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1, INTRODUCTION

In this paper we axtend the notién of topolegical degree
.introduced by Ship-Fah Wong in such a way that it can be applied
szapproximation schenies on non-separable topologicai spaces, For
the“éake of simplicity we don’t build the whole background analo=
gous to that which is-usad in the study of A-proper mappings, but
only survey the fesults fror the theory of mappings defined betweéﬁ-
the spaces of a dual pair, Inﬂthis case our degr=e theory is suited
for a class of mappings'wﬁich includes the fa-continuous closed nap-
pings, and therefore, the alrgady.studied, from this point of view,
A-proper mappings, Besides the crucial properties, which are the
existeﬁce theorem for ron-zeio aegree, the additivity on the domain
and the invariance under suitable homotopieé, some continuity re-
sults are cbtained, Moreover a few interesting applications are

 proved.
2, PRELIMINARIES

Let [F be a non-empﬁy directed set«with'respect to a rela=

tion é . For each E &€ [F the set -+
F (& ={F6F IE éFj

will be called the section of E: relative to the element E, The set



8 (F) of the sections of [F , which s a filter base, generates a

filter ?;J(:'F) , called the section filter of the directed set F,
Let ZBT be the ring of éll (generalized) sequences of

integers with coordinatewise addition and multiplication, Let the

F
relation ©~ on Z be defined in the following way:

3

%96’}%5: P {(ﬁfwﬂ: whenever gFG_ Fs LA 2 } € OCE\J(LF) et

As this equivalence relation is compatible with the ring structure
of ZE , the guotient set%Z-:Zg:W with the induced operations
is a ring, It contains thes subring of classes of constant sequences
which is isomorphic to Z, which will be, from aow on, identified
in this way,
A stbsst [E of F is said to be a cofinal of IF if

EQFE) =@ for any E€[F, Clearly, [E is also a non-empty dirscted
set with respac£ 'to . The set %({F) of the cofinals of = has

the following properties.

(1) @V(F) & %(F> ~and e (g(ﬁ’“)
R E, Ezé g@‘:‘) then E4 UEZG g(@f) '
@iy 1t BEE,CF ana EE€BE) e EECE)

(iv) IEE.(@(F) if and only if (E:\E)?f \(7;8)(5’:,\’ -

3, THE TOPOLOGICAL DEGREE

Let <X,Y> be a dual pair of two linear spaces, On X there, .
is a locally convex and separated topology, qompatible with the
duality, and on Y the weak topology (T"’(Y,X) .

Let D be an open bounded subset of X, Aa mapping g:D ~—>Y
and a homotopy G:“SXYO,l—:} —> Yy, where D is the closure of U and D
will denote the boundary of Q fine Xy

Let [ be the non~-empty directed set (with respect to the

inclusion € ) of the finite-dimensional sub-spaces F of X.:Let de-
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note with 3F the canonical injection of F in X, with j;f it’s adjoint
. from Y on F¥ (the dual of F), with g;=j?ogajF:Fﬂf5-—%F and with

Gsz;cG(jF(') , ) (FND) x[0,1) —>F, As <F,F%> is also a dual pair and
the only locally convex and separated topology on F is the Euclidean

one, we shall idantify F* with F, from now on.

Definition 1, a) The mapping .g is called fa-continuous if

%Fe F \ qI‘ is continuousj@ E\{/:(L‘F) %

b) Let A be a subset of D and yeY; the mapping
; . . )
i = ! i ¢ impli fe 4T A FEHF
g is called solvable for (9,20 4if Y€9 (A) implies %Fe:.t[gﬂ!f%f}p( M‘)f J(zf)

Rémark L. If A,BcD, yeY and g is solvable for (y ;B and
(y,B) thzn it is solvable for (y,AUB). If A.gl%)ygfg(a) and g is sol-

vable for (y,B) then g is solvable for (y,A).

Deftnition 2, a) The homotopy G is called fa-continuous

o
iflrelF l Gp is continuous} & cf*(ﬂ:).
b) Let A be a subset of D and ye€Y; the homo-
topy G is called solvable for (y,A) if y%G (ax[0,1] ) implies
L5
= % (, 9

re | i g¢ G (Faxle 1) e FF).

; O g

Remark 2> (F) is not an ultrafilter, since e OL(F)
but neither the subset of spaces of even dimension nor the subset

of spaces of odd dimension belongs to FAE) ,

Dafinttion 3. Let ye¥ng(D); let g be fa-continuous and sol-

vable for (y,f)). Then {Fe?lj§y¢g}:. (FND) and Ip ,c:ontin@éusféf;?d@ﬁ)

SRR
A\ b
{

e g:

- _,\
and hence the sequence gdeg (gps FAD, jg Yy (where deg (-, ")
i S R
denotes the Brouwer degree) determines an element ol Z. which

we call the degree of g on D in y, denoted by Deg iy Do) e



Remarlc S L NeD, yey and g is solyable for ily,A) then
£:D —»Y defined by f(x)=q(x)-y is solvable for (0,0) if @iic

fa-continuous then f is fa-continuous; hence if y and g are like

in Definition 3 then Deg(g,D,y)=Deg(f,D,0).

Theorem 1. Let y{:.Y\g(ﬁ); let g be fa-continuous and selva-

Yiblic Eor (y,fi) and (y,D). If Degl(g,D,y)#0 then (3) xeD such that

g(x)=y.

Proof. If Deqg(g,D,y)#0 then

O

% & (F)

N L

13

)

\’ ;i Gk
JEer l deg(g,, FAD, Jpy)=0

" & i Py

isand from (iv) é’ 2 %F [F‘ deg(qﬁ, FND%; jkv)#O} e %‘;?(F)

Erom: (iid) §2 follows gFt!F* 'Pyeq (F‘/)D)jé Sff(f‘ . We . prove
now the assertion by a reductio ad absurdum.

Suppose ygéq(D); then from 'the solvability of g for (v, B)

and (iv) %2 we get %Fé £Fl j?yégF(F/l.D)?‘?ﬁg(F); contradictien.

Theorem 2. Let D=D1L) D, where Dy D2 are two disjoint oven
bounded sets in X, yGiY\S"(]Blu ]52) < If o is farecantinuols: and sols

vable for (y,f)l) and (y,132) then Deg(g,D,y)=De'g(g,Dl,y)'rDe'g(g,Dz,y).

Proeof. Clearly y%f(ﬁl) v%’f (D ,) and from Remark 1.g is

solvable for (y,f)lu 152) . Then the three degrees are defined and
the theorem follow from the sum formula of the finite—dimensional

case:.

Theorem 3. Let y(:Y\G(ﬁx‘E_O,l]); Let G be fa-continuous and

solvable for (y,IS). Then DeglG (. ,t),;D,yv) is independent of .



Proo:. It follews direetly from the Definition 2 and. the

analogous property of the Brouwer degree.

Theorem 4. Let B be another open bounded set of X and y&Y

such that q”l(y)QfBg;D. Let g be fa-continueus and solvable for
(y,D) and (y,X\B). Then Deg(g,B,y)=Deg(q,D,y).

Ereoof . ‘Cleakly y(fq(B and ygﬁg(ﬁ); then taking in account

the Remark 1 the two degrees are defined. Hence we have only to
' [ e e 2-C : - e
prove that F& [ \gF (ij)g;F{lB?k;v%F), Suppoesing that it is net

true, ve get dreflay! G d rapfe €, that s rEJLmv} G A
N (F\B) #¢Z( ‘f/ F). Following 111) %2 SF« {1 VC qF(F‘\B); (F)
as it imcludes B and finad 1l é]%ﬂlj V¢ g V!X(X\B))a V\? which
F I Qq

ic. in cenbradietion with yyfg(X\\B) as g is solvable iox (y;X*wB).

Theorem 5. Let 0&D, D symmetric about 0 ., OeY‘\q(ﬁ),

where g is fa-continuous and solvable ‘for (O,b).
¢, ‘ ® T ‘
e %FG,F ’gp is odd on FAD¢ € J(F) then Deglag,D,0) is

Yedadll, s iEhat el s

{FQ.F

and in particular Deg(g,D,0)#0 so that 0&g(D).

= 0 :
deg(gF,F(\D,O) is odd) é:Siafw -

Proof. It is a straight consequence of the definitions

aind of the Borsuk theorem in‘the finite dimensional case.

; “3\ A . i :
Lemma 1. Let % g }f},k ( A\ a directed set with £ )
LV, e g

be a family



- 6 =
. K Ay ~ & §< é\" '%\\!
of faacontmuous mappings from D to Y, If Bup &, %2
is convergent to zero (¥)x&X, then
IR st [ aGLa0 o0 Whkeiie B
2€F0D e 2
Proof. We shall also prove this assertion by a reductio ad

ERTRL AT

absurdum, It follows that (3)156%?(5”55) such that

e : v o g g
NMiFele 3) =-¢€F with p°“,;;§. ("( S %,,-:)1 /;"*i o
-y ZEF N, L &

Hence '(\E‘{;C'ﬁ >0 ang Apé%/(iﬁ\) such that for any de n

v | 2 3« & 5 5 (S‘ ] 3
gz(-;/;:ﬁ 3 < Q’F(g}b 35;'}} % > Cw « As g, is uniformly
continuous on EAD, (Flded_ (3 Z € FAD fbr* which

el 3
§[< ch (“"35”) 5 %,: >§ } C ; together with

o o cr &
<@c~&~w:>~< ‘“gav,f};m,> <sfey x>
it implies w/ |< >] 746 which 1s 4in contradiction with

2¢ _

th»’* hypothvsis .

THESLEN 6. Let yeY\g(D); Let g he fa~continous and solvable

@ ¢ ) 3
for (y.D): Let ¥ }‘”‘A ke a family of fa-continuous mappings, whicih
ALY 5
is uniformly convergent to g. Then (Q)J;é.él such that &) é;ff};

9 is (y,D)-solvable and Deg (3,D,y)=Deg o8 )

Proof, Let’s notice that the family %ge “g;d’e/:x

the conditions of Lemma 1, Thus

s p) N
frerl g <fomgo, |z o Wrer e §),
2EFOND
.l.t follows from the continuity property of the PBrouwer degree
deg(+,FO0D, ij) with respect to the unlform topology of the space

of continuous mappings C(F(‘)D,F) that (J) uct?/ﬁ such that

() g bo we have

e | . J S 2 ‘A,. R i 6\'/ A
FEF | 4 nd g (rad) [ SLF)

{Which. dis.in. fact more than the (y,f))-solvabili.ty of g(S

N4

o~

i

e 2
and { FeF | dea ( gf Fp )= deg (g, Fan, 45) j €
# i

which completes the proof,

I () )



4, CLOSED MAPPINGS

In this section we start with some Lemmas which will prove
that the general degree theory Jdevelopped in %3 is sulited for the

class of fa—-continuous closed mappings.

Lemma 2, If A¢D, yeY\g(p) and IE - %IT! { ? f}(?”A)}m(viéﬁﬂ

then ye€lg(a))’,

gigggg Let x€X and.Eééﬁf with E®x. Then for any F
with FEf we have
<<:f(3z) ff’ \; <§(3‘u)~': ,;?t <4 D‘ﬁ(%;.—) 'f‘J-' / = O
for somes special choices of xFﬂFﬂA,-That is g(xF)*~l>y and as
glxp)fy the result follows,

WS RN AN

DEmma 3 Let g be closed, Then o is solvable for (Y,8)

W&mem

(V)y@Y and (%)A closed subset of T,

Prodf. Let yeYig(A) and suppose
i el e & N ) : . .
SL'FG, }?~‘; ij;&ffff{? (Fa4) j 5,1 \%(//}w) + Uging (w)§3 we notice
that wec are in the conditions of Lemma 2:then yél(g(@))’, As g is

closed it results that yeg (A); contradiction,

Leémma 4, Let g be closed, Then g is solvable for (y,A),

Wv"uwym

(V)yéY\g(A) and (V) A open subset of s

Proof, Let y&Yig(A); then yeY\g () and the result follow

PRI

using Lemma 3 and Remark 1.

Lemia >5, If the homotopy G has the following properties:



]
w ) -

1% G(-,t) s closed (¥ teo,i]

(o]

2° G(x,') is uniformly continuous (¥) xeA

then G is (y,A)-solvable (¥) yeY and (#)A closed in D,

L

that (Hne N En ~—ir€aﬂ' e (G fmw,,,)j € GOF)

£,+2)0[0,1], That is (Nt e[o,1] such that

I’y‘oof Let yeYA\G( Ax[() 1]) ¢« Suppose that :})t(% }"o lK'I\ such

where V = (t -

ot “o'n
(f) neiN (I IE, %(F) with the property:

(’V'} et U0 (.%g) ‘Z;; 5 e (F /}‘A X for which
O‘; 5{ — L Eak T = é{:’:@ G«( ek ) « From 2° follows that
#Hxex (Paed and ) €> 0, (e, x)€ N such that for any
n,}N (&, x) we have ;
I<QrCai)~‘~fa”f)aﬁi’>l <& o) Te Y,
Particularly ("F)n}N(&?,x) and (V)F& (En we have
[<eE ) ez a) »>| €<£ | i pene
with E3x; then fo.r (Y)Fe E-ﬁ with‘FQE it follows: '
Ly, an = Sa-e 6 ) *j;%f?'?ﬂ
= | < grydleta,t, fef> = 1< greelar g5 66 2), >
= | GG -G08 L), 42> [=< 662 Y ~Cl2), t,f,-, o

[=

T

Then y€&(G (A,to))f, As A is-~elosed and G(*,t ) is closed it results
vEG (2, ) . But this is not true, Hence (}) t<—\0 1j (v, a

neighbourhood of t open in rO lj such that

E, = e | £29¢ & (Gamx ) § € F(E

As the family ivtf tdo ﬂ is an open covering of LO l:f we can
e;;tract a finits subcovering % Vf [l s, "j Then
= = O e = T
L{i LLQ & 3 te lF‘ ,} G € S C(f nA)x Yo, *l) j
. .
and SV}“\G‘) is filter it results that G is (y,A)-selvable,
We finish. this section with two interesting applications
Théorem 7, Let y,,y, be two points of the same component

(L.e. a maximal linear connected open subset) of the open subset .

Y\g(ﬁ), where g is a fa-continuous and clesed,



.,,.gm’

Then Deg (g,D,y;)=Deg (g,D,y,) .

£§£§£° We define the hometopy H(x,t)=g(x) i}ji {d=at) y.]
which clearly satisfy the conditions of Lemma 5, Then H is solvable
for (OFB)Q As O€Y\H(ﬁXEO,L}) and H is'fawccﬁtinuous it follows from
Theerem: Jthatibegi(Hi( ., t),D,0) is independent of £, Particularly,

Deg(H(»,l)fD,O)mD&g(H(~,O)pD,O) and the theorem is proved taking

in account Remark 3,

ThHeorem "8 (Schauder), Let X be a Hilbert space, D “ZA%A’VA i?

J

If g:D=D is a weakly-continuous mapping then g has a fixed point

fne D
Proof, We cah suppose that g (x)#x (&ﬁxgﬁc If we definé,
H(x,t)=x~tg (x) () (x,t)éff;a{o 1] then for xeD :-{yu{ Wikl = 7 we

heve MHix, 1) =fx-g@) #0 ana (¥ teo,1) Jue,u)f >

o

}Lx -t Ilg(x)|» 1-t>0; hence 011 (Dx[0,1]). Clearly H is fa-continuous,

then in order to apply Theorem 2 we have to prove that H is solvakle

flor: (0,1) . Weushall, treat separately the cases té{p,l) and t=1,
Suppose that (3) t@{p 1) such that §m~:rf:;’ ﬁ"‘();ZﬁH?("pm Z )7 &(ﬁq

that 4= (1) Ee s "/M*) such that (¥) Fe& B (3)Xﬁ$?ﬂ§ with

K
IRp¥RTty

0= <J}_(%f %9, %= “}-k"“/<§](t,) S>> 1-17

contradiction, Now, suppose that (3) EEQ/(((”‘)auch that (Yre ik

5F(XF)‘ It fellews

(E)x €FOD with j; Xp=gp (Xp) . Let xeX and E€ [F with Edx, Then
WiFe E with FaE: < % -9(x%), J(} =< *(e=gGer)), %

hence xF-—g(XF)FUF 0 As .%%;? g;' and D is weakly compact

(3)x§§5 and )l B e %5\é5} such that ¢ Fe & ;> T, .Taking

in account the weak continuity of g it follows g (e J=x ; contradiecs
tion, Then from Theorem 3 it results Deg((H(',1),D,0)=Deg(H (" anQ]
=Deg(IX,D,O)*=—'l',#O as E Fé' fﬁxg I Fﬁbﬂ,f)) = i f & 5’:(17:) o

Because we can prove that H(:,1) is solvable for (0,D) exactly as



=l -

for the pair (OEB), from Theorem 1 results that (3)x€D such that

H(x,1)=0; contradiction,
REE R R R N @ e
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