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ERGODIC THEOREMS IN @ -LATTICE CONES

by
Radu-Nicolae GOLOGAN

Abstract. We extend the maximal ergodic theorem of Hopf
to the case of @ - lattice cones introduced by Cornea and
Licea in [1]1. As consequences we prove sone abstract potential
theory results of maximal type and an abstract pointwise ergodic
theoremn, ' '

The concept of @’- lattice cone of Cornea and Licea can
be viewed.as an abstract setting of the cone of positive measu-
rable function over a measurable space, The aim of this paper
is to extend the point;ise érgodic theorem in this abstyract ca= .
se, The largesclass of nontrivial examples of ¢~ lattice cones
proves that such results could be useful.

For the begining - lek us.recall some definitions, nota-
tions and basic results from [1] which we need in the sequell,

An ordered convex cone (C,<,+) is called a §'~ lattice
cone if the folliowing are true:

a) For any %eC we have %30

b) For any x,y e€C such that x¢y there exists zeC such that

X+z=y; :
c) The ordered set C is a - cémplete lagtice;
d) Denoting as usual by"A"(respiv) the infimum (resp,su-

premum) operation, for every xeC ana any sequence (Xrene NcC'

we have:



XU XY= SN e )
ne® " new 1

XA( v Xn)= V4 (x/\xn)

nelll  ne N
X+né\ﬁ\lxn= néu‘i(x > Xn)

B MR =Y (x+xn)
n¢ N ne W

If C is a'0-lattice cone, an element x¢C is called finite if
for every vy, ysx the element z¢C such that x=y+z is unique, that
"is equivalent with A l/nx=0. The cone of finite elements will

‘ nyl
be denoted by Cs.

The s.et. IC| defined formaly by [C{=C-CAS haé in.a. . pagnscal
way a lattice structure induced from that of C,in such a way that
|C | becomes an uppé.r X ¢’-complete and conditionally lower-¢- com-
plete lattice, The relations d) hold alsc in |C]l.

C and C’ being (V- lattice ccnes, a map T:C—»C’ is called

a-kernel if T0=0 and if for every sequence (Xn)nelN from C we
) .
have T(5 xn)=2'l‘xn, the infinite sum being considered in order.
n=0 n=0

A kernel TiC—»>Cl is called, .proper if for every xeC there

exists-a sequence (Xn)n in C, increasing to x, such that

el
1’ faoe
Txn&LS for every nelN,
We say that a ¢’- lattice cone is proper if the identity

map is a proper kernel,

For any x&C we denote by I the map I :C—>C defined by -
Ixy= v [(nx)/\y—l

ne N

It is easy to see that for any xet, I is a kernel with
the following properties:
! i ;
(1) I_2 1,‘en+'+y

2_
(2) =14



(3) Tl o\ Yo AT %
X Hew nelj =

LGN = AT
"nel ne W

<%

I  for every (xn) ThaCy

Ve Vg I, néN

e nelN “n

We shall say»that IX is the indicator of X.
Moreover, if for z¢|Cl= C-C, we put zf=2\/0, z ==2zA0
(in 1Cl) we havé z=zT-2" and for every xeC, yéCS.
f(x-y)+(x—y)ﬁ=0’
and |
Lig-p)* %2 Tt ¥
A measure on C is a.kernel /L:C—9E+. The set of measures-on C
is a ¢’ - lattice cone that is complete,

If T isa kernel on C, an elementsxeC (respectively a measure
on C) is called T-supermedian if.Txg x (reSpectively,pJTx)sfpbd
for every x€C), An element xeC (resp, a measure‘/u) will be cals
led ‘T-invariant if equalities hold in the last relations, ‘

1f xeCé is T-supermedian the_Riesz decomposition theorem

asserts that there exist unique u, veC_ such that

X = GTu+v,

(l\ n

where GT=I+T+...+Tn+... and v= A X satisfies Tv=v,

We need also the followggg natural construction,

‘Let M be a measure on the» 0~ la?tice cone C and let us
.denote'by Cg“ the G~ complete subcone of C of those elements
xeC having zero p— measure, that is /dx)=0.

Defining in.C.the eéuivalence relation ~ by: Xwy 1ff
there exists xoecf'such that xsyt+x and ysg+xo, the set of clas-
ses Cﬁgu becomes a ¢’ -lattice cone, If we denote by X the class
of xeC, the following -are trues

(L) xe(C/cp) o 1EE A (1/,)xeCy;

e o ] A
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C/e# and fd%)=0 implies %=03

(3) g /Lis T-supermnedian the map T on C/Q} defined by f§=§; is
a kernel on C/C/{. £

]
Two elements x,yeC are called./ralmost everywhere (a.e,) equal
SE =,

For a sequénce (xn) in C we shall define as usual the upper

néel
limit and the lower limit by:

lim sup x. = A V X

n m
n ~» o0 n m>n

llm inf % =V A m
Redeodi s ol (TR T W 1 B

7 ha i £ 3 '
le shall say that the limit of the sequence (Xn)nelN
exists if lim sup xn=lim inf X and that the limit exists M mase.
L3 © .
. Ao L : ; . :
if Tim sup x:.=lim dnf %, In paxticulax lf/u(llm sup %.)y<%  .andg
n n . n
/L(lim ing xn)=/dlim sup,xn) the Jiimit exists = ase,
Finally, two elements x,yeéC are said to have the same sup-
- i o — ° ] ] . i ‘
vport = ase, if Iy Iy as kernels in L/Cr
'The results of the paper can now ke formulated,
The first one is the natural extension of Hopf’s maximal
ergodic lenma,
If T is a kernel on the ¢’- lattice cone C satisfying

TCcCy and x&<3 let us denote by rn(x,T)=rn(x) the element

0 (X+Tx+ 4 o o +T X )Lor every ny 1l e

Proposition, {(Maximal ergodic lemma), Let C be a ¢’-lattice

cone, T a kernel on C satisfying TC_cC_ and.u a proper T-super-
N
median measure. If x=x-x"€|C| with xC, x"eC and X, »’r (Ll
- =1
for N->4A we have: ‘

ll

/Jix+x ,ﬂilx +X for every N3i. .,
N N

Proof., The proof will be on the line of that of Garcia for

the classical ergodic leumra ([2}). Let us suppose first that



s

: e +
fix') andffix") are finite, From the fact thatﬂXN;rn(x,T) vie
+
have that TXN;Trn(r,T) for every n=0,,..,,N-1 considering r =C,
Adding x in both parts of the last ineguality we obtain that

TX;;>, xn+]_ for nsly1l, senyN-1; that is:

B

i G
lxN }'ZXN
or:

S + ] X + 1 +
T‘{I gD R 1(N>,x + AN
Applying the kernel I=I1
XN

+ + +
G4 m [ -1 = WY,
l-XN+Ix ;Ix +IXN Ix +AN

to the last inequality we have:

This implies that:
: (ITX+)+ (Ix’)> (Ix")+'("<+)
7 WA Z M Fvey

But I¢id and w is T-supermedian which together with
/u(X;)<d> implies the desired inequality.

If %'leCiox x"eCs have .not finite measure it will ~suffice
to use the fact that/L is proper: there are increasing sequences
g ? " o = " ? oo
(Xn)nzO and (Xn)nz&obuCh that vx/=x , Vx =x and/ﬂ4xn)< 5
/L(Xg)<oo for every n €N, We can apply the preceeding proof’ for
b4 =x’-x" and then use a standard upper limit argument.

o, " n m
The following consequences of the abstract ergodic lemma

can be viewed as abstract potential theory results,

Théorem I, Let C,T and /b'be as above and. x,yeCg such
that y is T-invariant. The following then hold:

o0 - ’
(1) y3 N 1/, r,(x,T) imPlieS/L(y);FiIVx)
n=1 B

(ii) v le/nrn(x,i‘) implies u(y) plI x) .-

Proof., We shall apply the preceeding proposition for

e icaamane ]

z=g¢y-x, where e 1 iscarbitrary;.fie have:

AT ey plI (XD
N N



where Zg= VvV rn(z,T). Making N to tend to infinity, the sequence

+ m=d
2y being increasing we obtain:
ST ev)/u (%)
: Z
where
s R =1 n=1
et rn(z,Tf [e A N T b )J :

n=1
the last_equality being an easy consequence of the T—invariance
of y and the distributivity laws in Qe

Moreover the inequalities y> ;51(1/nrn(x,T)) and £ > 1

implie,as a direct consequence of the definition of the indica-

tor kernel , that I +=Iy; Thus the inequality (%) can be writen:
VA

S/:(y) =/(I;,€ y)z/w(lyx)
In order to obtain inequality (i) it is sufficient to
make € ¥ 1,
The proof of (ii) ryns in the-same way if we apply the
ergodic lemma for x-&y where 0ce<l,

The following is an immediate consequence of theorem L,

Corollary 1 , Let C,T and M be as above and let xeCé

have'finite/L— measure, Then every T-invariant finite element
yeC satisfying xsysg t;l/ T (x,T) equals X—/t-ﬂ.e. In the same
mdnner every ¥~ 1nva¥1§nt element yeC having a- a.e. the same sup-
“port as x {that iss /dlyx)=/dx)) and satisfying I;/_\ll/ r (2 1)<y<x
equals x A- a.€,

Procdf: For the first part,we have:from Theorem 1L4i) that
< (I x). But (I x)¢p(x) so w(x)=uly), which combined with y3x
[L(Y)/L(y) ,u(y),w( /A()/Ay, ¥
andlpix)<oo concludes the proof.
The proof of the second part nakes use, in the same way of

Theorem 1 (ii).

T+ is interesting to reed this corollary in the case



‘when C is the cone of positive measurable functions over a (' -fi-
nite measure space,T being the‘extension of a LA(X,ZZF)—positive
contraction, For example if feLl is positive and
sup l/n(f+Tf+...+Tnflf)=oolﬂ—a.e.)our results asserts that there

Dk
exists no T-invariant finite positive measurable function greater

n-1

than £ u-a.e. Also if £30 is in L) and inf 1/  (£+Tf+,, 417 7£)=0

nzl
/L-a.e.)than there exists no T-invariant measurable pcsitive func-
tion less than £ u- a.e, and having u=- a.e. the same support as £,

The second corollary can be viewed as a disjointness result

in the Riesz decomposition.

Corollary 2. Let C,T and u be as above, Suppose that

xeCg 1s T-supermedian ‘and x:GTu+v is- the Riesz decomposition.

Then+

pe(v) = p(I %)
In particular if x(x) < o= we have /dIVCTu)=O, that is the
invariant part and the potential part have /u-a.e‘,disjoint

supports .

Proof, From theorem.1l(i) we have that/u(v)gfdlvx) becadse
. (] oo :
v is invariant and v= A Tlx= A i/ x,(T,x), the oposite inequali-
nl n=1 ;
ty being obvious, For the second part apply the kerncl~Iv and
tng measure uw to x=GTu+v. |
Our generalisation of the pointwise ergodic theorem is

also a consequence of theorem l, However the abstract setting and

absence of units involves some more assumptions,

Theorenm 2 (Ergodic theorem), Let C, T be as above and let

/Abe a T-invariant proper measure. Let xeC and suppose that

~ pllim sup 1 (T,x))<ee Then the following are equivalent: o
n—oe
a)lim sup l/nrn(w,x) and lim inf l/nrn(T,x) have,q-a.ea the,,



same support;
b) the limit of 1/ r (T,x) exists m-a.e. Moreover in

every case we have:

p(lim inf l/nrn(T,x))=/dlim sup l/nrn(T,x))=/u(Ilim inf l/nrn(x'T?)

Proof, Let us use the following notationss:

x_.. S o it
=]lim agp l/nrn(i,x)
X, =lim inf l/nrn(T,x)

By standard arguments we have Tx £X and Tx%,xx, that is by the

xE

T-invariance of the measure w and the supposition that x* has
e finite measure that in(?/cﬂ> iﬁ and %X are T-invariant,
o ’s
The implication b) = a) being obvious, let us remark, in
5 . s oj&w o o o o;:‘_
proving the oposite one, that x'¢ V l/nrn(i,x) and Axen:li/nrn(f,§}

n=1
so by theorem 1 used in Cy.# , we have:
o

/lcix)a/lm}-(xi)

and

e o3k ° °

pxT) g (T %)

o _
As;by usual arguments, it 1s easily seen that /dlkﬁx)=lﬁlxxx) and
ﬂ4I°X§)=/KI %x))by combining the two inequalities we obtain the
X X
desired result.,
Finally, let us remark that in the classical Ll-case disciiss

sed above, theorem 2 gives necessary and sufficient conaitions that

for felL f30 the ergodic average converges M= a.e,, knowing that

ll

~lim sup l/n(f+Tf+,..+Tn-;f) is integrable, without knowing the Lee™
n-—oo

<bhehavieur of T
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