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- BOUNDARY CONTROL

FOR A STEFAN PROBLIM

1. Introducbion

Let 0) be a bounded domain of the Euclidean SPace’Rg with
sufficiently swooth boundary [and @ be the cylimder NxJo,n| with
lateral face L= [ ]o 1[ .

4 We derive existence and spproximation results for the
boundary control problbn' | ‘

3 13 G 1 =  _ 2 4+ 1 2 } g
(P) .su__,ﬂ.lu.,lze I°{§ | J <y ‘/6_ l E gt ul 2 (F) J’t

over the set all fDnCthﬂo v € .2 (0,T 3 H) and u € L ( ).subject

Go:s
(l;l) v(bex) = L7 (Ly5)-= 0 3 | 20640,
v (6,x) € E (7(5,%) | a..Q,
(1.2.)' S3¥ . a,he,il_
: Jn
€1,2) yilloyz) = Yo (&) ae€e f1~

Here H = L2 (), yq € LE(O;T;H), }w i X denoses the norm
of the space X and.FC:R x R is a maximal monotone graph. When e is

given by

| | r - r, | ey o,
(1.4) {5(3:’) = = 3
: [n'J,Qj if r =1,
r
K(r-ro) -4 ' : if r < 1o

where K,cf are positive constants, we obtain a two phases ctefan
free boundary problem (see Je.Le.Lions [8] y DPe196).

Starting from some problems arls:t.nU in metallurgy, a simi-
lar control process was considered by C.Sagucz [lﬁ] , Che#, by means
of a seni-discretisation metihod. (ur approach is different and can
be conpafed with the papers by V.barbu [L] [)J o It consists in

replacing the protlem (P) by a family of smoo6th problems dnd afuer~'

wards to tend to the limit in the approximate optimality conditions.



The éase of_fhe distributed control for the system (l.1)-(1.3)
was studied by Z.leike and D.Tiba [;2] .
Dehote V = Hl(fi) and A = V-»V® the linear continuous operator
“/aefined by |
CLeB) (Ay,2z) = Lérady-grad z dx v12 € Ve
| Consider °P i q ]~y +o0] Ghe convex, lower - gsemicontinuous

proper function given by

J(y(x) ax i 3 () € 1 (D,
+ o0 otherwise ‘ ' _ -

and'B ¢« H —H the maximal monotoﬁe operator, B = SiF

_ Here j 'R =] -0, +sxq is the convex, lower-semiconti-
nuousffunction such that ng é 4. a8 L 5 wd is the pairiﬂg between
Vv and V¥, |

BEquation (1l.,1) = (1.3) can be- written as:

(L7 %% + 4y =1 BeCe [p, T] %
v () € B (F(1) 8eCo [o, T] js
(1.8) y(0) = 7o € H, :
where £ € 16 a2 3 v# ) satisfiess {
' T , T 4
(1.9) (o), vedas = [ [ a¥al as
- o, 0 p :
~ for every ¥ € L°(0,T 5 V) and u from (1ad)e

There is an extensive 1iteratqfe treaﬁing equation (1.7),(1,8
under various -compactness or boundedness assumptions on operators
A-and B (which can both be nonlinear), bubt -requiring differentiabi-
lity properties for f. See -€.8. 0.Grange and F.lignot, [10], s
Barbu [4] s £ BEgUeZ [15] . | by, : ¢

The case f € ﬁg(o, s VE ) is considered in a recent paper
by B. Di Benedetto snd R.k. Showalter [7] also allowing A and B -bo

be nonlinear., Our Proposition %,1 can be deduced from their resultse

However we indicate a direct approach which enables us to prove in



e

Proposition 3.4, & weak continuous dependence on the right hand
side for Egs. (1¢7)s (1:8). '

Our work is organized ags follows. Section 2 is devoted to some
preliminaries. In Section 2 we establish the existence of an optimal
control and Section 4 contains an approximation process for problen

(P). In the last section we add some remarks on the necessary optima-

lity conditions.,

The main results of the paper are Theorem 3.D. and Theorenm 4.6,

Preliminaries

P

411 the spaces are real. If E is a Banach space, then It 40,

Us)

T; E), 1 $ p § - , is the space of

0w

all p—inﬁegrable, i = valued
functionsy C (o, T3 E) is thelBanach space of continuons i - valued
_functions and .
7o, By =| v € IF(0,1iB), G- € Lo, T B }
We also denote by HK(fl), .WK’P(IWT), HS ( [ ) usuval Sobolev
spaces of real functions.
' Lo & -4']— oo 4 +<xﬂ be a convex, lower-semicontinuous func-
tion. We write dP(x) C E ¥ (the dual space) for the set of all sub-
‘gradients of ¥ at x |
= { P e TP PE) + (3, xy), ¥y EB
When T’is GAteaux differentialble, then Jd¥Y(x) is single valued,
A (x) = vex. | '
Thé following two theorems will be used in the sequel

Theoren 2.1 (V.Barbu and Th.Precupanu, [6] o BT Ve

Let T Dbe a real reflexive Bansch space and H be a real

5 e

Hilbert space. Let P E-*J - 00 4 +txa be a convex functlon defined

B %ilg) =% (R “fop. X & B, where f is lower - semicontinuous

Proper Ccouvex function defined on H, while A 1is a linesr conbinuous

operator from E into H.

Suppose that int D (£) N R (4) # @ . Then, for every X '€ Ey

L AR s AR DA

- A iope A i £

e 1 s e ars Tk A

s s 5 mam s

R
i
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Consider now two Hilbert spaces V and H such that VC H and
the inclusion mapping of V into H 1is continuous. We are given a
linear continuous operator A ¢ v - v¥ which is assumed to satisfy:
(2.1) (4y, z) = ( Az,y) ¥y 2 €NV |
2.2y Gy 3diz wil y_lV2 ¥ y€ vV, w>o,

Let ¥t V = ]-oco, + oo be a lower-semicontinuous corvex
function nQnidentically'+oo.

We consider the following variational problem

d-j’ : £ - '
(2.3) 3% + Ay + 3P ( %% ) 3% a.e.j]o, T[
(2.4) v (o) = TN ; '

Theoren 2.2. (V.Barbu [5] y De 213)

: o
We are given Jy . €V, £ € Wl’“ (o, T3 V s P

Then oroblem (2.,1), (2.2) hes a wpigue solution y € Clo,T;..V)

which gaticsfies

(2i5.) AL TE BT

(2.6) %{— €12 (o,1; H).

3, The Existeance of the Optimal Control

We remark that A given by (1.5) satisfies .
(2.,1), but not (2.2). Instead we have ;

o . 2 - - .
(Sal) (Ay + €7, y)> el yl v e Y €V, for all £2 0.

Taking into account (1.6), (l.4) and assuming for convenience

that K > 1, we notice the following properties of nonlinear opera-

s hop B 2

(302) B=-1+2D
where DC H * H is a cyclieally maximal monotone operators;
€3, 3).dom < (B) = B abd

: IB (y)tH $ Cl ’y'ﬁ-_ ‘5‘02 e

We denote w () = [Ot y (s) ds and transform (1.7),(1.8)

to obtain the pseudo-parabolic equations

motenn B

o i s b N

AR Atk o3 B e st 4 35
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(Z,4) Bl o dw ) +Aw 3 g i ]o,‘l‘[ :
W (o) =
I (0 T e
where g € W (oo B3 W7 ) As given by
X
(3.5.) g (t) € [ £(s) ds + By,
o

Let 1 ¢+ V> H be the canonical injection and ?: V—a]-—w,~e~ao]

be given by ?(v) = P(i (v))= ﬂv (v). By Theorem 2,1 we get:
(8.8 Bv = 3F(v) = i¥ QYL (v) ,¥v EV, "
By i Bade B |ow (vl

Proposition 3.1  Bauation(3.4) has a u.nique solution

W €C (0,75 V), ¥ ei® (o,75H) and B (§h € 1° (o,13H).

Proof

By Theorem 2.2  the approximate equation

(3.8) - ‘B 3;5 )+ ew, +Aw g a.‘e.]o,{{‘[ ,we(o) =
has a unigue solution w GC (0,T; V) such that, %%i 6L2 (o,Ts8 ),
w/'t?a-“-‘-‘leeL (0,15 V).

We use (5./) and (3.2) and multiply (3,8). by ? 3

=
(3.9) 5,2 : b
djv: - ) 7 14
f l,dé_eln +%— (Awe(‘t), W o (t))sfo (g+D (0}, —_-gtj'é) .

Next we integrate by parts in the right hand side anda use the
inequality :
: it & ¥ i dw .
(3.10) Flw®l ¢ [ gy
. | ‘ - A |
bo get  {w.}, f 3‘;’&} pounded in L% (o0,T; V), respectively
1° (0,T3H). From (3.3) it yields { B ( $¥e ) vounded in I? (o,m;H).

ag
dw, dw
We subtract, two equetions (9 8) and multiply by dLE gl Ay

t ' N
dw Qu i o dwe | dw
j‘ €, o= 'H+[o (awg-)m/\,% W“_Adt ) +

% dw dw

Then, we conclude

dw dw X 24 i
o A AR stronely in . (o, T: H).

i S s A S vt AR

A A b

SV A RSO ey Wi SRS v S
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We —> W strongly in C (o,T3 V),

dwg dw
D ) = DA = ) wuakly in L (0,T; H) by the dem101006dﬂ855

of maximal monotone 0perators.

. N 5
Definition 3.2, ~Function y = %% eL .(o,P3 B) will be called

the seneLalvaed solution of the Stefan pcoblem (1 B EECT e 5

Remark 3.%. from the next proposition we ll see that in fact

y € L TPl V). s |
Denote by 6 ¢ L (5rk: — 5 1 ( Q) the mapping u->y, where ¥

is given by Definition 3.4.

Propogsition 3.4. Let u, —U veaklz in _L2 (i)« Then Iy =

Q(Hn)«by = ¢ (u)weakly in L (0,73 )
Proof -
From (3.5) and (1./) we obtain g,—> 8 weakly in wl 2 (o s VK)

We have
dw_ dw “ i 1o
(5&11) 1L .
: e D ( E‘-{" ) + A Vi, = &y a.eg]o,T[
Wn (0) =
dw
and as in the preceding proof we infer { W } ,% — } ;{D (EEE )}

bounded in L (o,T;V), L2 (0,%; H) respectively. .
Put A ¢+ V — V¥ given by &v = v + Av and let Vi € L2(0,T;V)

be gnch LHhat

(5612) - A Vn‘ = gn - Awn : g
Then v, = h = w,, where by =4 (8, ¥ w, ) is weakly

convergent h -> h in Wl’g Eolt & Vs

From (3.11) we geb

. av,, -1 .
(5e13) By (T4 D) Avy = 25
-1

v, (0) =V, Q I\ (Byo )y

S s el -1 - )

But (I + D) =B =9f where the convex, lower~semicone
tinucus function Y’% ¢ H ~%]—»o, +<{] is the conjugate of ¥ and we

can assume ?ﬁ' (v) 2 ct. since O le-lom (30 ) s



/]
o L]

R T
du
Bovsdu - dv T % . T dt v
n n - d 111 A-n
IO<W“’AW>+L ”f“ﬂ’n)"a"ﬁ*w)I A,
Therefore { ffg}is bounded in £ (O,T; V) and by conse-
g kv
2 (0,13V).

quence { an} is bounded in L°
i - | 5
By (3.11) we see that g, - Aw, bounded in L (oyT3E )

We also have a ag dwn

n
ale, - T R e
bounded in Lg(o,T; v¥* ).8ince H C V¥ compact, the Aubin [i} theoren

gives
NIRRT 1y T 5 sy - A ‘b ol x T 1 2 m ev?é < k LT » + 22 0 .
SRR e Aw strongly in L(0,T3V™) where w €L (O,

03 V) is such that

- o %3 . . Oo N
WGy w . o weakly” in Lo {0,%3 V)

n
S Bl weakly A0 A5(0, B8 T
dgv dat

dw : , ' :
We obtain B Q~JE)«» d strongly in L (0 s v¥) and by the

(
demlclosedness of maximal monotone operators it yields d eB E}W

e Jour[ .

Finally we can pass to the limit in (3.,11) and obtain

¥ o= -%% ¢ (u) which finishes the proof.

Theorem %.5. There is an optimsl pair ( W, i S 1

s

L2 () =x L2 (0,73 V) for problem (P).

Proof
The functional .
| ' T, 4 2 2, at
@a3). TTp=f {slew -3 b sd1al®2 ()

0 ) :
is weakly lower-semicontinoous on L2 (Y.) and coercive.

Remark 3.6. We notice tbat'ﬂ is.no more:. gonvex since © is

nonlinear.
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4, An Approximating Process

We consider the approximate contr OL problems

il D
: ) ‘ i :
(P.) Minimize ly - ¥ | + %] ul dt
d }’5 :
3 IO { L2 (F)}
subject to
(401> aﬁ (QJU(T 1-“) - A:Y (Es X) - O ’ QeCe Q:
(4.2) _%_%_ N R
(4.5) :‘}7 (O,X) ) yo (X) ' aveeﬂ 3
where we define : i
(4.4) (5(3) =3 + f“ dg Ly = 6 o) [ () & 4, 4. is the

Y oside approximate of the maumal monotone 51*&911 a(y)= {%(y) -
and ?P ig a Friedrichs mollifier, that i1s fé (R), supp c
c [»-1,1] , p( -8 =p(8), p> 0and Lf(@) @ = 1
(we continue to assume that K2 1 in (1,4)} Corresponding to {!ewe
shall denote as in (1.6), (3.2), B? o Tl .

The solution of (4.1) - (4.3) can be understood in the sense
of Definition 3. 5. and obviously w skt & P, ) bas an optimal piar
[ve » uc] € 28 (@ x1° (D). i

VJe denote 96 o e (L) —» 12 (@), the mapping u - ¥ given.

.by Eq . (4.1) = (4.3) according %o Definition 3%.2.

Lenmna 4._, For all u € 1= ( % ), there exists a linear

| op_eratoz} 76 (u) 3 L2 () — L (@) defined by t°

(4.5) vﬁé(u)v:weak—llm O, (u+ XV) - 0¢ (u)
. ' } x>0 :

\ p.N

for all Vv € 14 (3 ). Moreover i
17, e B ‘ 17 | , V

(4,6) %: + VD (@E(u) | %:rg + Az = g BeCo ]O,T{_,
(407) VA (0) pd O
(4.8) Ve, }(u) vV o= 3

where the meaning of g 1is explained below and vD  is the Giteaux

e




«. Progt
Let T o= G (u+ AV), T= 6 (u)e Then

u51nb the notations of bectlon B We get-

dw dw iy
¢e9) 5} + D ( ) + Aw = g a.e.]<3,ﬁf[
(4.10) %% M (Q'W ) +Aw =g " aee.] 0, T[

I 4a00) VVA(O> =w (o) =0
where g, b correspond to u, respectively v, by (1.9) and

&
dw dw
Subtract (4. 9), (4.10) and multiply by 2

i

C aw . ) .
J il o - ds + £ ¢ A Gui(t) = w () w(B) - w(B)g
dt Iy PN . A

O db A
v dw,  dw
¢ (b g -@ ) os
O
e - o ~ i L )
Then Eﬁé_"& e TN strongly in L° (o,T; H) ,
¢ o, T; V). We pub. 2 5 = Wy = W
; }\ =5 ’\
that is
B 7}
=R o
o d.ll +E( (t), /. (t)) A (g’ “Wm>de.
=R |
By (3.1l0), integrating by parts in the right hand side we gel |

dz - -
{Z %}l’ { EE& } bounded in L (o0,T3; V), L2 (o5 B)s

Since DE ig Lipschitz of constant % , Ghe Lebesgue theorem |

j1ked = )21
shows that aw dw dw dw

IR RN il T
i ) - D" (g5 ) oy (w ) - (w N
: h . . °db
atT dt

E (j:‘;] d—Z Y4 L)
(=% 5 ¢ where z is

o . . e . 2 . 1 i e
such that z, = 2 weakly *® in I (o, T3 V) and strongly igeGlo Ty H

is weakly convergent 1n L2 (o,T;H)'ﬁQ vD

We can pass to the limit and obtain (4,6) - 4,8) to firish

- the proof.
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Lemma 4.2.  For every &> o .there is P, € 1™ (0,3 V),

2 PP L 5 e P ] o 1, BN ey Y
EE" € 1° (o,T; H), such that it verifies together with U¢ , e

the approximate optimaliby condifions (4,1) - (4.3) apd o

(4.12) %%ﬁ +vD (g) - g%i - Ape =¥ —Jg _a.e.]o, T[
(4.13) p, (1) =

and we have

(4;14) ~u' = P ;

i Ao s g E: ~ i e
We denote p. = v o, (ug ) Te yde) ( in fact ;te
extension to the whole {1 ) and use (4.6) = (4,8), €1.9), (3:5) snd
the definition of the aagoznb opersbor %o prove (4. 1&), (H.15) . Let
.L

wasy T = [O!w\e () —-ydl Lial., o)
o e

Thenvﬁg vanishes- at point %15 and from the above notation:we see that
(4,14) is true.

‘ Lemﬁa'4;§.. Suppose that e
then 65( ue)—é ©- (u) weakly in L2 (o, ¥ e

— U weakly in L'?' C X s

This is a variant of Proposition 3e4.

Remark 4.4, As a consequence we'get Ga(u)~9 & (u) weakly in

i (o,T3 V) for every .U inI® (X ). Moreover, by the inequality.
(5i16) (D, (6,(0) ) =Dy (8, (1) )y 6, (W =0y () >
3 Dg(eg(u))-«D;(Sk(uDgiﬂt(Bg(u)) ~xD, (&,(w))

one. can see that { O¢ (u)} is a Cauchy sequence and

(4:37) CE’(u) > & (u) strongly in L Lo BBl

Proposition 4.5. On a subsequence, we have the converg@nces.:
(4.18) Weg = u strongly in L2 (0,13 La or ) ‘
(4;19) Ve — y©  strongly in 12 (a;T 4 H_),
(4;20) pe —> px strongly in ¢ (o,T; H),

St ® « s - 5 3 P
where [y‘ 5 O J_ is an optimal pair for problem ( P).
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=0 s

Proof
By the minimum proPurcy we obbains
T 2 2
(4 255 - (n j { @ (u) « y, + % | ul db
o) <f | zle il BB o i)

for any u € e (2 ) o From (4.17) and (4.15) we get { uﬁ}

pounded in L (L), 80 u,—> u weakly in 12 (Y. ) on aw

€
certain uoseouunce.

Nexlt, using Lemna 4.) ,(4e17) and the weakly lower-semicon-
‘ tinuity of the norm, it is possible to pass to the limit in (4.21)

and prove

, o - e, % | |

jo{ % l & (8) - ydl H f % ' u’ L2 (f‘) } i S
T o 2 2

¢ {%;w-yd; 31 s
; = S P )

forvany u € L° ( 51 ), thet is u dis an optimal control.Henceforth

we denote it u® .
Then ey = u¥ Fe. ¥ y©  weakly in L2 ( 2} ), respectively
12 (0,13 V). |
dpg _
Mthiply (5.12) by o and integrate over [ G, T]
A l + 5 (Ap, (8), py (6))LC ; ‘ *Em l . )

It follows { pe} v LT } bounded in L =~ (o0,T; V),

L (o il ﬂ) The Aubin theorem shows .

(4.22) Pe — p~  strongly in.L2_(Q,T;H 7 '(_fl) )

on a certain subsequence . Then g£rom (4.14) and the trace theorem,
Lions - Magenes [9] , we get (4;18);

Using now the same argument as in the proof of Proposition 5.4

and inequality (4.16) we obtain (4.19). Relation (4.20) is an eagy

congeguence of the above boundedness.
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Theorem 4.6, The sequence T[(u, ) is convergent to the

opbtimal value of nroblem ( P), which we denote S5, when ¢ > (O,
Proof

By Proposition 4.,5. from any subsequence of { ug} we can

extract another subsequence -{u . with properties (4.18), (4.19).
Then TEKLlEg) > 8. Therefore the initial sequence sabisfies.
(4,23) TQ( U Y. 8 as £ = 0 ,
New we est%mate O (u ) =8 (uE ) « We have g
: d.V‘J ~ ‘
; ; ¢ ' '
(4;2‘1{%) B ('ﬁ‘m) L o A W % ge ) ) GeCo ] 0, TL ,
( l‘l‘ ¢ 2 5) b0 € O\:VE \' 2 1 a - . . '
| B(ge ) +4w = g a&,]o,T[ ,
(4326) W € (O) = W (O) = O
dw. _ = ¢ E dw £
4 £ y " ) x
where  p— = 96 (ug ) " T F G (u£ ) and g, s obtained
from u, by (3.5), (1.9). ¢
dw g
- We subtract (4.24), (192)) and multiply by Y A ‘ s
; | aw € dw, | 2 dwt ¢ dwé awé
(4.27) | & + (D ( ) - D( T )y o
: dw aw® dw
€Y. o ; - ——B) =
..-&%-.-(Aw"Awg, T dt)'_‘O'
We use the inequalities s ’
- dwe d,m odw dw
(‘%928) | (D ( ) D, (OL ): aG Ea ) Z
; dwE ’ dﬁ@ dwig '
Z~" € (D (zg=) = D¢ Cgp)s D))
. » \
(4.29) D" () =ade ()] € C..€
to infer from (4.27) that -
T .E 2 iy
’ dw dw ~ d ¢ £
( £ - C o€ 4+ j = (A (w -w)yw —-w)<£O0
o | - m ‘H S U =5 ¢
and to conclude
1
(4.3%0) |@(ug> “@E (Ug)l ) é C . ¢ =

L=(0,T; H)
By the definition of TTQ, i we geb

(4.31) | TTi(ng ) - T (ug ) .g Ok



that is, by (4.23), we finish the proof.

Remark 4.,7. In order to compubte the optimal conbtrol for problem (P)
we have to choose € sufficiently small in (4.12) - (4.14) and to

find the corresponding u, . The result of Theorem 5.5 shows that

the performance given by Ug is as close as necessary to the
optimal performance.

5« Final Remarks

We give a partial answer at the questions "What are the
equations verified by 0" 3 y§ , p§ Vil L

In the case of control systems gbverned by variational ine-
qualities this question was posed by Mignot [11] .

We impose the guditional assumption ¢
(5.1) nes { (t,x) & § (b, %) = ro} = 0
where rq is given in (1.4).

We can prove the following result :

Proposition 5.1. Under the abhove hypotheses, we have
(5.2) (yﬁ = ro)e VP (YE Je T 7 (y" - I‘O)t v (’ ( - b

weakly in i {Q)«
Proof

From (1.4) eand (4 43y ye notice :

: ¢ r > Iy — &Iy
( 5.34) vwd, (r) = L -
€ e, -EV<r < fo ver ezo
m )
Ll-s—im . I % By - eV
wheére m= K~120, vV = ry + d .
Ve deduce i |
(5.4 ) (p - Ty ) v de (r) = dg;(r) -8 (r)
where - _
: 0 r > r, '*Ero
(5-.[?) 5& (r) = 0 r
1l +€en

3 . 2 -U
£ Ty £



T4 follows -t

o n )P @y e g ) (1+va® (@) =r=-xy +

: 4
+ ezj va, (r-e28)0p® +2°(x) -6° (=) ana

| 1

(5.6) g = | g x-€ 0lp(e) @
-] ‘ ‘
Since d¢ is Lipschitz we have | evd, ()| 1, bemce

b(ry = 2| va, (x-tfe)egp(e) ® — O

-1
uniformly in . Next we can writm :
€ €
(5.7) (7, = 2, )'V{ V) = ﬁ Qja ) - - g (g )+n (30

The termn g,g( ¥ ) ig bounded in L (Q) by (5.6), (5. )}.‘,
As concerns 'pg(yé ), we see from (5.9), (4,19) that it is bounded
in L‘ (o 1% H), s0 t |
(5+8) F, (v, ) — /5(y b weJFLy in 1° (o0,T; H).
' Because, by (4.19)y J¢ > v a.e. @, we can deduce
easii§ that" vpf(yé ) - [g(y* ) a.e; Qe
' .Here we use (5.1) and (l.4) essentially.
Jow, it is obvious that ff(yﬁ )‘->t%(y§ ) strongly in
17 {o,0% Bls

Trom (5.7) we see that @
dpe

(5.9) (ye i (si (y¢ Ve g —APGT ) = Egde pf; + g
weakly in ( ))s where ¢ ig the weak limit in L2 ()Y ( on a
subseqdépce ) of ga (v¢ ) SEEW | |
. , 1 Ve Je T .
Using again (5.1) and the toundedness of g;g(yt) in

L% (@), we prove g € (y¢ ) = 8 (y¥ ) strongly in LQQQ), where -
g (y) = { ~To v (5,x) > T |
x T y* (t,x) < 2,
is defined 8.€. Q o
‘Then g (4,%) = 8§ (5% (Gyx)e %gf (t,%) 8.0. Q &

After a short calculation we arrive at



’ _ J® - 23
(5.10) (pl™ = o0 Fo v - (7% - ). p ) T

and the proof 1s finished.

B

Remark 5.2, The argument we have used above is similar %o the

one given by 2. leike and D. Piba [12] , Dheorem 4.1

Remark 5.3. We know that ¥y, — v weakly in L (o s V) and,

from (4.12) : -
dp ¢ B

(5.11) \7((3’ )1 e 1 weakly in L (o,;, Y

Combining these facls "‘Jlub Proposition D.l we formulate the
: ‘

st D e w o M Ny
conjecture 1 = (5(2? ) '%5:;"""‘ , that is ¥ , vy, p - should

satisfy the state systenm (1.1) - (1.3) and the adjoint state gystenm
] dﬂ . 54 A , ;
V{B it AR B Yy =J¥a 8.€s 0y T

‘_Q’:{‘ (T) = 0 ®

By (4.,14), the optimal control can be computed ag- U =

5&'2 )
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