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To the memory of Iulian Popovici

1l.Introduction

-In thisipapar we try to show that the principle of inertia
when explicitly formulated from =2 mathematical polnt of view
assure ug that the universe of events has a structure of ana-
lytical manifold generated by an atlas,the coordinate
trangformations between the charts of this atlas being homo-
graphies.Under stronger hyéothesis (for collineations of

clags CB), the coordinate transformation betwcen two inertial
reference cystems was proved to be a homography (for instance,
gee | 6] or the origihal proof in (8] ).In our treatment we
drop out any continuity hypothesis,as we first made in [2] o
Mofeover in this paper we characterize homegraphies whose
domains are not open in BT fsee 1.1).This is essentially used
(in § 3,especiaily 5.13) in order to obtain the differentiable
gtructure of the univefse~of events.Thus on the upiverse of
events M,ﬁhe‘principle of ipertia leéds %0 a differentiabls
atructure;fron which elther the Galilei gtructure of classical
mechanics or the Weyl structure -of the épecial theory of rela=-

o
5

tivity were derived (see § 3).(The problem of using mors
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"physical® postulatcs in order to deduce that M hag a differentiable
manifold strucﬁure wag treated,in the case of the general theory

of relativity, for example in [51', Y?] Yo

This paper is dedicatéd to the memory of our late friend
and teacher in geometry,dr.lulian Popévicie '

Let U be a subset in RD. A function P+ U —>R™ is called
a lineation (or a collineation) if ¥ maps any three collinear
pciﬁts of Y in collinear points.

For any point x € R™ we consider the set C.= iy;Q(me) > Q}
where ‘ ' | : '
(1io) Gloetl-(aH e,

Lor z:(zl,...,zm) in the standard coordinate system of R".A
gtraight line (line,for short) 1 is named a time line if there
exists x € 1 s;t. 1C;Cz\\j{xS .The line determined by two points
y,z é.ﬁm will be denoted by yz.The seguent determined by two
points x,y'é R™ is denoted by [x,y] .An affine 2-plane (plane,
for shorf), résp. k-plane with k > 2,which contains a time line

ig named a time plane,resp. time k-plane.

. nm o, ? : : :
A function F: U —— M i3 valled a partial lineation i1if

for any time 1ica.d,F maps any three points from a connected
subset of d N\ U in collinear pointa. .
On Rm we congider the euclidean topology. ‘
In 0§der to introduce a differentiable structure on ﬁhé
universe of events and to derive the Galilei and Weyl groups we
prove the following

1.1.Theorem.Let m > 2, let U be a subset of R™ g.%. the intersec-

T s B s (R R 3 % B s o A = 2 Tl 4 - Ty
tion of U with any tima plane V ig open in V and le%t F:U~www@qam

be an injective partial lineatjion.Suppose that:U i connected

{3

(s

3 S il e SR e T 3 K
by segments;there exist a time plane T and fthree non-collipear

v o

V)QZ{’]"‘,‘}; AV oo : o G it} it S s T )y A L g
Boints Vvo,vi,vs € T /U gelia F(vy )sEF(vy ),F(v, ) are not
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collinear;v,,Vy,v, are contained in a connected component i
of T,

Then F is the restriction to U of a homography.

R

ulﬁfunction m RN B —— ig called a homography if

e .4
H(x) (Z Hy %04l e Z o1, ¥ d.m +l,m+l)’ Lol el
., J l
wheres H; jf? Rylyd=lyee.,m+l and x=(x ,...,xm) € Rr" N\ E3E is

?

the empty set or the hyperplane of r™ having the equation

E:_ Hm+l’3x +H ig mel),

1*0 the rank of the matrix H

mt+ 1 ,m+ 15

l.Z.Remark.There exist subsets U as in 1.1 but which are not

open in the euclidean topology.For instance take a ball B of
centre X and take a éaquehcs b= {zn;n & N} which cémverges to
X s.%. xz,,0 € W  are digtinct time lines and any time plane
containg only a finite number of them.Then B\ Z is not open
but has the properties of the se% U from l.l1.

Theorem l.1 is proved in § 2.An axiomatic presentation
of the principle of inertia is given in § 3;it leads to a
gtructure of apnalytic manifold for the universe of events.
Weaker conditionsg which imply Galileli or Weyl group are given.
A generalization of theorem l.1 1s proved in § 4.Some physical
implication of our treaiment of the principle of inertia are

sketched in § 3.They are.made by D.C.Réddulescu.

2.The proof of Theorem l.l.

5 ‘ : = + m = S
251 .Fer U ag in 1.1 and for any line 4 of R, the gset d MU
is open in @ because there is a time plane including d.

To prove l.l we need some prelimiuarisge

s et S o ; ! w10 e
2.2 . Lemna.Let N be a gubset of B and let F:N ~M*?b be an

injective function.Lel [xyw} C_ N.Suppose that in the vertical



wre oo

(i.e. paraliel with the xl axis) time plane V throurh ¥ and w

the get VM N contains an open gt Demats TxN] G0l Bi0 8

o

partial lineation on %, then F is a lipeation on [x,w]
S :

éafﬁloUW@‘v 1% Pl

I i .
5> R" ig ag in 1.1, then T is a

1ineation on any secment \z,w] .U -and on any-convex subget W
of U. .
Proof.Put d=xw.Let s be an open gegment of & M Z s.t. [x,w] C s,
For any v € § We prove that there exist a,c g gt
v‘e(a,c)‘and I [asc] ) is oontained in a line,Indeed if 4 is a
time line this is cbvious.Let & be not a time line.Let e be the
parallel to the 21 axig through v.Then VAis_genefated by 4 and
a.lat T be the Line of V oF tho~ona1 to e -in v and let @ ,7e5 Do
_fl,be a half«liﬂﬁ of e,resp.f,with v ag origipn.ln V we consider
the oriented axes fl,el.Let r> 0 sg.%. the open disk Blv,4r) C L
'uuppase that the slope- of d is pesitive.Take c on d
(raspJa on 4) s.t. the £, coordinate of ¢ (regp.a) is..z (resp.
~r).Take y to be the point (r,%r).Then the disk B(y,r/2) is
ipcluded in B(v,4r) and ip the part of Ca which meets eleLet
 al,a2 2 (g.arn. 0. as 6.(3,&1) and a; € B(y,r/E),Cboose a tire
line g C V g.%. the slope of g be negative and ye g.let b é'(a,c).
4Pn% &bi}.n }bai(ﬁ g and {01 zaa,f“\cb. with i=1,2.1t results
that bi,ciéi B(y,r/2) for i=l,2.BYy Degargues 'theorem it f@llows
that y é almgait ig eagy %o check that alaggh bg,cl > and

ags 20D 4 5CCy with i=1,2, are time lines.If z € N,put z'=F(z).

i
gince F is an injective partial lineation on Z-it follows that any

\}
s D5 3CnsY s 6RCED ing

three collinear points from aﬁb?a?aigblgcig

a,b,c have collinear imagen.Llf the sets given by the interscction
of 7 with the distinct lines aa, ?ou_Gci, with i=l,25 spd

3

ala‘”pltg LL" have the images pn dlat inct nine lineg,tnen



~5-
Desargues'! theorem shows tha a',b',c' are collinear.If any
two of the above nine sets have %the images en the same line,
wa ses that a',b',c' are also collinear by a straight forwards.
investigation of the following possibilities: aiabi,ci PEebal:
collinear for a i; two of the above lines through 3' coincide;
two lipas through a' or b' or ¢’ colné¢ideja line through a'
and a line through y' coincide.

If the slops of d is negative,change fl with its
oppogite half-line.

Now cover [%,w] with a finite number of open segments

gy C 8485, F(si) is contained.in a lina; hence F([x,w]) is
contained in aline. l

Lét U,F be as in l.1.Tet [x,w) C U.The,intefsectipn
of a vertical time plaue’ through x and w with U ig open.Hence
F ig a lineation on [x,w] by the first part of 2.2.If W is
a convex gubset of U, then Belg ailineaklon on W since ¥ s &
lineation on any segment of V,
Remark.The first conclusion of 2.2 holds also if the congi-

dered time plane V is not vertical (by a glight modification

of the proof).
: 2

> R

. o
2.%.Proposition.Let W be an open sel in R“ and let f:W

be an injective lineation.If £(W) is not contained ipn a line,

then f is the restriction to W of a homography.

A direct proof of 2.3 was given in [2] .A generalization
of 2.3 %o open subsets of planes over ordered fields ls given
in [5] sits proof ig an adaétatim; to open subgets pf the
préof given in [4] ;Theﬁﬁem Dala

b k%) 2 3 % r l = ko 3 - (X 2 3
2.4.Let N be a subget of R® and Ap be an affine r-plane in



BY a.% ArfW N£ 3 we say that a function F:N —R" ig a
, : | g on, 3
t~linsation on Z:= Ariﬂ W if F ig a lineation’Z dﬂi (Z)

generates an affine t-plane.Let ¥ be an r-lineation on

2 0

gZe=f (Y N3 wWe 38 that F is an r-homograpnhy on Z if 2 gnerates
:!'.'.* %

Ar and ¥ acts on 7 a8 the restriction to 2 of a homog »raphy of
48
In 2.5 2.8, N is & subset of EY and F:N — &' is an

injective funcyion.
2.5, If for a plane A the set A NN contalne a nahwempty set
W which is open in A and ihe function F is a 2-lineation on
A N N,then F ig a Emhamography Hon. & f\N.

Indeed F is a 2-homography on W,bY 2.3.,81ipce F ig
an injective lineation,the image of any noint z of ANN is
determined by the action of F on W (by taking two distinct
lines %hrough z which meet W).lMoreover from z € ANN it follows
;€ Gom U (¥his can be gseen by extending H o the projective
envaelope P of mm;see.alsb the proof of 2.11).I1%t follows thats
for any ¢ € ANN which is open in A,then P(C) is an open gsel
in the affine 2-plane generated Dy FCAN N)jfor any line 1 in
A with LN NA @ , ¥ is an l-homoegraphy of -3 RN,
‘2.6sLet A be & plane and 11512 two distinct 1lines of A which
meet in xEeN a.t. 11/\ N contalns an open segmen% 84 of li and
X € 84 for i=1,;8. T B la & lineation ﬁm'Af\N then F is an 1-or
2~lineation on AM N

Indeed,by hypothesis b (1 M N) generates a line
i£ for i=1,2,Let A' be the affine plaue determined by 1‘ sé o
For any point-y € a NN tﬁe axigta a line 1 a.t. ltﬁ\lim
- Yt £ oy B T 5y, i=1,2 and yié v It follows F(y) € A'.

zy
Veolncide {(respectively are digtinct) %then A' is an one

A"J

S et

Loida

1

{
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(resp.two) dimensional affine plane.
2.7. Let A,ly ;15484585 be as in 2.6.If F is an 1l-homography
on §; and a lineation on lifﬁ N for i=l1,2, then ﬁ(lifW N)
and F(laf\ N) generates ah affine plane A'.

Indeed ,suppose A' ig a line.Hence F(él)fW Ps,)
an open saet of the line generated by F(llf\ N} and F(lzf\ Ny,
But F(sy) ) F(sg):F(slr“\sg): §7(x)} since F ig injective;
contradiction.Hence A' ig a plane.
I8 Tehare Noand Hl’Hz be two homographies of Em.Suppose
that for any line 1 through x there is a eubset 12 0f 20,
Betet 1* contains x and at least two other digtinet pointg;
’Hl and H, coincide on 1*.Then H1~H2- .

Indeed, let s and Vygeee ¥y be afflnely independent
with vy € (v i ) JLet w,w(v +vlﬁ..+vm 1)@m+l) Take wée (v wl)
with w# x and w ig not in the hyperplanse given DY VygeoesVpe

Then vo,...,v , W are in general pogitionssince Hl and H2

il
coincide on them,it results that'leHQ.

2.9, Lemma.Let ¥ be an open connected gset in a plane and let

>RY be an injective funclion.sSuppose that for any

Fe V

x € V,there ig a convex open subset C of Vwithx €C g.b.t ig

a lineation on C.Then ¥ 1is an l-lineation or & 2-lineation

on V.

Proof.let Vl’ 5 be convex open subsetg of V g.f. Vazz

“Vlff\ V2 4 © and F is a kineation on V, and Vy.Henca Vy
ig convex.We prove that E.is a lineatlon on VlLJ,Vgx:WGTake
% C V5 and the segmenta g4 CLVB with z € ﬁiﬁfar imlgE,Ba‘
Depote by T the reetricﬁiép of ¥ to Vj?where J=1,2433F1 5,
F5 are lineations.We distingulsh ftwo cages:

a) B fﬁ are contained in the same line d

i=12;5.51ince Fl 9ﬂ2 9F5 are injective lineations it ig clear



B

~that fer any 7 € W we have F(y) & d. (Indeed take a line 13y,
192 .t 1N\ a4 f for at leasdt two indices i=1,2,3.1% results
F(1NV)<& d.Thug F 1s an 1&L5naahlon on W.

b) The gsets ¥, (s ), i=l.2 j are not contalned in the
qame line.Then they are contalned in a plane by 2+.6.Then, ‘
by @ﬁ),Tl;?" TE are restriétions of /whomOGraphles to nhelr
respective domains.Slnce then 2-homographies coincide on VB’
they are equal, .

 Leﬁ Vi,.;,,vn be open convex subsgels of_V geti. B s &
- 1lineation on Vl,...,V'.If‘W:::Vi L 5 L) V is connectad,
thep it follows by induction on n that f is a lineation on We
Finally let x,y,z be any distipct collinear polnts
of V.Take thg cohtinuous paﬁh g C V,respe h C V,connectipg
% and y,resp. y and z.There exists a finite number of convex
open gats Vlg...,*n in V which cover g and h and F is a li-
neation on Vjs;..gv By above,F is a lineation on
Vy W eee \/’V .Thus F(x),F(y),F(z) are collinear. _
261052§9§§§¢Let U,F be as in 1.1 and A be a (time) plans.
Then F ig a q-or 2-lineation on any connected open subset cf-

ANU.Yhig results from 2.2, 2.6 and 2.9,

For any x & R® we define a time-x-connected set Ug
to be a set constructed in the following way: for any time

plane A containing x%,take a connecked open set £ C A with

xciAx-U ig the union of these gets i, .

timg=-x~connacted get.let F:UX~—~ﬁ'Rm
be an injective function g.t.: for any time plane A through

oJl.Theoremn.Let U be

8

I

P s < ; K e . s A P Ty 7 ~ 4 % i S8 2
x.,F iz a lineation on A"j;tupere @V‘L\W‘ a time plane V

3 o] 2 ‘ LR (i e £ Y8 ;’3 e o A
through ¥ for which F ig a 2-lineation on V «Then B ig an

m-homozraphy on Uxa

Tn order %to prove 2,11, firstly we prove two Lemmes.
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2.12,Lemma,Let U, and F be as in 2,11.Then for any %time

plane A through x the function F is a 2-homopraphy on A f\UXQ

Thus for any line 1 through %, F is an l-homography on 1/“\UX«
Proof.From 2.3 it follows that ¥ is a 2-homography on V*.Now
for any i we digstingulish two cages: |

(1) ANV is a line 1 (which contains x).It results that
¥ is an 1-homography on an open segment 8 of 1 which containsg
X.Suppose that F is ao l-lipneasion on A*,Then choose the
time lines 11<: V,12 C Ay8.%. X € l%lg.Let W be the time
plane generated by 1,,1,.It results thai F ig a 2-lineation
‘on W .Indeed since F is a 1-lineation on A it follows that
“F(1,N &%) is included in the line 1' determined by |
BGL A A®).But 1' is distinct from the line determined by
F(11/W VX) gince F ig a 2-homography on ¥ ,Thus F is a 2nlineaf 
tion on Wx;hencesby 2o D48 is-a 2~-homography on WX.Consequently
P ig an 1-homography on an open segment 85 ot lE/W.AK which
contedns %8By 2.7 for F.,e and sé,it follows that F(A™) is
not included in a linejcontradiction.Hence F is a 2-lineation
on A*.Then F is a 2-homography on Ax,by 2

(i) AMNV= {x}. Let L be a lipe of A through x.Let 1,

be a time line of V fthrough X and B the plane geuerated by 1
and'1100ase (i) for B and V shows that F ls a 2~homography

on BX.By case (i) for A and B it results that ¥ is a 2-homo-

graphy on A* (for any time plane through x).

Now for any line 1 contalning X, ¥ is an l~homography

3

on 1 MNU,.Namely, let y ¢ 1 MU, and let A be any time plane.

3

o e e R bt Kt e
gef. v € A" By above,F is an 1-homography on 1M A .The actions

of these homographies on 1 do not depend on A and y since %hey
coincide on an open segment of 1 containing X.

Pinally for apy time plane ‘A containing X, Fig a
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2--homography on AAf\UgOIndeedgleﬁ h be a homography of g™

which acts as F on AZaLeﬁ‘y & Af\UggLet g be a homography of

ey
Q

: e o =
R™ which acts i em:x*f\Uanlﬂce g,h colncide on Xy Y A
they coincide on Xy.lence h(y)=g(y).Since g(y)=F(y) it follows
that h acts as ¥ on ANU.

2.13,Lemma.Let ¥ and U, be ag in c.rlvte ¥ é, U, sput v’ =F(v) .

Phen for any T € {lye..,m5 and for any time r-plane A, through

=5

ollow

®
&

m

4
VY

=

2oLt

(Lard PG, M g ) senerates and affine r-plane Al

(ii,r) For any line 1 of A}l through x',%he get

B

A .9 A
points,hence, by

s

=

tine

&

CYECA, /ﬁ U,) confalns at leagt two dig

2.12 it containz a non-emply open gubget of 1.

Proof.Induction on r.For r=1 and r=¢ apply 2.12.Let r > 3 and

suppase that 2.1% is true for r-l.Let: A be a time r~plane
—plane thewe is Vg U Pn AL XY b o t'me

thro&&h N.alpee Ar 14 a timeYline.Let ag,...,a in A Seb.
XgVysBggece sy, are affinely independent.By hypothesis,in the
time plane generated by XyVy22ys there is a point Vs in UX Belo
xv, is a time line distinct from xv; and L5, %, ]C.U ,for
e, couyr.Lhen K3VysVosoee sV, are affirely independent.lience
X 9V19 ¢ o e svrvﬁl {ﬁ@n@f&”ﬁ@ 8., ti}ﬁ(_} <t‘""'1)""'pl?’.n@ f&r-lc}jy (i ,I"“’l)
the get F(Aawqf\ U,) ganerates an affine (r-1)-plane Al 1 and
sat gfies (il,r-1).

Now,ws prove (i,r).Nemely, if v} € A} lgﬁhﬁn the line
x'v) ig generated by x*' and z' € F(A 3~f\ U‘) with
e o€ A _1/\ U, .But the points x,v,4z are not collin@ar,ﬁrgﬁ

Egled it followg that K§9V£§Z$ are not collinear;contradict’ Lon e

Hence v' ¢ +Let A' be the aifine r-p. lane generated by
s . <
,L iz
! and ¥, Lel u € X U 8 At
Aty @nd ¥, B U € B, PR Ay _q then u! ( e



by 2,12.1f u €A 4\ xv,, let W ba the plane given by X 3V, 5l
Since I ig a 2Z~homography on WM U it follows that u'! ig
contained in %the plane generated by-x‘gvé and P(W M A /\tf)q.
Hence u' € Af and (1) is'proved, -
To prove (ii,r),cbserve firat. that (ii,r) is verified
for #'vl, by 2.12. 5 :
Now let 1 be a line of Ay with x' € 1,v!¢ 1.The plane
B generated by 1 and vé is contained in A%,hence ite intersec-

tion with A! , is a line k.By (ii,r-1) there is v in A with

Yo,
vé x and v' in k.Let A be the plane given by x,v, and v.By 2,12
P is a 2~homogravhy on AJ”\Ui.HencG (A F\Uk) includesa get %
which contains 2' and is opeb-in Balhus 1 7MVZ ig 4 non«emptyf
open gset of 1.

Broof of 2.11.For any r 6.{1,ge.,m} and for any ViseeesV

:t?
affinely independent in Rmsrecall that the set

o

= N ’

il } By sy z 65=1,0<45< 1yv € B )
le0 = ;

is named the r-gimplex cf vertices VseossVy, and is denoted

algo by (vég,.,,vr)a
We prove by induction on r*é{i,...,mj the following
prope:ty
| (a,r) For any time r-plane Ar containing x there
exigt the points vO:xgvl,ecﬁgvr,E Ar and a homography Hf of
R™ a.t.¢ [vo’vi] @ Af M Ug and v,V; ars time lines for

i=lyec.,r;the restrictions of F and H, to A,/ U, coincide.

(Remark.From (a,r) it follows that dom H, D (v_ ,ee.?v ) e Line

2
O el AL L et o on T R B o SRS A IT.)m PO o) e | UIERE S S ST DR, P
(@8 L SEa B H EP has a uypo;pxa}u oA G 8 ¢ ) O 31NguLBY &bluﬂyuuuﬂ

E dveg not meet [v s ] for i;i,E,,a,r since Hr and F coincide
: Trees T S Fla Qi - meet
on AN U, .Hence E does not meet (voy«,,gvr).)

The assertions (a,l) and (a,2) were proved in 2.12.



Sl
For any 2 E,Ug,put z1=F(z).For r 7 2 suppose G,y
ig true.Then we show that (8,r+1) ls also $rue,hng Tor F=my
(a,m) proved gl

As in the proof of 2.15 we chooge vumxyvl,..,s

o Gt e e e R s ~and vV, &re
vr“’%’l C_ ‘ar P [\\ i.),i, ?oi’e L‘Jfg 1] . _L“‘ f\ na '\)0 3 &

3 : f‘_‘ X po
time lines for i=l,...,r+1l.Take w € \VO,...,VT)(\ Uz Gehie

0

Vo seee VoW are in general positioa (This i1g possible
aince for any tz e line 12 x we have %

that LY L8 U0
empty and open in 1,by 2.1% (ii, 1),°Ir the affine 2-plane
B ‘generated by V .V, 4%, .change eventuaily the polnt v, 4
of (Vo’vr&l> and W, on (vggwr) gt [Tr*lgw i be included

N X 2 Rl 5 N s B 2 &
in B" and take w € (71+15M:)@ittxullOWn that Vo"”’vr#l’w
yW.) by (a,2)

“applied ¥ New teke a homography H withe Gy !
applied to B. sake a homography H, , Wi } hr+l< !y

are in ceneéral positlon.loreover wt € (V;"

ﬁge ¢ & 51"’!’1 g li(‘N}iv\) ! @

e

ik S

R has a hyperplane E of sin gularities (gee 1.2) then

ig an affine transformation then W, & dom .. 44

w_ ¢ E.Indeed observe that -H (4, \ E) &4, (see the defi~
r el ¥ r

hibion of i VoIf . w € B thenthe lLipe wig! which
L o el

o ey i 1y 3 v 2 x 4 e Yo 3
contalns Hr+1(“vf+1f\-{wrg) must be parallel with A (this

can be geen extending Hwil to the projective envelope of
o ¢ s ol

piiEer : ; i i ; S ran .
Rﬁ;th&s ek tension maps E on the hyperplane. to Imtenity 1b

-

itg codomain).But I is a lineation on Ar and WA by (a,r)
(a,l) .Hence w% & A; and go vai41 ig not parallel with A}.

P PR e e ) ~rn e 45 N wotyy ¥
Thus w, € dom H, 5 and ., 109, DM

From (a,r) we have , € dom H and w;zﬁ by .

Therefore,i,H, , and H, coincids on &, M U, .Hence I and
PR s 2 » - a1

H coineide algo on BMA MU L @ Moreover H. . colncildes
ral - P e e el

with F algo on v wM U, gince ¥ and H , are l-homogra-
g X bl ]

phies on v, W £\ 'U and their actions coincide in &ne
e X



1.

A s L3 : o cy o .
three distinct points ¥ and w,.S1lnce F and\Hi+l are 2-

homographies on Bf\Ux and they coincide on v W’P\UX and

r+l
Bf\Arn”\Uk it results that F and Hr+1 coincide on B F\Ui,

particularly on vr+1v0(1 ng
Now take any point z from (Ar+1fW Ug)’\\(B LJAr).

Denote by A the plane generated by ¥ oY and z.By 2.313% .1t

r+1
follows that A f\Ar contains an open interval s on a line

lc;Ar.Sinbe F is a 2-homography on A N U, .by (ay2),and F and
Hr+l coincide on ¥
Remark.In 2.11 we can replace:"for any time plane A through

re1 ) Uy and 8,it resulfs Hf+1(z)=z';

X,F is a lineation on AX“,by "F is a partial lineation on Ux"‘
Indeed uging the remark after 2.2 and 2.9,if F is a partizl
lineation it results that -F is a lineation on any A

Proof of theorem 1l.,l.let xeU,If A is a time plane through X

let A* be the connected component of ANT which contains x.
" “Then F is a lineation on Ax,by 2.1lo.Put U= ) Ax,wheré A
runs over the %time planes through x.Then Ug ig a time-x-
connec%ed get.Let x € To;since F is a 2-lineation on szTo,
from 2.11 it follows that F ecte as a homography H on Ux.Let
y € U;sat; [x,y] is a temporal seémeut included in U.By above
P ig a 2—homography on any plane containing x,y;then F

acts ag a homography G on Uy,by 2.11.For any time plane A
through x and y,H and G coincide with F on 2¥=2Y,Then H=G by
2.1 and 2,8.Let z € U,5ince U lis connected by segment,let

ZOSX,Z]-,..-,ZHZZ Saﬁe [Zi,Z ]C_U,fOI‘ i:U,..-,ﬂ*l.T&kiﬁgthG

i+

ol g o o { . ) ;
vertical plane Ai which contains in’zi+l] we can joln zj and}

Zy .1 by a.finite number of temporal gsegments included in
Ai/\ U,since this set is open in Ai.Henoe renumbering the

points we can suppose that [Zi’zi+1] are temporal segments,

for i=0,...,0~1.By above F acts as H on U, 3by induction it
ek
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results that F acts as H on Uz .Hence F(z)=H(z).Thus F coincides

n
with H on U,

3.Deducing the differentiable gtruc ture of the universe of

avents,the Galilei and Weyl groupg.

.l.Let M be a get;its elements Aare called events.Let P
be a family of subsets of M;the elements of P are named particles.
The family P satisfies the following axioms:

Al.For any x.€ M,there i3 p € P with X € p.For any

pe P,the gset p has at least two elements.

i x,yé M,x# y,and p,q € F s.t. x,5 € p,q,%hen
p=q. , e

A3.For any p€ P and for any X,y € p there ig defined

a subsget [x,y] of b,called gegment ,g. 6.2

(x,5] = [3,%] 53,7 € [x,31 3 [x,2] =1x]
if ab € (x,3] ,then [a,0] € [x,5] .
let a,b,c,d.€ pys.t. [byelnfa,d] £ 62 if bye d {a,d]
then {a,a} Clv,el s if b efa,af and c¢{a,a] ,then either
- [b,d}CL[a,¢] and [b,e]N(a,a] = {b,a],0r [a,b]Clc.a] ana
[v,e]l N [a,dJ = [a,b].
The sét [x,y]‘\ ix,y] is dénotea G, v).

A4 Tf P E P and X,y,%,6 € p 8.8 (x,7)N\(z,t)# B, then
[x,y] Ulz,t] is a segment. | :

3.2.Dafinition.A subset N of M is called quasi-open if:
: QOl.For any x in N and any p € P with x € p,thers
are a,b € p /NN g.b. XE(a,b) & N,

&
e st

Q0Z.Hor any X € N and py,qa. € P wilh X € p,;q9 and

e

p£ q,there exists [a,b] <€ p/ N g.t. x € (a,b) and for any

[c,a] € [a,b] with x € (¢,d), there is [e,2]<aNN with
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X € (6,f) g.%. 8.%. for any g eyl as followa that ¢ and z,regp,
B et u 285 p,

5.3.3§E§£§°If Nl,Kﬂ are quagj- open,uben N & Ny is duagi-open,
Indeeq s9UDpoge that “‘“Nl/\ N5 is not empty Let x e y

and pe p with x ¢ DBy QOLl, fthere are ay ,b € g)f\bﬁ gk,

x é(u..b §)c l,for 1=1,2,By 43 it follows tbat [al,bljr\[ag,bg]:

= [a,b]aqa R E.(8,b); thas Q01 ig Salisfied fop Nox,poLet x e N

and p,qe p With % ¢ Pyq and p# g, Let fa o Jc:pf\ N, js8iven by

Q02 for x 1PyQ,N, , Tor 1=1,2.Thep [al;bljr\[ 23b,] = [a,b] 20y A3,

1t is eagy tq See that LEnT e lnterval op P necessary

in Q02 fop x,p,q,N.

5.44§§y§£g.Let N be quasi«open,let X € N ang let N be the get

0f pointg J & Nosok, there exjigy Z Nt L n=Y,with

[21’21+l] a gsegment vontained ip N,for i= =y paa s Then N ig

‘duasi-open, (The pProof ig Straight forwarq), : g

i 5 3 5 +
The ge; Nx 18 called the seﬁment~cpnnectcd L Component

of ¥ ip ¥, ' 4 5isn e ;
3»5.Definition&Let N be a subget of u, ?

(i) 4n Injective function h: N **ﬁ'ﬁq lg calleqg a i
linear chart‘if: |
=254 caar

g1, For a ahy . pc p and for any. X, y,5 € PN thg

Points hx sy, hz a:g_ﬁolllneag. :
(11) A linear chary heN —— g 1§ calleq Preingrtial

J~2e

Bk

i
.

C2.N i SUasi-open,

C3. For -any segment Xyl ooy sl LY follows By = e

mLhX hy | e (wneq no confua:on can appear we denote h(y)

S

by hx) SRl ' o



e

C4.For any % € N and for any temporal line d through

bx, there 15 a parddcls pg.ti. Hesprand hipH NS d,
e

3.6.,Lemma,Laet hiN >R <Deva-preinertlal charf.lel X ,7 €. iy

x£'y and_-put a=hx,b=hy.If [a,b] is included in h(N) and ab ig

a time line,then there is a particle p with X,3 € b and

[¥x,y] C N.If d is a time line in RY, then 4 M h(N) is open in d.

Indeed,let ¢ € [a,b] and c¢'e€ N with he'=c.By C4,there
exists a particle p, through c¢' s.t. h(pcf\ N) € ab.By 01,
there are distibct Rl pcf\N with ¢' € (zc,yc)c: N. By
CB,h([;xc,yG]): [hzc,hyc] C ab,The set [a,b] is compact and
(hxc,hyc).with ¢ € [a,b] ig an open covering of it; hence there
' are.coza,éi,...,cn:b, g.%. (hxci,hyci) with i=0,.5,0
cover {a,b].By A2.i% follows that Py P,

0 J; n
particle p and [x,y] C p.By A4 if follows that [x,y] C N.

yesssb, are the game
The iast assertion results from C4,Q01 and C3.
Remark.In 5.7, 5.8 we use C4 in the weakef form.
C4',For any x € N and for any time plane A through
"hx ,there are two time lines dy,d, of A through hx and two
~ particles py,p, through x s.t. h(pi{\ N)}QZ di'
3.7.§gg§£gg.Leﬁ h:N -—— R* be a preinerilal chart
. (1) Let N*C N be quasi-open.Then h':N"~—;—=-\R4 with
h'x=hx for any x € N' is (obviously) a preinertial chart.
. - (41) The intersection of h(N) wiéh any time plane A
of Eq_is open in A, henoe_with any liﬁe d is open in d;
Indged,let y € h(N) N A,Let x€ N with hx=y.Let d,g be distinct
time lines of A through y.By Cd4 let p,q be particles througﬁ
o with‘b(pfﬂ N) % d and h(q "V N) < g.Let [a,b]C p /N N ba
the segment given by €02 for N,x,p,q.Let [a;f] C q M N be
the gegment associated to [a,b] in QO2.Using Q02 and C3 it

results that the convex domain with vertices. ha,he,hb,hf ig



] e

included in h(N) N A and its interior contains y.

3.8.Lemma.liet bi:Ni-w—~>Rq‘be linear charts for i:i,2,§;£.2

hl ig a preinertial chart;h2 verifies C2 and CB;N'::Nl M N?

ig not empty.lLet N be the segment-connected component of

x € N'.Then the function F:hy (N) —®" defined by F(y)=

:hahil(y) for any y € hl(N) igs the restriction of a homo-

graphy to hy (N).

Indeed ,N is quagi-~open by 3.3 and 3.4.By 3.7,%the intergection
of hl(N) With any time plane - A is open in A.By CB,hl(N) is
connected by segments.The function F is injective,Let d be
é:time line énd let al,ag,a5 be three points of a connected
subset [a,b] of 4 /~h,(N).By 3.6, there is a particle p

G ol GagdiEop NN,for 1=1,2,3.Then P(a,),F(ay),M(ay) ara
collinear by Cl for h,.Hence F is a partial lineation.Lct

T be a %time plane with T'::T(“\hl(N)é Z .Let a € T' and

dysd, two time lines of T through a.Let [ai,bi] CIrAdy
with aka(ai,bi),for 1=1,2.1ef ¥ € N with hy (x)=a.By 3.6,
there iy a particle p; through x and [xi,yi] C p, NN with

X E(Xi’yi> and hl(xi):ai,hl(yi)zbi,for i=1,2.By C3 it follows
that hac[xi,yi])z[hacxi),ng(yi)],for i=1,2:5ince h, is injec-
tive,it follows that h,(x;)h,(y,)# he(xz)hg(yg).Hence hy (10,
. F verify the hypotheses -of 1.1l.

5.9.Defibition.A preinertial chart th-—~ﬁ'R4 i@ called opén

if h(N) is open in BY.

: U ; 3 .
“3.lo.Lemma.led hi:Ni—~w~?R. be open preinertial charts for

: : e Sy .
i=1,2.1f hy(N; M N5) is open in ®°,thep h,(Ny M N,) ig

~
o8

also open.

£ T,obk T B 7 Tet = & N [. Nih fees :
P?oof.Lvt b. & hg<N1 ) Nz).ueu R & ulfW ke with hgx b Put
a=h;x.Let N be the segment-connected component of x in

Ny M N, and Fihy (N)— R defined by F(c)=h, h{l(o).
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Then F is the restriction of a homography H,by 3.,8.Moreover
hi(N) ig open in a. Indeed,we can suppose thab a=(0,0,0,0) and
let B(a,r) & hl(Nl/"\N?) be a clogsed ball of centre a.Let C

; o
Ba Wi {ntebadstlen ofrB e, ) with the cyXider (3G
-s-(x't‘L 2:32 for an s € (0,0/N2 ).Let ¢ € C.If ac ia a time line
fthen by 3.6 there is y € Nl/”\NE dolie Tyl le“\NZ,Hence
y€ N.If ac is not a time line,the line through ¢ parallel o)

the %+

axis meets the boundary of B(a,r) in fwo points e,f.
Then ef,ac,af are time lines.Let y,z & N,/ N2 vt hiy:e,

-2 o 5 > . - l 2
b,z=£.By 3.6, Exsyls Ly,zjc:Nl(“\Ng and t=h""(c) € [y,z].Hence
£ € N,It follows that CCZhl(N).H@ncﬁ F(C) contains an open

neighbourhood of b in hE(N).

At

i et : ; b e fee o
3,11,Définition.The open preinertial-charis hi:Ni~*4'B y With

i=1,2, are named compatible if hl(Nl A NE) ig open (equi~

valently hy(N; N N,) is open,by 3.10).

5.12.Dc£inition.A4preinertia1 charﬁ h:Nu—%iR4 is called
" adequate if it satisfies alsd the axiloms:

C5.For any particle p and for any X,y € pANGEE
[hx,hy] C () ,then [x,y]CN.

C5.For any p ¢ P and X,y € p with x4 y and_[x,y]C p\N

and for any ssfment s of h(x)h(y)/\ h(X) which includes hx,hy,
it follows h"l(s)C: De :

Obgerve that C5 and C6 are verified for the particlesg

p s.t., h(pMNN) is included in a time line,cf. 5464

3.13.Proposition.Let hy:N;

!
denioy o
>R with i=1,2,be open,pre -

inertvial charts.If one of then is adegquate,then h, and h, are
: ’ ety ol

gompatible,

 Proof.Suppose h, is adequate.Let x & NI/WiNE and let N be the
segment-connected component of x in N,/ N,.Then the function

5 L : : ST
}:bl(N)--v R defined by hgﬂll is the restriction of a homo-
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graphy H,cf. 3.8.Puf b:hlx and azhax.We ghall prove that
hz(N) is open in a.Take the closed balls B(b,rl)tf hl(Nl)
Ndon H and B(a,rg) C h, () ,with ry,r, > O.Then there is
¥ >0 gsb.. Bla,r).c Bla, Tg)lﬁ\ﬂ(b(b rl)).Let ds be a time
line through a and put d, MNB(a,r)= \e y o S By 3.6,there is a
particle p and u,,v, € Ny MNP Skt hg(uﬁ)zeg,hn(vq):f and
[ua,vgj C;quuy QUl,there are u',v'e p MN; with fataile Ny .
Put Iy (u )h (! )/“\P(b rl)n [el, 11 +By C6,%here are

T G D f\Nl g of, hl(ul):el,hl(xl)"fl,¢hen Lul,vl]C;Nl
ef0SePut [a,vli= [ul,vljf\[ug,vgjax.The points H(el),ez,fg,
H(fl) are collinear with a.The gsegment [h2u,h2vj]ccntains ay
hence,by 43,1t includes [e,,2,].1t follows that [eg,fglclzg(i\?).
Let C be the intersection of B(a,r) with the cylinder (x2)2+
+(x§)2+(xq)2:sg,for an's € (0,n/¥2 ), Lét ¢ € C.If ac 18 &
time line,then there is y € N s.t. hey:cgcf. above.If ac is

not a time line,then the line through ¢ parallel to the xl

- axig meets the boundary of B(a,r) in 5@332 f g.t. ef,ae,af
are time lines.By abcve let y,z € N s.%. hgy =@ hzz =f:algo
[x,y]s[x,2] CN.By 3.6, [ysz]C:Ng.Sihce hyy=H" 1) and ‘
hlz:H"l(f) it follows that [hiy,hlz]CB(b,rl) C hy(H,).Then
[y,z]‘C:Nl,chCS;hence [y,2] C N.By C%,there is t £ [y,z]
with hgﬁ:c.it follows that C C.hZ(N).Hence hg(le“\NQ) is
open.

Rewavu.¢he assertlons pvoved in 3.6= 2. 8,9.10,9 13 remain %true

even if Cl and C4 are replaced by the weaker axioms:

ClY.For any p € P and for any X,3,% contained in a
gegment of p ¢\ N,the points bx,hy,hz are collinear,

C4t,For any x € N and for any temporal line d through
hx ,there is a particle p 2.%.: X € pyh(p N N) contains a seg-

ment 8 with ¢ C d,and hx is in the interior of s.

%.14.,Dafinition. A preinerl‘:ial chart hiN ——R is calleg
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inertial if it satisfies also the axioms

¢7,.For any particle p which meets N,the get h(p /) N)

lies on a time line.

Observe that any inertial chart ils adequate,by 2.6.

BT - \.}_" e i % s
3,15, Theorem (W).Let hi:Ni-“—ffﬁ be open inertial charts with

: / :
1-1.2 angd N::Nl(“\Ngﬁ # .Then F:hq (1) »@%(mg,defined by

F(y)zbghzl(y) for any y & hl(N) ic a Weyl transformation.
Proof.The gets hl(N) and hg(N) are open,by 3.1% and 3..o0.By
3.8,F is the restriction %o hl(N) of a humography H of Qq,Leﬁ
v hl(N);tben F maps any time line %hrough y in a time line
through F(y) ,by C4 for hl and €7 for hEQHence F(hl(N) f\Cy)

—

® 2 —'l C @ 14 = : = e
£ CT(y)°£01eover F ,(CF(y)> - uy;by C4 iér h2 and ‘€7 for hlo

Hence

(-3.15.1) F(hl(N) f\c ):hg(N) mcF(y)

By 4.8, F is the restriction to h (N) of a homography H of Rr"
hence F is aAnomomorphlum on its image.from 3.15.1 it results
that

(501502) : F(hl(l\q> mC ) h?(II) /.\ “I\(y) 9

where C%z {inR :Q(x-2z)=0]} Ry a standard argument it follcws
that T maps any iight'ray in a light ray.Hence F is a Weyl
transformation (se§$§n&tance 3,20 bellow), .
3,16.Let.a,b be real non-negative numbersoOnlﬁq congider the
quédratio form :

(3.16.1) Q(x):«;(ax1)2~(bx2>2m(bx5>2mm’*>2

for any X= (x AL ) C_E# ¢

l)axo 2) If a,b# O,using the dl]ﬁ%ﬁ on (A e )\“W"*(x /a,
ﬁ/k

X /“\ we can suppose that arbml.

.l’n & U ,}x g

(3.16.3).If a# 0 and b=0,then the "light" cone
I 1 ~ : N ; " :
CQ::{y;%(xey):u}-becomes the hyperplane By:xlmyle and any

~line through x not contained in Ex ls a "time" line.
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In 3.5 - 3.15 we worked with C1-C7 enounced for the
quadratic form (3.16.1) with a=b=1,
(3.16.4).In 3,17 let C1-C7 be enounced for a quadratic form
(3.16.1) with a# O.

For x,y € B with x'=y" we define the gpatial dis-
4y 2
=

tance between x and y as d(x,y);:(x2~y2)¢+(x5~y5)2+(xq~y
' 3,17 .Theorem.Let hi:hi :»m4 be open inertial charts (in the-
senge of *.16.4) with i=1,2 and Ns =Ny M N# £ .pefine

b oy 4 T4 o l Y
Fihy(N) — R by F(y)=hyhy (y) for any y € hy (1)

(G) Let aZ O and b=0.Then F ig a quagi-galilean

tpansformation (see 3%.18.1).Lf ,moreover, X presccrves the spa-

tial distances given in 3.18,then F is a Galllel transformation.

(W) Let a# O and b# O.Then F isg a Weyl transformation.

Proof.The assertion (W) was proved in 3.15 via 3.106.2.

(G) First obeerve thai 3.6-3.14 are frue also for (3.16.4)
with a# O énd b# O. ‘

Thus ,as in the proof of 3.15,we obtaln that: hi(N)
ig open,i=1,23F la the restriction %o hl(N)‘cﬁ a homograpny HA
of ﬂq;for any y € hl(N), | |

F(hl(ﬁ)f”\Ey):hz(N)/“\EFcy)
Now (G) follows from 3.18.

: Fi '
%.18:Proposition.Let H: R™\A ~”«»m4 be a homography.W.l.g.

Gk,

let H(d)=d,where d=(0,0,0,0).Suppoge that:ﬂ(ﬁd‘\\A) < By

H(Ey‘\_é)fgzﬁﬁ(y) for some y=(%,0,0,0) with t# O.Then H ig a

quagi-Galilei transformation.

Put a=(0,1,0,0),b=(0,0,1,0) ,¢=(0,0,0,1) and

g=(%,1,0,0).If moreover,H preserves the gpatial distances

batween d,a,b,c and between y and z,5hen H is a Galilei transfor-

st s

mation (with eventually Hljﬁ o8




Proof Write H(x) M( 2i~II x +H 5)/( frlH % +H5g). Since H(d)=d,
j=

‘it follows that Hyg= .e,'§d4550 and HBS# O.Jultiplying the

matrix of H,we can suppose that H55x1.8ince H(Ed\\A)<;.Ed,it

regults ﬁhat ngwn ;H,Qag

Trom ﬂ(a \\A) ( ) it follows that &' uﬂllt/(H51t+
5
+Hb > .H57x +H549 +l) Then %! (Hrlt pl)= h t -0 and Hf?“d55“354“o°
Hence '
(5018.1) H(}{ ‘Hlly /(J-Lr-lX ‘}'l)

A homography which satisfy 3.18.1 ls called a quagi-

Galilei transformaiion.

Since H scte as a linear transformation on Ed and preé-
gerves the oistvacesbetween d,8,b,6,;1it follows that

T
2?,_ lJ 1k gjﬂ forany oy osa 4
(Indeed,d(H(a) ,H(ad))=d(a,d) implles that /f_ H?l =1 and d(H(a),

¥
H(b))=a(a,b) implies that j;- Hi2H45:O and S0 on)e.

Since d(h(y),n(&))md(y,z) it regults that (d51t+l)

o

= 2 Hgsl.Hence Hep=0,i.e. B ia a Galilel transformation
i=2 - '
(multiplying the first coordinate with l/Hll).
5 19.RemaWK Usually for a Galilel transformation it is asgked
that the tlme be abaolutegdence in order %that a homography H,

with &(d)«u be a adlllel transrormat¢on,\e can impose H(x) —yl

for any X= (:><1,,}<2,:>,‘5

,X ).Prom this condition it results thats
2.19.0) Hg; =0 for i=1,2,3,4
- Hy ;=0 for L=y Dyt
1z 1“1
In factk (3.19.1) can be deduced from the following

weaker condiftions:

Bt Sop x=(1,0,0,00,(2,030,0),4(0,1,0,0),(0,0:8,0),



=

(O 0,0, 1) (1,1,0,0),(1,0,1,0),(1,0,0, 1l
Indeed,d(x) 1yl neans Hg (y ) l 24H57x x5+Hm4xlx4«
M(Hllnl)z mHl xgmﬂl,yﬁmm %x mo,
| The Pirst two points gilve H51w(Hll~l)xO and 4H51~
| ~2(Hy;~1) =03 hence Hy; =1 and Hg,=0.The third gives Hlazo‘and 50
on.The gixth gives HFE:O and g0 oh.
- 1f ;moreover H preserves the gpatial distances between

d,a,b,c from 3.18,%then H is a Calilei transformation.

e i B 4 . S
%,20.Propeaition.Let HRT\ A —~ K be a homography.W.l.g

¢ e

led H(A)=d,where d=(0,0,0,0).Let Q be f%he standard quadratic

form _on_the Minkowskil space R4 (1.0) .Suppose that Q(H(y)= H(\))~

wO for the following pairs of pointg:x=(0,0,0,0) and y onse of

Zm(l ,1,050) 52,=(1,=1,0,0) ,75=(1,0,1 o),z5-<1 QEe1:0),

O,l/J* ) and 334=(1,O,1/va g*/J~"),x -(1,0,0,0) and y one_of
wlz(1/2,1/2,0,0>,w23<1/2,o,1/2,o),w5:(1/2,o,0,1/2) and
wu‘-.:(l/E ,--1/2 ,0,0) v

Then H is a Weyl transformation.

Prouf.From H(d)=d it follows H, 5=0 for i=1,2...,4 and H 5# 04
. 7
e can take H55=1.Let x:(xl,xg,x & ) and y= (y 3 ,y 4) Put
£
x):lzyS.Suppose that Q(x~y)=0 and Q(R(x)~H(y))=0.The second
condition means

| LA '
o I HL.H T
(_JQ[?OO l) ; [gj_rl (115})' DJ M:/J

k jt]
Let x=(0,0,0,0).Then. (peao 1) Lcoome—sc
4 4 -
S e ety D = J
£3.20.2) e g Al e L y gL o
Feeim] s 0
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Ut & zl and é = 67: 24: ~1.,Then (3.20.2) becomed
&
= = ‘
(3.20.3) ;> 30 € yH; 8y =0

e ’J lf . H. ..Then A, .=A
i i = a8 I £ ST
Pub Akj oy i) e s kJ ‘3k
Teking y=Yps2p ,(3.20.3) becomes regpectively Ajqt
g"tJA-LE'%"h(«rMQ d!‘ld All K.Alﬁ"l Jl/ﬂ)*O'j‘LGl cd ﬁlr)—-Q-vlir\] and Al s ""An2¢
Apalogously from ywy.ﬁ,z5 and =Y, 5%, it follows that AleO_Aﬂl,
App= ~hgz and Ay ,=0=hyy Ry = =By,
.l 7 — A ST = m
Paking y=yp3z * it follows that A25~O Then y= yn4,u54

give AquQ,A54;O.Hence,for X::All,
(3502094) Z;lé lHikHiJ:xak SKJ $ wor k,a l 2 ﬁ 4
e 306

Tet %x=(1,0,0,0). mﬁsn (%.20.,1) Decomes
b 3 p 4

e L 2
Lé; y}%phl > yﬂuéﬂﬂﬁnlrz

1.0
o i '
B - e WA g o
= 1) - e 3 Rl ed)
= Lkzl T el Y B P

This gives

TR T R K 3.
Lo oy g (e ¥ yoH, Ay
=Ll K,i=1 o bl K:’l 3=1 5471]

x{5l+3 ) E vky A

Uaing (3. 20.4) it becomes
V o
3.‘.
‘fhe first sum is not zero (as denominator in H(y)) .Taking ¥
g ot ylal/E,it follows
NG, 27* 5f q vy
(«1/2)H51+y Hepty Hgz+d uguzo _
Trom ymwl,wﬁ,wé%NQ,Lt follows nbl”d”f“AEA:Hﬁ4:O°

Hepce H ig a Weyl transformation.

We globalize now fhese considerationg.
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%,21.5uppose there exists a sef a

of openj,adequate,preinertial
charts g.t. their domains cover M.By 3.13 the sat_Ao ex tends
canonically to an atlas A of M,s;t. any element of A is an open,
adequate,preinertial chart.Thus A gives a structure of differen-
tiable manifold on M; the coordinate transformations are given
by homographies,ci. Jets

If M admits a get A° as above,we say that I satisfy

the generalized principle of inertia.

3,22, Let A be as in 3.21.We say that M,A satisfies the Galilel

pripciple of inertia if there is a subsetb GY ofi b et the

0 t 7 1 he ’10 P o3 " 3

domains of the charts from G~ cover ujlor any hl,h2 £ 6% with
<o o : o -1 4

N=dom hl(‘\aom hgﬁ p, the function hshy sh- (D ==all e &

2

e ; . i O .
Galilei transformation.The set G° extends canonically. to an
atlas G of M s.t. the coordinate trans formations are galilean.

1 ig a Galilei

Observe l:hatf for hy,h, € A the function hyhy
transformasion if it satisfies conditions gimilar to that in
5.18 and 3.19;

3,23, Let A be as in 3.21.We gay that M,A satisfies the Elpstein

principle of inertia if there is s gubgset E° of A s.t.: the

domains of the charts from E® cover M; for any~hl,h2 € " with

N=don hl(“\dom hoy £ P ,the function hghll:hICN)-——ﬁrmq ig &
Weyl transformation.lhe get §° extiends canonically to an atlas
'E of M s.t. the coordinate transformations are Weyl.Obgerve that
for hl,hg é(A,the function hghzl ig a We.yl transformation if it
"gatlsfles conditioﬁs gimilar %o that of 3620.

%, 24,Following [ 7]1,the phenomenon of lizhi propagation in M
‘can be described by a binary relation MY C MxM s.t.r if

(u,v) € M',then (v,u) € M' and uf Ve

4

Let N C M.A function f:N.—R " is called & luminal

chart if

pralnitnibeleuSiiiing



e

(3.24.1) for any distinct u,v € N, the pair (u,v) belongs to '
iff Q(L(u)-f(v))=0 (with @ given in 1.0),
IJet A b@ aS i«n 50210

Remark that if hy,h, € A are luminal,with dom hy /Ndom hyAB

;
then hghl‘L is a Weyl transformation.

(3.24.2) We gay that M,A satisfies the principle of the counstancy

of the velocity of light propazation 1f there is a subget R

of A s.t.t the domains of the charts from C° cover M; any
chart from C° is luminal.
Ey the above remark it results that: C° has the properties

of 3° from 3,2%;0° extends canonically.to an atlas C of M,

whoese harik are luminal.

3.25.Let M,E,A be as in 3.23.ln general it does not follow

that M,A satisfies the principlie’.pf the constancy of the velo-
clty of light propagation.Suppase9moréover,there ig a luminal
chart h in E.Then for any hléiﬁgthe chart hizdom h M dom hl-f>84
h'(x)~h (%) is luminaljbut we can not deduce that hy is lumi-
el

The Michelson-Morley experiment fzee,fof exemple,[1]).

guggests that M,A satisfieg the Einstein principlg of incriia
.and E has some luminal chartm.ﬁut this experiment,bsing local,
doeg not imply that M,A gatisfies the prihciple of the
constanéy'of the velocity of light propagation.The most strange
coﬁs&quence of this would be that the speed of the light

emitted by dista stars would &wrive at us with a gpeed c!
different from the speed ¢ of the Ll@nt enitted by our local
gourcesg.For exsmple,this would explain the redshift of that
light ,without the hypothesis of the expansion of the universe.

The independence of the principle of .inertia. (3.21,
5 5

5e224,5423) from the constant speed of light propazation can

furnish other consequencesswe shall de lopeqome of them in

QO
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forthcoming papef.
%2.26.In § 4 we gshow that theorem 1.1 remaing valid also for
coneg defined by a @ua@ﬁatic form whose coefficients depend on
the vertex of the oone,@hl is élso an argument for the above

digcussed independence of thegse principles.

4 Theorem 1.1 for variable cones

T"x

Tet Bt R~ ——R be & continuous function s.t. Bly) 20 for any

.VCAR .For any X €& RY defines

- NP e 2c i Mg tiene , :
Q?(z)m(zl)gmb\x) \‘(ZL)K+eeo+(zm) j with Zz\zl,egw,zm) in

51

i, fees g oo y -ty it
the standard coordinate system of & ;
: ¢ S
=1z €R 1§ Extwah > 04
Note that the standard ilngoauxl gtructure isg obtaiped 1if B=l.

)

Paking B non-coustant we permit,from the physi gal point of
view,thai the gpeed of light propagation be variable.

s

A line 1 is named dn x-time Mgt 1 C C W ix § (hence

X € 1)
Let 1 be an X-time line.Then there are a,b €1 with
%€ (s, blagnte fop any 2 € (a,b) .1l is algo a z-%imz line (gince

B is continuous).
-

Let U be a subgset ig called

a pdrthl lineation if for any a, bC_U g.%. ab ig a z-time line

for any z € (a,b),we have that #((a,b)) is included in a lineg

A plane A ig pamed an x-Giime plane if A conbains ap
x-time line. . -
A sepment [a;b] is called tenmporal if ab is a z-time
line for any z € [a,bl.
. m .

4,1.Theorem.Let m » 2 and let 7. U~ R" be a partial lineation.

hemee———l

Suppose that: F is injectivey U is connected by gesmentss for
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any % € U and A an x-time plane ,UNA includes an open subget
L D s ; 2
of A containing x; there exist a plane T and three pon-collinear

points v ,Vy,Vy € TK\U'g;ﬁ.;F(vo),F(vl),F(vz) arc non-collinear;

et G

VsV sVy 2E6 contained in a connected component T° of T Uy

containg a point X4 g.5.-70 1g %g,xomtime plane.

- [oRuSR——

i M e B e ‘
Then F ig the regtriction to U of a hemography.The proof
S R S S e

of 4,1 follows the proof of 1.l.
Firgt we remark that if V is a vertical plane,then V is an
%x~time plane for any x € VNUghence VNU is open in V.

Let x ¢U.If A 1g an X-tinme plane then there exists an

<

; e A A St . il
open and bounded subget A7 oL A g.t.t X € A3 A ls a z-time

plane for any z ¢ 2%, B is upper bounded (by an all ;v ) son

5 ol v : s
A%, Indeed B is continuous,hsnce upper bounded on compacis,
$ (5

o [y

03 (3 Yy . * ” s o 3 J{ 3
Taking a=a(A,x) instead of B(y) in @’ .for any y € A" we obtain

] 2 2 B\ 2 \ B i
Q'(z)m(z*)u~a21j(z2)5+¢..+(zﬁ)djePut C§ ={z € R;Q' (y-2) > 0}

@

iy ) %a ]
for any y in A";these C& have the same slope.moreover,C&éle

ey

: X : ' =X ; <
for any ye A Now since on any*A’ we have a family of cones
with the same slope,we can adapt the provof of 1l.1.

The enounce of 2.2 remains the same.In the proof we

13

have to repléoethe glope "one™ of the cones with a constant

slope given by the set ZX,
Thug from 2.2,2.6 and 2.9 it results that
(4,2) for U,F ag in 4.1, F is a l-or 2-lineation on any
connected open subset of A MNU,where A is any plane of R™.,
(Hence F is a 2-lineation on the set % fyom 4,1),
Je have to modify the definition of Ux in 2¢1l g8 fol-
lowgs for any x-time plane A,take a connected open subget A%
A o -~ .‘EX Ep S j R " el oY o) .}. -~ : da ;‘x
of A with x € 473U, is the upion of these zetis A7,
In the enounce of 2.12 we take A to be an x-time plane,
and the proof of the new 2,12 remains the same.

5

Remark that in the proof of 2.1l we need 2.15% only
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o e - L . th& "L
for vertical r-planes (l.e. contalning the parallel p boVxT axis
through X).

In the cnounce of 2,15 we take A, %o be an x-time r-plane,
i.e. containing an x-—time line (particularly we can regtrict to

thoge 4, which contain the line p).In the proof of the new 2,13

we take XVq to be an x--time linesthen there ars vy s;t. XV he
an x-time line.Using the new 2,12 and 2.l15,the proof of the uew
2,11 remains the game.

In order to prove 4.l,observe also that: if [x,ylcU,x# 3,
~there are /Q,oas,an with zoxx,znxj and [zi,zi+l]c;U are temporal
gegments for i=0,s..;0-l.(Indeed,in the vertical plane V
containing x,y,the set VN U is open in Vs;hence we can chooge

the degired By oo 5;ginoe B is éontimuous),

De. preof of 45l dgcan adapta%ion of that of 1.1 a8
folklows.Lét x € UIf A ig an X~tims plane take W té be the maximal
bp@m gubset of A g.%5. X e W 4nU; thep-take A% %o be the con-
necteu open compunent of x in W.Now Ux ig the union of thege setd
A .Start with an x € 7°.Then the restriction of F to U, is an
I=homograpny.

Let yeU s t. [X,y] is a temporal segment.let A be a
plane containirg x,y; then =AY, Indeed A igs a z-time plane
for any z € [X,y];hence +* and AY contain the connected open
set \\_W,J A%,i.e. coincide with i¥t.

LX s 31
The rest of the proof goes on unchanged.

Minor modifications in’ the axiome and definitions which

appevw in 3.5, = 3,12 permit the proof of Proposition %.1% in
the case of variable conecs also and therefore the statement of
the principle of inertia in the form given in 3.21.Hence in

order to coustruct a physical theory based on tha principle of

ipnertia it is nol pegegsary that the principle of the congtancy

of the velocity of 1light propagatlon be gatisfied.Intuitively,
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what is necessary is that for any chart,at any event,the posgible
particle velocities £ill a cone whose slope varies continuously

e,
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- ABSTRACT .The principle of ths constancy of the velocity
of light propagation is used to introduce a defeant¢dule
structure on the universe of events,E.Namely,uging a

theorem provéd in Laj'anﬁ some axioms imposed fto E 1%
ig shown how E can be endomsa with an atlag s.t. the coor-
‘dinate transformations between the charts of this atlas

be given by.conformal (or Weyl) transformations. .
1. INTRODUCTION

In this paper we show that the principle of the constancy
of the velocity of light propagation when explicitly for-
mulated from o mathemabtical point of view,can be used

to Jntruquce on the universe of events E a structure of
zz.zm.lyt:s.Qa,~ manifold generated by a subatlasgﬁhe coordi-~
nate transforméti@ns between the charts of this subatlas

-

‘being conformal transformations.To this end we use

Theoren 1.1 fro m-[2] and some procedures devel

[1]

19
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with whom we gtarted thie approach to the foundation of
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the gpecial theory of relativity.

In the m-dimensional real affine space R™,m » 2,
we consider the WMinkowski quadratic form @ given by
a1 Q:(x): x,i - xg-— S b xi,
where (xi,xz,...,xm) are the canonical coordinates in

R®.We say that the pair M=(R",Q) is the m-dimensional

Minkowskl space.

For. any % € Rm,the get

(1.2)  ¢,= {339(3-x)=0]

is named the light cone of vertex x.A light line of M

ig-a gtraight line which lies in a ‘dight cone.A light
gegment of I is a closed segmeht which lies on a light
line,Let v be an arbitrary vector in Rm.If Q(v)=0 we‘say

that v is a light vector.Note that a light segment [X,J]

defines the light vector x-y.

The Lorentz_ group of the MNinkowski space M con-

“zists of all linear applications meT L, R™ a.t.

QP(x))=q(x) for any X € R™.The Weyl zroup of M is gene-

rated by the Lorentz group and the translations and di-
lations of R".
Let (G/Lv>3G/~v € By y4pmv=l,...,m42,be a mabrix

(of rank m+2) which satisfies
n+2

Gl s 08 T ‘
where 7ﬂ9 are given by

(1.4) “’Zi.: £ 2 g' s 09 : i,j=ﬁ-,...,fﬂ, E].::_ 52:

J L 14
= ¢ =1
. T : n
tlii: (ir:O’ 121’01 ,Iﬂ, I'Zm-i’l, m+2

The matrix (G,,) defines a function G:R"\P—@"

by



£
G, X 4G, Q(x)+G, -
(1'5) G(X>i = la J lr 18’ 1,321,.-.,m,r=m+1,9=m+2)

Gsaxa+Gorq(x)+G

where P ig the empty set or tne surface given by the

89
3,

equatxon GSJXJ+GS Qx)+ G =0,

This function is called a conformal traanormatlon

and 1t maps any ll?ht gegment onto a light segment.Ilf we
'ﬁaka'st:GerGir:O in (1.5) ywe obtain a Weyl %ransfor-
mation,cf. (1.3) and (1l.4).

In (2] was proved the following

1.6 THEOREM. In a Minkowski space M=(R",3) of dimension

m>3,let F: U——i" be an 1ngec+1ve map defined on a con-

‘nected open set U in R".If F maps any light segment

: con*alr d~inU onko a light seeg ment then F i3 the restrlc~

Following closely the method developped is 1)
§ 3,ip the nsx® narav“aph we impose some axioms on the
universe of events in order to obftain its differentiable
‘gtructure,
2. DERIVING THE D.FFERENTIABLE STRUCTURE OF THE
UNIVERSE OF EVLENTS
2.,1.1et E be a set;its elements are called events.Let

L be a family of subsets of “,the glements of L are

named luminal rays.Tme family L satisfies the following
axionss
A.1. For any x € E,there is pe L with x ¢ p.For

any p€L,the set p has at least %wo elements.

A2.If x,y€E,x# yjand py,a€ L s.t. X,7 € Dy4,
the D__ P=q e

A.3.For any pel and for any X,y € p there is

defined a subset [x,y] of p, called segment g.tes

Tx vl =lexlex. v elz, 3]s [x.x] =4z}



2 a,b € [x,y] ,then f[a,b] ¢ [x,7]

let a,b,c,d € p s.t. [b,e]lN[a,8] £ 0 tif bye ¢ [a,d]
then [a,d}c [b,c] ;if be{a,d] and ¢ ¢ [a,d] then either
tﬁ,d] C [aye] aha [b,elnila,al =1b,dler fablic 4]
ang Lo el [agdl = [aibi.

The set [x,y] \ ix,y} is denoted (x,y).

=

A8, 1 peb and ¥yy,258 € p sty {5,500 a, 0,
then [x,y! \Jz,t] is a segment.

In. 2.2, - 2.10,N is & non-empty subset of E,

2.,2.Definition.N ig called luminally complete ifs

BisHor.any 1 € T and ;any 3,y LN i follong
that [x,y] €N .
Bii.For aoy 1°€ L and any x € N with x € 1,%here
ape gy €L AN sk, 3 E (y,z) < i |
SE2 ins Ni,NE C E with Ni=lly \N,#0.12 N,,N, are lumi-
nally complete,then N is luminally complets.
' 'Indeed N gatisfies Bi since from 1 € L and
X,3 € 1NN 1% regults [x,y]g;Nl,NE,i.e., Eﬁ,y]Q;N.
Now take %x €N and 1 € L.with Pl Sl Lol Nl
(resp.NE) assures the existence of {yi’zljé’l f\Nl witn
xé;(yl,zl)(resp.[yg,za} e l/“'\N2 with x € (yagng.Cf.
A3,%x 18 contained in the gegment [y,z] := [yl,zlj(\

‘{32’22] S 1N H,where y,z are two of the points y,,

z
'l’
Y125+ It follows x# y# z.Thus x € (y,2).

2.4.Definition.A function h:N—&  ig named a luminal
'ggggﬁ 1k i i Jeetitve and for any %,y € N with x4 y

the following helds dikues thare is L€ L s, x,yelNAN

iff Q(hx-hy)=0.(When no confusion can appear we denote

h(x) by hxJ.

2e5.L8% h:N-—@»R& be-a luminal chart.Then for any 1€ L

and any“x,y,2 € 1NN it results that‘hx,hy,hz are col-



b
linear on a light line.
Indeed,the assertion is evidently true for x=y# z
or x=y=z.In the case xAy# z,from
(2.5.1)  Q(x-y)=Q(y-2)=Q(z-%)=0,
e
it results that (X1"31>(X1"21)"£2é (xi~yi)(xi~zi):O.This
implies that the light vectors x-y and X-z are linsarly
dependent (for a proof see for example (2],the proof of
Lemma 2.2 in the case n=2).Thius the points hx,hy,hz are

collinear on a light line.

2.6.Definition.A luminal char%® he N ~—**R4 ié pamed

adeguam 1f'
Ci. For any [x,y) € N it regults h(Lx,y])_

S - : 2 - o e : s
2:7,DefinitionsA set U C R is named light complete if:

DicTer any light line 1 C R ana for any

E,y e-1al, it follews. [x,y] & U,

Did.Eor afiy ve-U and any light line-dewith

ve d,there are u, grexd 2 Usgelvnvsg (u,t) &

2,8, LEMMA.Let U be a light complete subset of R Then U

ig¢ open in'RZ“°

Proof.Let b be an arbitrary point in RY ana let
Gypeser€, With 1 € n < 4,be light veotors of B which

are linearly ihdependent.@he prism
: g o< Do ,
:{X e’[R ;X:Z,— a'a'*'<1“'z,a'>b, ““léa-gi,j:l,.su,/‘;‘}
i=1 * * i=1 ™ J

ig gaid %o be a light n-prism centered at b and generated

1 ; : X . /)
by the vectors 61,.0.,SF.AH affine n-variety V of R
whose translation space uOdudch n linearly independent

light vectors 1ls called a light n-plane.

We prove by induction on n e&i,...,4j the following

property
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5(a,n) For any v ¢ U and any light n-plane .V,
ﬁontéining'v,there exists a light n-prism P, 9.t.: v
ig contained in the interior of BBy © Vi ByiGi Uy
(Thus U is open in v since,by (a,4),an open ball of
céntre v and included in 94 can be constructed).

The agsertion (a,l) is true by Dii.Suppose (a,n)
iS true for n € {1,2,3}.Then we préve (a,n+1).Let Vn+1
be a light (n+l)-plane which containg v and is generated'v
by the light vectors 6;....,8. ;.Let [¢,b]c U with
v exloyb) and b-c parallel to en$1.ﬁe can put en+1xb—c.
Taks V and Tn two light n-planes sg.t. aay point x of Vn

n
‘(resp o ) is of the form x~u+z*_ a.e. (reap.x=bs+ Z_ a.e.),
: =1 SHEE L 1=1 AL

where a, € R,for i= Lyes o 0o Théey jby Ca,n)yihope ig
light n-prism Pf(i U (resp.P} ¢ U) which contains-c
(resp.b) and 1s generated by n light vectors el,...,en
\reqp“ui,...,c ) Lt P cu (resp.P'«: Tn).Also
from (a,n) it is clear %that we can choosse 6 I ei e,
for d=ly v nilhen convtruct the light (n+1)—prism
R;}l (resp.R' 4) gererated by eg,...,eg,en+1 (resp.
ei,.;.,ea,en+l) which contains Lc,b] and P; (reip.P!)
Put %n 1’“R 1 M R 1.uy construction Pn‘1 ig a light%
(n+1)~-prism,whose interior contains v.lloreover P 1<: U
Since any x € Pn+1 lies oh a light seement (parallel
to en+1)_whose extremities y,z are on'P; and ?é,respecti»
vely.Since U Saéisfies Di.from 3,z € U it resulis
[¥,21C0,
2.9.Let N gatisfying Bl .th hs M -»M4 bs an adequate lu-
minal chart.Then h(N) satisfies Di.
Indeed,for any hx,hy € n(W) with hx# hy and

Q(bxmhy) =0,since h is a luminal, chart it follows that



e |
thére is 1 &€ L with x,y € 1 N N.From Bi it regults
| [x,y]é;N,Tberefore,from i ht izl )= Lhx hylic B,

E.io.Definition.A luminal chart h:N-—Hérﬁ4 ig called

open if h(N) is open in Rq.

2 PQOﬁOuITlO& Let N,,N, < £ be luminally complete and

iy ; \ .
let h,eN. —= R ,i=l,2, be adsguaté;luninal chartg.lf
— LTl

one of them is an open chart,then bi(Nif”\N2)3i:1,2,

; 4
are open gets in R,

Proof .Suppose h, 1is open.Put N::leﬂ N2.If N£ §, then
N is luminally complete,by E.B.Pafticularly;by 249,
hl(N) gatisfies Di.Now we prove that hl(N) satisfies
also Dii.(Hence hiCN ig light complete,and,by 2;8
it is an open set).Take bé.hi(N) and a light lipe. d with
b € d.Since h1<N1) is open we can find [a,c]C dNh (N1>
g.t. b € (a,c).Put x:h{i(b),ylzbai(a),z =h, 1(3) Because
'hibis luminal and N, satisfies Bi it results that therce
ig 1€ D g.b.s X €1, [77,2,]1 € 1 NNy3x € (3y424).By Bid
for Nd,it follows that there exists 32,226:1/“\N2 with
x € (35125) € 1 NN, From A3 it resulis that there
exists a segment [y,2z] 8.tz x € (y,2)5 [ y,z] =
= [ Fp027) N BRI ERIAR T {y,2] contalns at least
two dietinct events from [yi,zil .Since h; is adequate
it follows that hlﬂ},zj)z [hi,y)'hlz]'é dNN and b é(hly,
hiz).This proves Dii for hl(N)}Eow take any connected
‘component U of the open set hl(N).Since h2 is an adequate
Juninal chart it follows that the function Fi=hyhi™: -
1r1;l(1‘~2f)-—~-“7 Rq is injective and maps any light segment
in hi(N) onto a light segment. uence by 1.6,the.restric—
ﬁion of I to U is a conformal transformation.Therefore

F(hl (u))thz () la an open set.,
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2.,12.5uppose there exist: a gt A° of open,adequate lu-
: ; e e ; ﬁ
minal charts h,:N,a->E& s.t.2their domains cover Ejeach

A

.set ﬁ%lQ i3 ié'lumlra7lj conplete .11 the set 4° is
a subatlag of E.It extends canonically to an adequate
lumginal atlas L of E.Indeed let us define the adequate
luminal atlas A generated by A° ag being the maximal set
of adéquate,luminal charts h:N—R" which satisfy:for

“any chart ha;Na*—?Rq of Ao,it follows that ha(N f\Na)

js an open set of R'.Then,if U s=h (NN, )£ Pythe

: e e e
feackion B, iU

e >R4'maps any light segment [ec,b]lof

U, onto & lignt segment.lndeed put ymu 1 Gay= 1b;since
‘N, is luminally complete it results that [x,ylCN_.
Thus from h_( [x,y]);;[c,b' and the'injectivity of h
it follows that [x v]C I f\u.”hcn,since h is an adequate
luminal chart,h({x,y]):mha ({c,b]), is a light segment,

Thus ,by 1.6,1it results that: the restriction of
-1

o to a connected component of U ig & conformalA

transformationy h(NMN N ) is an open get orna h L =t is

hh

given also by conformal transformations.Analogously,for
any.h,hﬁé.égit follows that h'h"l 18 given by conformal
trangsformations.

‘Therefore A gives a structure of differentiable
manifold to E:the coordinate transformations are glven
by conformal transformations.

Tt E adnits a set A® as above,we say that E satis-

fies the principle of the constancy of the velocity of

light propazation.

4

13 = = 2 4
L ?OnLﬁbi ON.Let G:R°\N.P —R" be a conformal trans-—

s A e G e S LN =
forma hloﬁaf:”“a,tu e 8

et s A R S s Dt oY i
,Q;u),dim\l,Q,G,O),bq«(cﬁQ,u,O),

ay=(1,0, 1/2,05/2) a0l DQ«(K 0,1 ,1) Supposs that G maps

X

he collinear points d,a; ,b; in collinear pointa,for
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i=1,2.Then G is a Weyl transformation.

Proof.Firat obgerve that since G is a confornal trans-

formation,the line‘genefated by G(d) and G(al)(resp.G(az))

is not a light line.
Now the proof is based.on séme facts proved in (2]
Let 61:(1,1,0,0),fiz(i,--'l,(),(}),62%(1,0,1,0)&2:
=(1,0,0,1) be a basis of light ﬁectors in RY.The points
dyby 875 £, (resp a bz,ee,f ) are the vertices of a light

2-prism 7T (resp. T ).By Lemma 2.3 i F ol "(or T )

is mapped on a 2-plane or on a hyperboloid H.Any straight

line excepﬁ the 1igbt lineg which penerate H,meetsg H in
at most-two points (gee formula 2.10 in [z]),alnoe G(d),
G(al),G(b1> € H,this contradicts the hypothesis that
they are collinear.Therefore we can find in JT and @

the parallel light lines used in Corollary Tesmtmem 2],
-whlch belng mapped by G in parallel light lines assure
us that G ig a VWeyl transformation.

2,14,.Let A be ag in 2.12.We gay that E ,A satisfies the

. Finstein principle of inertia if there 1s a subset B°
of A s.%t.:the domains of the charte from B® cover E;for

any by by ¢ B° with N=dom hif“xdom h2£ f,the function

=1 _
hzhl“ :b,l(N)~~-—>-[Rur ig a Weyl transformation.The sel B

“extends canonically to a Weyl atlas B of E i.e.an atlas

for which,by definition,the coordinate transformations

are Weyl.Ag above and using alao A2 and A4 it can be pro— .

ved that the bharts of B are luminal and adequate.Ob-
serve that for hy,h, € A,the function hahzl is a Weyl
trangformation if it satisfies conditions similar %o
those given in 2.13.

2.0, Remark.From the fach Lhdt E,A satisfies the Einstein

principle of inertia it does not follow that the global
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gtructure of E ig isomorphic with the 4-dimengional minkow-

" gkian space.
' 2.16.In § 2 the dimension of Hq ig noft essential.ﬁimilar_
congiderations could be done for any "nodel space" R™ with
my S _

Since our approach does not impose a global minkow-
skian etructure to E (see 2,15),it seemg to be more con-

3

venient that the approach developed inl:5] .
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