INSTITUTUL DE **MATEMATICA** INSTITUTUL NATIONAL PENTRU CREATIE STIINTIFICA SI TEHNICA

09.09. 1982 - Brewesti Ablisasilia

ISSN 0250 3638

TOPOLOGICAL DEGREE FOR SOLVABLE MAPPINGS

by

Dan POLIŠEVSKI

PREPRINT SERIES IN MATHEMATICS

No.60/1982

BUCURESTI

May 18783

TOPOLOGICAL DEGREE FOR SOLVABLE MAPPINGS

by
Dan POLIŠEVSKI

September 1982

^{*)}The National Institute for Scientific and Technical Creation,
Department of Mathematics, Bd. Facii 220, 79622 Bucharest, Romania

TOPOLOGICAL DEGREE FOR SOLVABLE MAPPINGS

by

Dan POLIŠEVSKI

Department of Mathematics, INCREST, Bucharest

1. INTRODUCTION

In this paper we extend the notion of topological degree introduced by Ship-Fah Wong in such a way that it can be applied to approximation schemes on non-separable topological spaces. For the sake of simplicity we don't build the whole background analogous to that which is used in the study of A-proper mappings, but only survey the results from the theory of mappings defined between the spaces of a dual pair. In this case our degree theory is suited for a class of mappings which includes the fa-continuous closed mappings, and therefore, the already studied, from this point of view, A-proper mappings. Besides the crucial properties, which are the existence theorem for ron-zero degree, the additivity on the domain and the invariance under suitable homotopies, some continuity results are obtained. Moreover a few interesting applications are proved.

2. PRELIMINARIES

Let F be a non-empty directed set with respect to a relation & . For each E & F the set

$$\mathbb{F}(E) = \left\{ F \in \mathbb{F} \middle| E \leqslant F \right\}$$

will be called the section of F relative to the element E. The set

S(F) of the sections of F, which is a filter base, generates a filter F(F), called the section filter of the directed set F.

Let \mathbb{Z}^F be the ring of all (generalized) sequences of integers with coordinatewise addition and multiplication. Let the relation \sim on \mathbb{Z}^F be defined in the following way:

$$\{\chi_{\vec{f}}\}_{\vec{f}\in \vec{F}} \sim \{\chi_{\vec{f}}\}_{\vec{f}\in \vec{F}} \text{ whenever } \{F\in F\mid \chi_{\vec{f}}=\chi_{\vec{f}}\}\in \mathcal{F}(F)$$

As this equivalence relation is compatible with the ring structure of \mathbb{Z}^F , the quotient set $\mathbb{Z}=\mathbb{Z}_{\infty}^F$ with the induced operations is a ring. It contains the subring of classes of constant sequences which is isomorphic to \mathbb{Z} , which will be, from now on, identified in this way.

A subset $\mathbb E$ of $\mathbb F$ is said to be a cofinal of $\mathbb F$ if $\mathbb E\cap\mathbb F(E)\neq \phi$ for any $E\in\mathbb F$. Clearly, $\mathbb E$ is also a non-empty directed set with respect to \leqslant . The set $\mathscr E(\mathbb F)$ of the cofinals of $\mathbb F$ has the following properties.

(i)
$$\Im(F) \subseteq \mathcal{C}(F)$$
 and $F \in \mathcal{C}(F)$

(ii) if
$$E_1, E_2 \in \mathcal{C}(F)$$
 then $E_1 \cup E_2 \in \mathcal{C}(F)$

(iii) if
$$E_1 \subseteq E_2 \subseteq F$$
 and $E_4 \in \mathcal{C}(F)$ then $E_2 \in \mathcal{C}(F)$

3. THE TOPOLOGICAL DEGREE

Let $\langle X,Y \rangle$ be a dual pair of two linear spaces. On X there is a locally convex and separated topology, compatible with the duality, and on Y the weak topology $\mathcal{C}(Y,X)$.

Let D be an open bounded subset of X, a mapping $g:\overline{D} \longrightarrow Y$ and a homotopy $G:\overline{D} \times [0,1] \longrightarrow Y$, where \overline{D} is the closure of D and \overline{D} will denote the boundary of D in X.

Let F be the non-empty directed set (with respect to the inclusion \subseteq) of the finite-dimensional sub-spaces F of X. Let de-

note with j_F the canonical injection of F in X, with j_F^* it's adjoint from Y on F* (the dual of F), with $g_F^*=j_F^*\circ g_{\circ}j_F:F\cap\overline{D} \longrightarrow F$ and with $G_F=j_F^*\circ G(j_F(\cdot),\cdot):(F\cap\overline{D})\times[0,1] \longrightarrow F$. As $\langle F,F^*\rangle$ is also a dual pair and the only locally convex and separated topology on F is the Euclidean one, we shall identify F* with F, from now on.

Definition 1. a) The mapping g is called fa-continuous if $\{ \text{Fe} | F | g_F \text{ is continuous} \} \in \mathcal{F}(F) \, .$

b) Let A be a subset of \overline{D} and yeY; the mapping g is called solvable for (y,A) if $y\notin g(A)$ implies $\{F\in F\mid j_F^*y\notin g(F\cap A)\}\in \widehat{F}(F)$.

Remark T. If A, BCD, yeY and g is solvable for (y,A) and (y,B) then it is solvable for (y,AUB). If ACB, yeg(8) and g is solvable for (y,B) then g is solvable for (y,A).

Definition 2. a) The homotopy G is called fa-continuous if $\{F \in \mathbb{F} \mid G_F \text{ is continuous }\} \in \mathcal{F}(F)$.

b) Let A be a subset of \overline{D} and yeY; the homotopy G is called solvable for (y,A) if $y \notin G(A \times [0,1])$ implies $\{F \in F \mid j_F^* y \notin G_F(F \cap A) \times [0,1]\} \in \mathcal{F}(F)$.

Remark 2. $\mathcal{F}(F)$ is not an ultrafilter, since $F \in \mathcal{F}(F)$ but neither the subset of spaces of even dimension nor the subset of spaces of odd dimension belongs to $\mathcal{F}(F)$.

Definition 3. Let $y \in Y \setminus g(\mathring{D})$; let g be fa-continuous and solvable for (y,\mathring{D}) . Then $\{F \in F|j_F^* y \notin g_F(F \cap \mathring{D}) \text{ and } g_F \text{ continuous }\} \in \mathcal{F}(F)$ and hence the sequence $\{\deg (g_F, F \cap \mathring{D}, j_F^* y)\}_{F \in F}$ (where $\deg (\cdot, \cdot, \cdot)$ denotes the Brouwer degree) determines an element of $^*\mathbb{Z}$ which we call the degree of g on D in y, denoted by $D \in g(g, D, y)$.

Remark 3. If $A \subseteq D$, $y \in Y$ and g is solvable for (y,A) then $f:D \to Y$ defined by f(x)=q(x)-y is solvable for (0,A); if g is fa-continuous then f is fa-continuous; hence if y and g are like in Definition 3 then Deg(g,D,y)=Deg(f,D,0).

Theorem 1. Let yeY $g(\mathring{D})$; let g be fa-continuous and solvable for (y,\mathring{D}) and (y,D). If $Deg(g,D,y)\neq 0$ then (\exists) xeD such that g(x)=y.

Proof. If $Deg(g,D,y)\neq 0$ then

$$\left\{ F \in F \mid \deg(q_F, FnD, j_{FY}^*) = 0 \right\} \notin \mathcal{H}(F)$$

and from (iv) § 2 $\left\{ \text{FeIF} \middle| \text{deg}(g_F, \text{FND}, j_F^*v) \neq 0 \right\} \in \mathcal{C}(F)$.

From (iii) § 2 follows $\{F \in F \mid j_F^* y \in g_F(F/D)\} \in \mathcal{C}(F)$. We prove now the assertion by a reductio ad absurdum.

Suppose $y \notin g(D)$; then from the solvability of g for (y,D) and $(iv) \S 2$ we get $\Big\{ F \in F \ \big| \ j_F^* y \in g_F(F \cap D) \Big\} \notin \mathcal{E}(F)$; contradiction.

Theorem 2. Let $D=D_1$ t) D_2 where D_1 , D_2 are two disjoint open bounded sets in X, $y \in Y \setminus g(\mathring{D}_1 \cup \mathring{D}_2)$. If g is fa-continuous and solvable for (y,\mathring{D}_1) and (y,\mathring{D}_2) then $Deg(g,D,y)=Deg(g,D_1,y)$, $Deg(g,D_2,y)$.

<u>Proof.</u> Clearly $y \notin f(\mathring{D}_1)$, $y \notin f(\mathring{D}_2)$ and from Remark 1 g is solvable for $(y,\mathring{D}_1 \cup \mathring{D}_2)$. Then the three degrees are defined and the theorem follow from the sum formula of the finite-dimensional case.

Theorem 3. Let $y \in Y \setminus G(\mathring{D}x[0,1])$; Let G be fa-continuous and solvable for (y,\mathring{D}) . Then Deg(G(.,t),D,y) is independent of t.

Proof. It follows directly from the Definition 2 and the analogous property of the Brouwer degree.

Theorem 4. Let B be another open bounded set of X and $y \in Y$ such that $g^{-1}(y) \subseteq B \subseteq D$. Let g be fa-continuous and solvable for (y,D) and $(y,X \setminus B)$. Then Deg(g,B,y)=Deg(g,D,y).

Proof. Clearly $y \notin g(\mathring{B})$ and $y \notin g(\mathring{D})$; then taking in account the Remark 1 the two degrees are defined. Hence we have only to prove that $\left\{F \notin \mathbb{F} \middle| g_F^{-1}(j_F^*y) \subseteq F \cap B\right\} \in \mathcal{F}(F)$. Supposing that it is not true, we get $\left\{F \in \mathbb{F} \middle| g_F^{-1}(j_F^*y) \not\subseteq F \cap B\right\} \in \mathcal{E}(F)$, that is $\mathbb{E} = \left\{F \in \mathbb{F} \middle| g_F^{-1}(j_F^*y) \cap \bigcap_{F \in \mathbb{F}} f_F^*y \in g_F^*(F) \cap F^*y \cap G_F^*y \neq g_F^*(F) \cap F^*y \cap G_F^*y \neq g_F^*(F) \cap F^*y \cap G_F^*y \neq g_F^*(F) \cap F^*y \cap G_F^*y \cap G_F^*y$

Theorem 5. Let $0 \in D$, D symmetric about 0 , $0 \in Y \setminus \sigma(\mathring{D})$, where g is fa-continuous and solvable for $(0,\mathring{D})$.

If $\left\{F \in \mathbb{F} \mid g_F \text{ is odd on } F \land D \right\} \in \widetilde{\mathcal{F}}(F)$ then Deg(g,D,0) is "odd", that is

$$\{F \in F | deg(g_F, F \cap D, 0) \text{ is odd} \} \in \mathcal{F}(F)$$
,

and in particular $Deg(g,D,0)\neq 0$ so that $0 \in g(D)$.

Proof. It is a straight consequence of the definitions and of the Borsuk theorem in the finite dimensional case.

Lemma 1. Let $\{g^{f}\}_{f\in\Delta}$ (Δ a directed set with \leq) be a family

of fa-continuous mappings from \overline{D} to Y. If $\left\{\begin{array}{l}\sup_{z\in\overline{D}}|<g(z),\varkappa>|\right\}$ is convergent to zero (\forall) xeX, then

$$\left\{ F \in \mathbb{F} \mid \sup_{\mathbf{Z} \in F \cap \overline{\mathbf{D}}} \mid \langle g_F^{\delta}(\mathbf{Z}), \chi \rangle \middle| \xrightarrow{\delta \in \Delta} 0 \quad (\forall) \; \chi \in \mathcal{F} \right\} \in \mathcal{F}(\mathbb{F}).$$

Proof. We shall also prove this assertion by a reductio ad absurdum. It follows that (3) $\mathbb{E}\mathcal{E}(F)$ such that $(\mathcal{F})_F \in \mathbb{E}$ (3) $\mathcal{K}_F \in F$ with $\sup_{z \in F \cap \overline{D}} |\langle \mathcal{G}_F^{\zeta}(z), \mathcal{K}_F \rangle| = 0$ Hence (3) $C_F > 0$ and $A_F \in \mathcal{B}(\Delta)$ such that for any $\int_{\mathcal{E} \cap F \cap \overline{D}} |\langle \mathcal{G}_F^{\zeta}(z), \mathcal{K}_F \rangle| \geq C_F$. As g_F^{ζ} is uniformly continuous on $F \cap D$, $(F)_F \in \mathcal{L}_F$ (3) $\mathcal{L}_F \in F \cap D$ for which $|\langle \mathcal{G}_F^{\zeta}(\mathcal{L}_F), \mathcal{K}_F \rangle| \geq C_F$; together with $|\langle \mathcal{G}_F^{\zeta}(\mathcal{L}_F), \mathcal{K}_F \rangle| = \langle \mathcal{G}_F^{\zeta}(\mathcal{L}_F), \mathcal{K}_F \rangle = \langle \mathcal{G}_F^{\zeta}(\mathcal{L}_F), \mathcal{K}_F \rangle$ it implies $\sup_{z \in F} |\langle \mathcal{G}_F^{\zeta}(z), \mathcal{K}_F \rangle| = \langle \mathcal{G}_F^{\zeta}(z), \mathcal{K}_F \rangle$ which is in contradiction with the hypothesis.

Theorem 6. Let yeV(g(D); Let g be fa-continous and solvable for (y,D); Let $\{y'\}_{i\in A}$ be a family of fa-continuous mappings, which is uniformly convergent to g. Then (\mathfrak{F}) $\mathcal{F}_0 \in \Delta$ such that (\mathcal{F}) $\mathcal{F}_0 \in \mathcal{F}_0$ is (y,D)-solvable and (\mathfrak{F}) $(\mathfrak{F}_0,\mathfrak{F})$ $(\mathfrak{F}_0,\mathfrak{F})$ $(\mathfrak{F}_0,\mathfrak{F})$.

Proof. Let's notice that the family $\{g^{\ell}-g\}_{\ell\in\Delta}$ satisfy the conditions of Lemma 1. Thus

$$\left\{ \text{Fe}[F] \sup_{2 \in F \cap \overline{D}} \left| \left\langle g_F^{\delta(2)} - g(2), \chi \right\rangle \right| \right\} \lesssim \mathcal{G}(F) .$$

It follows from the continuity property of the Brouwer degree $\deg(\cdot,\mathsf{FAD},\ \mathsf{j}_{\mathsf{F}}^*\mathsf{y}) \text{ with respect to the uniform topology of the space}$ of continuous mappings $C(\mathsf{FAD},\mathsf{F})$ that (3) $\mathcal{E}_{\mathsf{c}}\in\Delta$ such that $(\dagger)\ \mathcal{F}\geqslant\delta_{\mathsf{o}} \text{ we have}$

$$\left\{ F \in \mathbb{F} \mid j_{F}^{*} y \notin g_{F}^{\delta}(F \cap D) \right\} \in \mathcal{F}(F)$$
(which is in fact more than the (y,D) -solvability of g^{δ})
and
$$\left\{ F \in \mathbb{F} \mid \deg(g_{F}^{\delta}, F \cap D, j_{F}^{*} y) = \deg(g_{F}, F \cap D, j_{F}^{*} y) \right\} \in \mathcal{F}(F),$$

which completes the proof.

4. CLOSED MAPPINGS

In this section we start with some Lemmas which will prove that the general degree theory developped in $\S 3$ is suited for the class of fa-continuous closed mappings.

Lemma 2. If ACD, YEY'S (A) and $E = \{F \in F | j_F^* y \in g_F(F \cap A)\} \in \mathcal{B}(F)$ then $y \in (g(A))'$.

Proof. Let xEX and EEF with EEx. Then for any F with FEE we have $\langle g(x_{r})-y, \chi \rangle = \langle g(x_{r})-y, j_{r} \chi \rangle = \langle j_{r} g(x_{r})-j_{r} y, \chi \rangle = 0$ for some special choices of $x_{r} \in F(A)$. That is $g(x_{r}) \longrightarrow y$ and as $g(x_{r}) \neq y$ the result follows.

Lemma 3. Let g be closed. Then g is solvable for (y,A), (\forall) yeV and (\forall) A closed subset of \overline{D} .

Pròof. Let $y \in Y \setminus g(A)$ and suppose $\{ \mathcal{F}(F) \mid \mathcal{F}(F) \mid \mathcal{F}(F) \mid \mathcal{F}(F) \} \notin \mathcal{F}(F) \}$. Using $(iv) \notin \mathcal{F}(F)$ that we are in the conditions of Lemma 2; then $y \in (g(A))'$. As g is closed it results that $y \in g(A)$; contradiction.

Lemma 4. Let g be closed. Then g is solvable for (y,A), (t') $y \in Y \setminus g(A)$ and (t') A open subset of D.

Proof. Let $y \in Y \setminus g(A)$; then $y \in Y \setminus g(A)$ and the result follow using Lemma 3 and Remark 1.

Lemma 5. If the homotopy G has the following properties:

1° G(·,t) is closed (\forall) t ∈ [0,1] 2° G(x, ·) is uniformly continuous (\forall) x ∈ A then G is (y,A)-solvable (\forall) y ∈ Y and (\forall) A closed in \overline{D} .

Proof. Let $y \in Y \setminus G(A \times [0,1])$. Suppose that $(\exists) t \in [0,1]$ such that $(\forall) n \in \mathbb{N}$ $E_n = \{ F \in \mathbb{F} \mid j_F^* y \in G_F((F \cap A) \times V_n) \} \in G(F)$, where $V_n = (t_0 - \frac{f}{n}, t_0 + \frac{1}{n}) \cap [0,1]$. That is $(\exists) t \in [0,1]$ such that $(\forall) n \in \mathbb{N}$ $(\exists) E_n \in G(F)$ with the property: $(\forall) F \in E_n \qquad (\exists) (\chi_F^n, t_F^n) \in (F \cap A) \times V_n \qquad \text{for which}$ $j_F^* y = G_F(\chi_F^n, t_F^n) = j_F^* \circ G(\chi_F^n, t_F^n) \qquad \text{From 2}^{\circ} \text{ follows that}$ $(\forall) x \in X \quad (\forall) a \in A \text{ and } (\forall) \in Y \cap A \text{ such that for any}$ $n_f^N \setminus (E, x) \in A \text{ we have}$

 $|\langle G(a,t)-G(a,t_0), x \rangle| \langle E \rangle$ (+) $t \in V_n$

Particularly (\forall) n > N(E, x) and (\forall) $F \in E_n$ we have

 $|\langle G(x_r^n, t_r^n) - G(x_r^n, t_r), \chi \rangle| \langle \epsilon | \text{ Let be } \epsilon \in F$

with E∋x; then for (∀)F6 E, with F2E it follows:

 $|\langle y - G(\mathcal{X}_{r}^{n}, t_{o}), \chi \rangle| = |\langle y - G(\mathcal{X}_{r}^{n}, t_{o}), j_{r} \chi \rangle| =$ $= |\langle j_{r}^{*} y - j_{r}^{*} \circ G(\mathcal{X}_{r}^{n}, t_{o}), \chi \rangle| = |\langle j_{r}^{*} \circ G(\mathcal{X}_{r}^{n}, t_{r}^{n}) - j_{r}^{*} \circ G(\mathcal{X}_{r}^{n}, t_{o}), \chi \rangle| =$ $= |\langle G(\mathcal{X}_{r}^{n}, t_{r}^{n}) - G(\mathcal{X}_{r}^{n}, t_{o}), j_{r} \chi \rangle| = |\langle G(\mathcal{X}_{r}^{n}, t_{r}^{n}) - G(\mathcal{X}_{r}^{n}, t_{o}), \chi \rangle| \langle \mathcal{E}$ Then $y \in (G(A, t_{o}))^{*}$. As A is closed and $G(\cdot, t_{o})$ is closed it results $y \in G(A, t_{o})$. But this is not true. Hence $(\forall) t \in [0, 1]$ $(\exists) V_{t}$ a neighbourhood of t open in [0, 1] such that

 $E_{t} = \{ \neq \in F \mid j_{F}^{*} \neq G_{F}((F \cap A) \times V_{t}) \} \in \mathcal{F}(F)$ As the family $\{V_{t}\}_{t \in [0,1]}$ is an open covering of [0,1], we can extract a finite subcovering $\{V_{t}; \mid i=1,2,...,K\}$. Then $\bigcap_{i=1}^{K} E_{t_{i}} \subseteq \{ \neq \in F \mid j_{F}^{*} \neq \in G_{F}((F \cap A) \times [0,1]) \}$ and as $\mathcal{F}(F)$ is filter it results that G is (y,A)-solvable.

We finish this section with two interesting applications:

Theorem 7. Let y_4 , y_2 be two points of the same component (i.e. a maximal linear connected open subset) of the open subset $Y(g(\hat{D}))$, where g is a fa-continuous and closed.

Then $Deg(g,D,y_1)=Deg(g,D,y_2)$.

Proof. We define the homotopy $H(x,t)=g(x)-\left[ty_1+(1-t)y_2\right]$ which clearly satisfy the conditions of Lemma 5. Then H is solvable for (0,D). As $O\in Y\cap (D\times [0,1])$ and H is fa-continuous it follows from Theorem 3 that $Deg(H(\cdot,t),D,O)$ is independent of t. Particularly, $Deg(H(\cdot,1),D,O)=Deg(H(\cdot,0),D,O)$ and the theorem is proved taking in account Remark 3.

Theorem's (Schauder). Let X be a Hilbert space, $D = \{x \in X \mid ||x|| < 1\}$ If $g: \overline{D} \rightarrow \overline{D}$ is a weakly-continuous mapping then g has a fixed point in \overline{D} .

Proof. We can suppose that $g(x)\neq x$ (\forall) xeD. If we define H(x,t)=x-tg(x) (\forall) $(x,t)\in D\times[0,1]$ then for $x\in D=\{x\in X| ||x||=1\}$ we have $\|H(x,1)\| = \|x-g(x)\| \neq 0$ and (\forall) $t \in [0,1)$ $\|H(x,t)\| \geq$ $\|x\|-t\|g(x)\| > 1-t>0$; hence $0 \not\in H(Dx[0,1])$. Clearly H is fa-continuous, then in order to apply Theorem 3 we have to prove that H is solvable for (0,D). We shall treat separately the cases $t \in [0,1)$ and t=1. Suppose that (3) $t \in [0,1)$ such that $\{F \in F \mid j^* \circ \notin H_F(F \land i), t_o\} \neq \mathcal{F}(F)$ that is (i) Ee & (iF) such that (V) FE E (i) x eFno with $j_{F}^{K}x_{F}=t_{O}g_{F}(x_{F})$. It follows 0=< f(2,-tog(2)), 2,>= 12/2-to<g(2,), 2,>> 1-to contradiction. Now, suppose that (3) $E \in \mathcal{C}(F)$ such that $(\forall) F \in E$ $(\exists) \times_{F} \in F \cap D$ with $j_{F}^{*} \times_{F} = g_{F}(x_{F})$. Let $x \in X$ and $E \in F$ with $E \ni x$. Then $(\forall) \text{ Fe } \mathbb{E} \text{ with } \text{F2E: } \langle \mathcal{X}_{r} - g(\mathcal{X}_{r}), \mathcal{X} \rangle = \langle j^{*}(\mathcal{X}_{r} - g(\mathcal{X}_{r})), \mathcal{X} \rangle = 0$ hence $x_F - g(x_F) = 0$. As $\{ \mathcal{T}_f \}_{f \in F} \subseteq \hat{D}$ and D is weakly compact $(\exists) \times \in \overline{D}$ and $(\exists) \to \mathscr{C}(E)$ such that $\mathcal{X}_{F} \xrightarrow{F \in E'} \mathcal{X}_{O}$. Taking in account the weak continuity of g it follows $g(x_0)=x_0$; contradiction. Then from Theorem 3 it results Deg((H(.,1),D,0)=Deg(H(.,0),D,0) =Deg(I_x,D,0)=1 \(f \in \mathbb{F} \) as $\{ \mathcal{F} \in \mathbb{F} \mid \deg(I_F), \mathcal{F} \cap D, O \} = 1 \} \in \mathcal{F}(\mathbb{F})$. Because we can prove that H(',1) is solvable for (0,D) exactly as

for the pair (0,D), from Theorem 1 results that $(3) \times \mathbb{C}D$ such that H(x,1)=0; contradiction.

REFERENCES

- 1 F.E.Browder W.V.Petryshyn. Approximation Methods and the
 Generalized Topological Degree for Nonlinear Mappings in
 Banach Spaces, J.Functional Analysis, v.3,2,1969, pp.217-245
- W.V.Petryshyn, Invariance of Domain Theorem for Locally A-Proper Mappings and Its Implications, J.Functional Analysis, v.5,1,1970, pp.137-159.
- 3 H.Ship-Fah Wong, The Topological Degree of A-Proper Maps,
 Can J.Math., v.XXIII, 3,1971, pp.403-412.
- 4 H.Ship-Fah Wong, A Product Formula for the Degree of A-Propert Maps, J.Functional Analysis, v.10, 3,1972, pp.361-371.