0 \subset Z_1 \subset \ldots \subset Z_k = X^*H$ the corresponding maximal chain of closed irreducible subsets. Since $P|_{Z_{k-1}}: Z_{k-1} \longrightarrow P(Z_{k-1})$ is integral, $P(Z_{k-1}) \neq X^*$ and $K(Z_{k-1}) \supseteq K(p(Z_k))$ is a finite extension (by [14], Theorem 33.10), it follows that x^n has a Zariski open neighbourhood W in Z 1/4 , which is of finite type over C, because xep(Z 1 has this property. Then {x}=ZcnWcZnWc...cZk=nW=W is a maximal chain of closed irreducible subsets, of W, and so k-l=dim W=dim Z k-1 . Since Oxth Zk-1 is noetherian, by changing Z_{k-1} we may assume that $Z_{k-1} \cap p^{-1}(x) \neq \phi$ (in the same manner as above). Then dim $Z_{k-1} = \dim (Z_{k-1} \cap p^{-1}(x)) =$ = dim $p^{-1}(x) - 1 = dim Z_k - 1$, since $p^{-1}(x)$ is a C-scheme of finite type and codim X * M Zk-1=1 . Therefore k=dim X * M, and so dim OX* M x M = dim X*M Then, by [5], Lemma 4 , it follows that x^{n} has a Zariski open neighbourhood W x of finite type over C. Then $W = X^* - p(X^{*H} - \bigcup_{x^{H} \to x} W_{x^{H}})$ is a Zariski open neighbourhood of x, of finite type over C, since $p'(\widetilde{W}) \subseteq \bigcup_{X^{n} \to X} W_{X^{n}}$ and $p|_{p'(W)}: p'(\widetilde{W}) \to \widetilde{W}$

is finite.

Remark 6. Lemma 5 is true for an arbitrary base field.

Proof of Theorem Suppose that x has a compact neighbourhood K in the fine topology. By restriction X * to a Zariski open neighbourhood of x, we may assume that X * is affine. Let $p: Y^* \longrightarrow X^*$ be a finite morphism of schemes such that Y^* is integral, contains an open subscheme Y of finite type over C and a closed 1-codimensional point y lying over x. Then Y * is a closed subscheme of a scheme of the type X x Spec C [T,,--,Tn] ans so Y * is a closed topological subspace of X * * * , with respect to the fine topologies. Then $(K \times C^n) \cap Y_{ck}^*$ is a neighbourhood of y in Y α , and so there exists $\epsilon > 0$, such that $(K \times \overline{D}_{\epsilon}) \cap Y_{cl}^*$ is still a neighbourhood of y in Y_{cl}^* in the fine topology, where $\overline{D}_{\varepsilon} = \{ \xi \in \mathbb{C} \mid |\xi| \in \varepsilon \}$; moreover, it is compact. It is clear that $\mathcal{O}_{X_{X_{X}}^{*}}$ is noetherian, since $\mathcal{O}_{X_{X_{X}}^{*}}$ is noetherian and Y is of finite type over X. Since y is a closed 1-codimensional point of Y*, then {y} is an irreducible component of Y*- Y. If Z is the union of all components of Y*- Y different from {y}, and Y' = Y - Z , then Y is an open subscheme of Y' of finite type over C and $Y'^*-Y=\{y\}$, where y is still a closed point of codimensional one in Y 1%. Applying Proposition 2 to the open immersion Y Cy Y 1, it follows dim Y' = 1. Since Y' is an open subscheme of Y', we have dim Y=dim Y.*=1 by[5], Lemma 1. From Lemma 5 it results that x has a Zariski open neighbourhood of finite type over © .

Corollary 3 - Let $f:X \to Y$ be a dominant morphism of schemes over \mathbb{C} , where X is of finite type over \mathbb{C} , Y is reduced and $\bigvee_{i \in A} \mathbb{C}$ is a closed point such that $\bigvee_{i \in A} \mathbb{C}$ is noetherian. Then Y has a Zariski open neighbourhood of finite type over \mathbb{C} ifff Y has a compact neighbourhood in the fine topology.

COROLLARY 4. Let f:X -> Y be a dominant morphism of schemes

over C, where X is of finite type over C and Y is noetherian.

Then Y is of finite type over C iff the fine topology of Y is locally compact.

We left to the reader to establish these consequences of the Theorem , using the fact that a C-scheme dominated by a C -scheme of finite type is generically of finite type (cf.[5], Lemma 5). From Corollary 4 results easy the following

Corollary 5. A noetherian subalgebra A of a C - algebra of finite type is of finite type iff the Gel'fand topology on the set of all maximal ideals of A is locally compact.

REFERENCES

- 1. Bănică C., Stănăşilă, O., Algebraic Methods in the Global Theory of Complex Spaces, Ed.Academiei, Bucharest-London-New-York, John Willey, (1976).
- 2. Brezuleanu A., Radu, N., Lectures on algebra, Tip.Univ.Bucharest (1977).
- 3. Bourbaki, N., Algèbre commutative, Herman, Paris, (1961-1965).
- 4. Bourbaki, N., Topologie générale, Quatrième Edition, Herman, Paris, (1965).
- 5. Constantinescu, A., Open embeddings of algebraic varieties in schemes and applications (Revised version), Preprint Series in Mathematics, INCREST, Bucharest, No.30(1979).
- 6. Constantinescu A., Proper morphisms on noetherian schemes,
 Preprint Series in Math., INCREST, Bucharest No.29(1979)
- 7. Constantinescu, A., Some remarks on proper morphisms of schemes,
 I, Rev.Roum.Math.Pure et Appl., T.XXV, No.7, (1980),
 p.1003-1018.
- 8. Constantinescu, A., Schemes dominated by algebraic varieties, to appear.
- 9. Grethendiekk A., Dieudonné J., Eléments de Géometrie Algébrique, Publ. Math. de l'I.H.E.S., I-IV, (1960-1967).
- 10. Goodman J.E., Landman A., Varieties Proper over Affine Schemes, Inv. Math., vol.20, Fasc.4(1973), p.267-312.
- 11. Marot, J., Sur les anneaux universellement japonais, C.R. Acad.Paris, T.277, Série A(1973), p.1029-1031.
- 12. McAdam, St., Saturated chains in noetherian rings, Indiana Univ. Math. J. 23(1973/1974), p.719-728.
- 13. Mumford D., Algebraic Geometry I, Complex projective Varieties,
 Gundlehren der math. Wiss. 221, Springer-Verlag, Berlin,

Heidelberg, New York, (1976).

- 14. Nagata, M., Local rings, John Wiley, New York (1962).
- 15. Ohi T., A remark on "Nullstelensatz" of varieties, TRU Math.
 12, No.2(1976), p.5-6.
- 16. Ratliff Jr., L.J., On quasi-unmixed local rings, the altitude formula and the chain condition for prime ideals, I, Ann.J.Math.91(1969), p.509-528.
- 17. Serre J.P., Algèbre locale, Multiplicités, Lect.Notes, Vol.11, 2-ième ed.(1965).