INSTITUTUL DE MATEMATICA

INSTITUTUL NATIONAL PENTRU CREATIE STIINTIFICA SI TEHNICA

ISSN 0250 3638

TOPOLOGICALLY TRIVIAL ALGEBRAIC 2-VECTOR

BUNDLES ON RULED SURFACES.II

by

Vasile BRINZANESCU and Manuela STOIA

PREPRINT SERIES IN MATHEMATICS
No.73/1982

TOPOLOGICALLY TRIVIAL ALGEBRAIC 2-VECTOR BUNDLES ON RULED SURFACES.II

by Vasile BRINZANESCU*) and Manuela STOIA**)

October 1982

Mid 18854

^{*)} The Polytechnical Institute of Bucharest, Department of Mathematics I, Splaiul Independentei 313, Bucharest, Romania

^{**)} The Institute of Mathematics, Str. Academiei 14, Bucharest, Romania

Topologically trivial algebraic 2-vector bundles on ruled surfaces.II.

Vasile Brînzănescu and Manuela Stoia

Introduction.

It is a classical result that on compact analytic surfaces the continuous complex vector bundles of rank 2 are well-determined by their Chern classes c_1,c_2 (Wu [13]). In particular such a bundle is trivial iff c_1 =0 and c_2 =0. For a nonsingular projective surface it follows by a result of Schwarzenberger [11] that on the topologically trivial 2-vector bundle there are nontrivial algebraic structures. In fact these algebraic bundles form a very large family (that is not bounded).

In this paper we continue the study started in [3] on the structure of topologically trivial algebraic 2-vector bundles on a ruled surface. On \mathbb{P}^2 the problem was studied in [1],[10],[12]. For stable bundles on ruled surfaces see [4],[8].

The first problem, in our case, is to find numerical invariants such that if one considers those algebraic bundles with fixed. invariants they form an algebraic family. In section 1 we introduce for these bundles two numerical invariants d and r and we define the set M(d,r) of classes of isomorphism of bundles with fixed invariants d and r. The integer d is given by the splitting of the bundle on the general fibre and the integer r is given by some normalization of the bundle. The main result is theorem 1, which states that M(d,r) carries a natural structure of an algebraic variety and that there exists,

locally, a tautological bundle. After some preparatory work in section 2, the sections 3 and 4 are devoted to the proof of the theorem 1. In section 5 we show that does not always exist, globally, a tautological bundle (theorem 2). Finally the section 6 is concerned with the case of rational ruled surfaces, when the algebraic structure on M(d,r) is more precisely described (theorem 3 and also [3]).

We wish to thank Constantin Bănică to introduce us to this subject and for discussions during the preparation of this paper.

l. The numerical invariants d and r.

The notations and the terminology are those of [7].

Let C be a nonsingular curve of genus g over the complex numbers field and let $\overline{\mathcal{L}}: X \longrightarrow C$ be a (geometrically) ruled surface over C. One can write $X \cong \mathbb{P}(\mathcal{E})$, where \mathcal{E} is a normalized locally free sheaf of rank 2 on C. Let denote by \mathcal{E} the divisor on C corresponding to the invertible sheaf $\bigwedge^2 \mathcal{E}$ and e=-deg \mathcal{E} . We fix a section C_0 of $\overline{\mathcal{L}}$ with $\mathcal{O}_X(C_0) \cong \mathcal{O}_{\mathbb{P}(\mathcal{E})}(1)$ and p_0 a point of C. Let $f_0 = \overline{\mathcal{L}}^{-1}(p_0)$. Any element of Num $X = H^2(X, \mathbb{Z})$ can be written $aC_0 + bf_0$ with $a_1b \in \mathbb{Z}$ and $C_0^2 = -e$, $C_0 f_0 = 1$, $f_0^2 = 0$. Since the canonical divisor K_X on X is given by $K_{X^{\infty}} - 2C_0 + \overline{\mathcal{L}}^*(K_C + \mathcal{E})$, hence for the numerical equivalence we have $K_X = -2C_0 + (2g-2-e)f_0$ (cf. Hartshorne [7], $Ch.V_0$).

We will denote by $\mathcal{O}_{\mathbb{C}}(1)$ the invertible sheaf associated to the the divisor \mathfrak{p}_0 on \mathbb{C} . If L is an element of Pic \mathbb{C} , we shall write $\mathbb{L} = \mathcal{O}_{\mathbb{C}}(\mathsf{k}) \otimes \mathbb{L}_0$, where $\mathsf{k} = \deg \mathbb{L}$ and $\mathbb{L}_0 \in \mathrm{Pic}^0\mathbb{C}$. We also denote by

$$\begin{split} \mathcal{F}(\mathsf{aC_o}^+\mathsf{bf_o}) &= \mathcal{F} \otimes \mathcal{O}_\mathsf{X}(\mathsf{a}) \otimes \pi^*(\mathcal{O}_\mathsf{C}(\mathsf{b})) \text{ for any sheaf } \mathcal{F} \text{ on X and} \\ \text{any a,b} &\in \mathbb{Z} \; (\; \mathcal{O}_\mathsf{X}(\mathsf{a}) \simeq \mathcal{O}_\mathsf{X}(\mathsf{aC_o})) \,. \end{split}$$

Let E be a topologically trivial algebraic 2-vector bundle on X ,i.e. $c_1(E)=(0,0)$ and $c_2(E)=0$. Since the fibres of $\overline{\mathcal{K}}$ are isomorphic to \mathbb{P}^1 , we can speak about the generic splitting type of E and we put $E|_f\simeq \mathcal{O}_f(d)\oplus \mathcal{O}_f(-d)$ for a general fibre f,where $d\geqslant 0$ (cf.[6] and semi-continuity theorem).

The second numerical invariant ${\bf r}$ is obtained by the following normalization:

-r=inf $\{\ell \mid \text{there exists LePic C,degL} = \ell \text{ s.t. } H^{O}(X,E(-dC_{o}) \otimes \mathcal{I}^{*}(L)) \neq 0\}$ One has $H^{O}(X,E(-dC_{o}) \otimes \mathcal{I}^{*}(L)) \simeq H^{O}(C,\mathcal{I}^{*}(E(-dC_{o})) \otimes L)$ and moreover

 $\mathrm{H}^0(\mathrm{C},\overline{\mathcal{R}}_*(\mathrm{E}(-\mathrm{dC}_0))\otimes\mathrm{L})$ does not vanish when $\deg\mathrm{L}>\!\!\!>0$ and is zero when $\deg\mathrm{L}<\!\!\!<0$ (for, use a suitable filtration of $\overline{\mathcal{R}}_*(\mathrm{E}(-\mathrm{dC}_0))$ with subbundles and Riemann-Roch for divisors on C). Therefore, there exists such an integer r.

We shall call a topologically trivial algebraic 2-vector bundle with numerical invariants d and r, simply, a 2-vector bundle of type (d,r).

Let us denote by M(d,r) the set of classes of isomorphism of 2-vector bundles on X of fixed type (d,r).

Our purpose is to prove the following Theorem 1. Suppose d>0.Then:

- (1) The set M(d,r) carries a natural structure of algebraic variety.
- (2) There exists, locally relative to M(d,r), a tautological bundle (i.e. for every affine open subset V of M(d,r) there is a bundle \mathcal{F} on X \times V such that for each t \in V there is an isomorphism $\mathcal{F}/\mathcal{M}_{\tau}\mathcal{F}\simeq E_{t}$, where E_{t} denotes a 2-vector bundle corres-

ponding to the class t).

Remarks. 1. For the case d=0 see the remark at the end of lemma in section 2.

- In general does not exist globally a tautological bundle;see theorem 2.
- 3. In the case of rational ruled surfaces the algebraic structure on M(d,r) is more precisely described; see [3] and theorem 3.

2. Some properties of the bundles of M(d,r).

We want to prove the following

Lemma. (1) Every 2-vector bundle E of type (d,r) is given by an extension of the form

 $0 \longrightarrow \mathcal{O}_{X}(\mathrm{dC_{0}} + \mathrm{rf_{0}}) \otimes \mathcal{R}^{*}(L_{2}) \longrightarrow E \longrightarrow \mathcal{J}_{Y} \otimes \mathcal{O}_{X}(-\mathrm{dC_{0}} - \mathrm{rf_{0}}) \otimes \mathcal{R}^{*}(L_{1}) \longrightarrow 0,$ where $L_{1}, L_{2} \in \mathrm{Pic}^{0}C$ and Y is a locally complete intersection of codimension 2 in X with deg Y=d(2r-de).

- (2) Every algebraic 2-vector bundle given by an extension like above is of type (d,r).
- (3) For every fixed data Y, L_1 , L_2 , where YCX is a locally complete intersection of codimension 2 with deg Y=d(2r-de) and L_1 , $L_2 \in \operatorname{Pic}^0$ C, there exist bundles appearing as extensions like above and these extensions are uniquely determined modulo \mathbb{C}^* , by the isomorphic classes of bundles.
- (4) Suppose d>0 and let E be a 2-vector bundle of type (d,r). Then the data Y, L_1, L_2 from the corresponding extension are uniquely determined by E (L_1 and L_2 up to an isomorphism).

<u>Proof.</u> (1) By the definition of r there exists $L_2 \in \operatorname{Pic}^0 \mathbb{C}$, such that $\operatorname{H}^0(\mathbb{X}, \mathbb{E}(-d\mathbb{C}_0-rf_0) \otimes \mathcal{T}^*(L_2^{-1})) \neq 0$ (in fact its dimension is 1). We choose a non-zero section and apply Serre's method ([9], Gh.I, § 5) we obtain E as an extension of the desired form (see [3] for

more details).

- (2) Obviously an algebraic 2-vector bundle given by such an extension has $c_1(E)=(0,0)$ and $c_2(E)=0$. By restricting the exact sequence above to a fibre f provided that $f \cap Y = \emptyset$ we get that the splitting type of E is (d,-d); a simple argument shows that the integer r from the given extension is the second numerical invariant of E, hence E is of type (d,r).
- (3) Let us denote $\mathcal{Z}_1 = \mathcal{O}_X(-\mathrm{dC_0-rf_0}) \otimes \mathcal{K}^*(L_1)$ and $\mathcal{Z}_2 = \mathcal{O}_X(\mathrm{dC_0+rf_0}) \otimes \mathcal{K}^*(L_2)$. Consider the spectral sequence of term $\vdots \\ \vdots \\ \mathbb{E}_2^{\mathrm{p},\,\mathrm{q}} = \mathrm{H}^\mathrm{p}(\mathrm{X}, \mathcal{S} \mathcal{X}_{\mathcal{O}_X}^\mathrm{q}(\mathcal{Y}_{\mathrm{Y}} \otimes \mathcal{L}_1, \mathcal{L}_2)), \text{ which converges to }$

 $0\longrightarrow \operatorname{H}^1(\mathsf{X},\mathcal{L}_2\otimes\mathcal{L}_1^{-1})\longrightarrow \operatorname{Ext}^1(\mathcal{J}_{\mathsf{Y}}\otimes\mathcal{L}_1,\mathcal{L}_2)\longrightarrow \operatorname{H}^0(\mathsf{Y},\mathcal{O}_{\mathsf{Y}})\longrightarrow 0.$ Now, by a result due to Serre ([9],Ch,I,§5), any element belonging to $\operatorname{Ext}^1(\mathcal{J}_{\mathsf{Y}}\otimes\mathcal{L}_1,\mathcal{L}_2)$ which has an invertible image in $\operatorname{H}^0(\mathsf{Y},\mathcal{O}_{\mathsf{Y}})$, defines an extension of the desired form. One has $\operatorname{H}^0(\mathsf{X},\operatorname{E}\otimes\mathcal{L}_2^{-1})\cong \mathbb{C}$ and the second statement follows by a well-known argument.

(4) L_2 is determined being $\mathcal{I}_*(\mathsf{E}(-\mathsf{dC_0-rf_0}))$. Y is determined as the zero-set of the unique (mod \mathbb{C}^*) non-zero global section of $\mathsf{E}\otimes\mathcal{L}_2^{-1}$. Using again $\mathsf{H}^0(\mathsf{X},\mathsf{E}\otimes\mathcal{L}_2^{-1})\simeq\mathbb{C}$, $\mathcal{I}_\mathsf{Y}\otimes\mathcal{L}_1^{-1}$ will be well-

determined and therefore (by removability) \mathcal{L}_1 , that is \mathbf{L}_1 will be well-determined by the bundle E.

Remark. For d=0 it follows from the part (1) that every 2-vector bundle E of type (0,r) is of the form $\mathbb{Z}^*(\mathsf{F})$, where F is an algebraic 2-vector bundle on the curve C with $c_1(\mathsf{F})$ =0. Moreover, there is an one to one correspondence between the set of isomorphism classes of these bundles on the surface X and the set of isomorphism classes of 2-vector bundles on the curve C with c_1 =0. Thus the classification of these bundles means the classification of the corresponding bundles on curves.

3. The algebraic structure of M(d,r).

In this section we shall prove the part (1) of the theorem 1. Suppose d>0 and let E be a 2-vector bundle of type (d,r). It follows by the lemma that E defines an element $\xi_E \in \operatorname{Ext}_{\mathcal{O}_X}^1(\mathcal{F}_Y \otimes \mathcal{F}_1, \mathcal{F}_2)$, where $\mathcal{F}_1 = \mathcal{O}_X(-dC_0-rf_0) \otimes \mathcal{T}^*(L_1)$, $\mathcal{F}_2 = \mathcal{O}_X(dC_0+rf_0) \otimes \mathcal{T}^*(L_2)$ and the data L_1, L_2 , Y are uniquely determined by E. If $Y \neq \emptyset$ (i.e. E is non-uniform; see [3]) then $\xi_E \neq 0$; if $Y = \emptyset$ (i.e. Z = de and E is uniform) we agree to expel the single decomposable bundle of type (d,r). It follows again by the lemma that the class of E in M(d,r) defines a unique point in the projective space

$$(\operatorname{Ext}^1_{\mathcal{O}_{\mathsf{X}}}(\mathcal{Y}_{\mathsf{Y}}\otimes\mathcal{L}_1,\mathcal{L}_2)\setminus\{0\})/\mathbb{C}^*.$$

In order to parametrize the whole set M(d,r) we have to move L_1, L_2 and Y and thus to look for the variation of Ext. Let P_0 be the Picard variety of isomorphism classes of line bundles of zero degree on C and let L_0 be the universal Poincaré-bundle on $C \times P_0$. Let H_0 be the Hilbert variety of zero-dimensional locally complete

intersections of degree d(2r-de) in X and let \mathcal{J}_o be the ideal sheaf of the universal subspace $Y_o \subset X \times \mathbb{H}_o$. Recall that \mathbb{H}_o is smooth connected, quasi-projective of dimension 2d(2r-de)(see [5]). Let us denote by \widetilde{Z} the variety $\mathbb{P}_o \times \mathbb{P}_o \times \mathbb{H}_o$. We have the following diagram with natural maps:

We use the notations:

$$\mathbb{L}_{i} = (\mathbb{1}_{\mathbb{C}} \times p_{i})^{*} (\mathbb{L}_{o}) = \mathbb{1}_{,2}; \quad \mathcal{I}_{\chi} = (\mathbb{1}_{\chi} \times p_{3})^{*} (\mathcal{I}_{o}), \text{ where } \mathcal{I} = (\mathbb{1}_{\chi} \times p_{3})^{-1} (Y_{o}).$$

Now it is natural to consider the relative \mathcal{Ext} :

$$\widetilde{\mathcal{R}} = \mathcal{E}_{\mathcal{X}} \mathcal{L}_{\widetilde{p}}^{1}(\mathbf{u}^{*}(\mathcal{O}_{\mathbf{X}}(-\mathbf{dC_{o}-rf_{o}})) \otimes (\overline{\mathcal{I}} \times \mathbf{1}_{\widetilde{\mathbf{Z}}})^{*}(\mathbb{L}_{1}) \otimes \mathcal{I}_{\mathbf{W}}, \tilde{\mathbf{u}}^{*}(\mathcal{O}_{\mathbf{X}}(\mathbf{dC_{o}+rf_{o}})) \otimes (\overline{\mathcal{I}} \times \mathbf{1}_{\widetilde{\mathbf{Z}}})^{*}(\mathbb{L}_{2})).$$

Take the spectral sequence

$$E_2^{p,q}=H^p(X,&xt_{0_X}^q(\mathcal{Y}_Y\otimes\mathcal{L}_1,\mathcal{L}_2)).$$

and notice that

$$\begin{split} & \mathbf{E}_{2}^{\circ,2} = \mathbf{H}^{\circ}(\mathbf{X}, \mathcal{E}_{2}t_{\mathcal{O}_{\mathbf{X}}}^{2}(\mathcal{I}_{\mathbf{Y}} \otimes \mathcal{L}_{1}, \mathcal{L}_{2})) \simeq \mathbf{H}^{\circ}(\mathbf{X}, \mathcal{E}_{2}t_{\mathcal{O}_{\mathbf{X}}}^{3}(\mathcal{O}_{\mathbf{Y}} \otimes \mathcal{L}_{1}, \mathcal{L}_{2})) = 0 \\ & \mathbf{E}_{2}^{1,1} = \mathbf{H}^{1}(\mathbf{X}, \mathcal{E}_{2}t_{\mathcal{O}_{\mathbf{X}}}^{1}(\mathcal{I}_{\mathbf{Y}} \otimes \mathcal{L}_{1}, \mathcal{L}_{2})) \simeq \mathbf{H}^{1}(\mathbf{X}, \mathcal{E}_{2}t_{\mathcal{O}_{\mathbf{X}}}^{2}(\mathcal{O}_{\mathbf{Y}} \otimes \mathcal{L}_{1}, \mathcal{L}_{2})) \simeq \mathbf{H}^{1}(\mathbf{Y}, \mathcal{O}_{\mathbf{Y}}) = 0 \\ & \mathbf{E}_{2}^{2,0} = \mathbf{H}^{2}(\mathbf{X}, \mathcal{E}_{2}t_{\mathcal{O}_{\mathbf{X}}}^{2}(\mathcal{I}_{\mathbf{Y}} \otimes \mathcal{L}_{1}, \mathcal{L}_{2})) \simeq \mathbf{H}^{2}(\mathbf{X}, \mathcal{L}_{2}^{2}\mathcal{L}_{1}^{-1}) = 0 \end{split}$$

It follows that $\operatorname{Ext}^2_{\mathcal{O}_X}(\mathcal{J}_Y\otimes\mathcal{L}_1,\mathcal{L}_2)=0$ and if we denote by z the point of \widetilde{Z} determined by $\mathsf{L}_1,\mathsf{L}_2$ and Y , we deduce by means of a result of [2] that $\widetilde{\mathcal{R}}_Z/m_Z\,\widetilde{\mathcal{R}}_Z\,\simeq\,\operatorname{Ext}^1_{\mathcal{O}_Y}(\mathcal{J}_Y\otimes\mathcal{L}_1,\mathcal{L}_2)\,.$

But, generally, $\widehat{\mathfrak{R}}$ is only a coherent sheaf and not a locally free one. This occurs because, although Z is reduced (in fact nonsingular) the function

$$z \longrightarrow \dim \operatorname{Ext}^{1}_{\mathcal{O}_{X}}(\mathcal{I}_{Y}, \mathcal{L}_{2} \otimes \mathcal{L}_{1}^{-1}) \quad (z=(L_{1}, L_{2}, Y))$$

is not constant. The jump of dim Ext^1 happens already in the case when C is an elliptic curve (see an example in [3]).

We take the stratification given by dim ${\rm Ext}^1_{\mathcal O_X}(\mathcal Y_Y,\mathcal L_2\otimes\mathcal L_1^{-1})=$ =constant and we get (by semicontinuity theorem) finitely many strata

$$Z_{i} = \left\{ z \in \widetilde{Z} \mid \dim \operatorname{Ext}_{\mathcal{O}_{X}}^{1}(\mathcal{I}_{Y} \otimes \mathcal{L}_{1}, \mathcal{L}_{2}) = i, z = (L_{1}, L_{2}, Y) \right\},$$

which are Zariski locally closed subsets of \widetilde{Z} . We choose on Z_i the reduced structure and let \mathcal{R}_i be the corresponding relative Ext. Now every sheaf \mathcal{R}_i is locally free. Let Z be the direct sum of Z_i and \mathcal{R} the corresponding locally free sheaf on Z. It follows from previous considerations that there exists a natural injective map $M(d,r) \longrightarrow \mathbb{P}(\mathbb{R}^*)$ and we shall identify the set M(d,r) with its image in the projective bundle of the dual of \mathcal{R} $\mathbb{P}(\mathbb{R}^*)$. It is not difficult to see that M(d,r) is a Zariski open subset of $\mathbb{P}(\mathbb{R}^*)$ (see [1] Lemma 3) and so M(d,r) carries a natural structure of an algebraic variety.

4. The local existence of the tautological bundle.

In this section we shall prove the part (2) of the theorem 1. Clearly we may assume $Z=Z_i$ (one stratum) and $\mathcal{R}=\mathcal{R}_i$. Let $p\colon X\times Z\longrightarrow Z \text{ be the canonical projection and let denote}$ $\mathcal{T}_1=u^*(\mathcal{O}_X(-dC_0-rf_0))\otimes (\bar{\Lambda}\times l_Z)^*(\mathbf{L}_1) \text{ and } \mathcal{T}_2=u^*(\mathcal{O}_X(dC_0+rf_0))\otimes (\bar{\Lambda}\times l_Z)^*(\mathbf{L}_2).$ Then we have that $\mathcal{R}=\mathcal{E}xt_p^1(\mathcal{Y}_X\otimes\mathcal{T}_1,\mathcal{T}_2)$ is a locally free sheaf

on Z and commutes with base change.

Let $\mathbf{P}(\mathcal{R}^{\star})$ be the projective bundle of the dual of \mathfrak{R} and let $q: \mathbf{P}(\mathfrak{R}^{m{*}}) \longrightarrow \mathsf{Z}$ be the canonical projection. Consider the cartesian diagram

and let $\mathcal{O}_{\mathbb{P}(\mathfrak{A}^*)}(1)$ be the tautological invertible sheaf on $\mathbb{P}(\mathfrak{R}^*)$. We use the notations: $\mathcal{T}_1'=q^{**}(\mathcal{T}_1)$, $\mathcal{T}_2'=q^{**}(\mathcal{T}_2)$ and $\mathcal{T}_3'=q^{**}(\mathcal{T}_3)$. The canonical surjection $q^*(\mathcal{R}^*) \longrightarrow \mathcal{O}_{\mathbb{P}(\mathcal{R}^*)}(1)$ gives a morphism

$$\mathcal{O}_{\mathbb{P}(\mathcal{R}_{1})}(-1) \longrightarrow q^{*}(\mathcal{R}_{1}) \simeq \mathcal{E}_{xt}^{1}_{p} \cdot (\mathcal{Y}_{y_{1}} \otimes \mathcal{T}_{1}', \mathcal{T}_{2}'),$$

hence a global section ξ in $\mathcal{E}_{\text{M}}^{1}$. $(\mathcal{F}_{\text{W}},\otimes\mathcal{F}_{1}',\mathcal{F}_{2}\otimes p'*(\mathcal{O}_{\mathbb{P}(\mathbb{R}^{*})}(1)))$.

Let now V be an affine open subset in $M(d,r) \subset \mathbb{P}(\mathfrak{A}^*)$ and $V'=p'^{-1}(V)=X\times V$. We have the isomorphism

$$\operatorname{Ext}^1(\mathsf{V}';\dots) \xrightarrow{\hookrightarrow} \mathsf{H}^0(\mathsf{V},\operatorname{Szt}^1_{\operatorname{p}},(\dots))$$
 and let $\operatorname{\etaeExt}^1(\mathsf{V}';\operatorname{\mathfrak{I}}_{\operatorname{W}}\otimes \mathfrak{I}',\operatorname{\mathfrak{I}}'_2\otimes \operatorname{p}'^*(\mathcal{O}_{\operatorname{P}(\mathfrak{R}^*)}(1)))$ be the corres-

ponding element of $\mathbf{E}|_{\mathsf{V}}$. The element q gives an extension on V'

$$0 \longrightarrow \mathcal{G}_{2}^{\prime} \otimes p^{\prime} * (\mathcal{O}_{\mathbb{P}(\mathbb{R}^{*})}(1)) \longrightarrow \mathcal{F} \longrightarrow \mathcal{Y}_{W} \otimes \mathcal{F}_{1}^{\prime} \longrightarrow 0,$$

where the sheaf $\mathcal F$ is obviously flat over V. For each t \in V, the reduction modulo \mathcal{M}_{t} of the above extension is naturally equivalent modulo C^* with the extension

$$0 \longrightarrow \mathcal{L}_2 \longrightarrow E_t \longrightarrow \mathcal{J}_Y \otimes \mathcal{L}_1 \longrightarrow 0,$$

where E_{t} is a 2-vector bundle corresponding to the very class of t. Then we have the isomorphism $\mathcal{F}/m_{\rm t}\mathcal{F}\simeq {\rm E}_{\rm t}$ and since \mathcal{F} is flat over V one gets that the sheaf ${\mathcal F}$ is locally free. ${\mathcal F}$ will be a tautological bundle on X×V.

5. The global non-existence of the tautological bundle.
We shall prove the following

Theorem 2. Let X be the rational ruled surface \mathbb{F}_1 (e=1). There is not globally a tautological bundle relative to M(1,1).

Proof. Let us consider the following cartesian diagram in the general case:

$$X \times M(d,r) \xrightarrow{q'} X \times Z$$

$$\downarrow p' \qquad \qquad \downarrow p$$

$$M(d,r) \xrightarrow{q} Z$$

Further we shall preserve the previous notations.

Let us suppose that there exists a bundle on X×M(d,r) such that for each teM(d,r) there is an isomorphism $\mathcal{F}/M_t\mathcal{F}\cong E_t$, where E_t denotes a 2-vector bundle belonging to the class of t. The sheaf ox($\mathcal{F}\otimes\mathcal{F}_2^{l-1}$) is an invertible sheaf since M(d,r) is reduced and dim $H^0(X,E_t\otimes\mathcal{L}_2^{-1})=1$ for any E_t . The bundle $\mathcal{F}'=\mathcal{F}\otimes p^*(p_*(\mathcal{F}\otimes\mathcal{F}_2^{l-1}))$ is again, tautological and $p_*'(\mathcal{F}\otimes\mathcal{F}_2^{l-1})\cong \mathcal{O}$. Consequently, there is a section $\mathbb{C}\oplus H^0(X\times M(d,r),\mathcal{F}\otimes\mathcal{F}_2^{l-1}) \text{ with non-zero image through the identification: } p_*'(\mathcal{F}\otimes\mathcal{F}_2^{l-1})_t/M_tp_*'(\mathcal{F}\otimes\mathcal{F}_2^{l-1})_t\cong H^0((\mathcal{F}\otimes\mathcal{F}_2^{l-1})/M_t(\mathcal{F}\otimes\mathcal{F}_2^{l-1}))\cong \mathbb{C}$. The corresponding map $\mathcal{F}_2'\longrightarrow \mathcal{F}'$ is injective modulo M_t for each $t\in M(d,r)$. Then $\mathcal{F}_2'\longrightarrow \mathcal{F}'$ is injective and its cokernel \mathbb{C} is flat over M(d,r). We have the exact sequences:

$$0\longrightarrow \mathcal{L}_2\longrightarrow \mathcal{F}'/\mathcal{M}_t\,\mathcal{F}'\longrightarrow \mathcal{E}/\mathcal{M}_t\mathcal{E}\longrightarrow 0$$

$$0\longrightarrow \mathcal{L}_2\longrightarrow \mathrm{E}_t\longrightarrow \mathcal{F}_{Y_l}\otimes \mathcal{L}_1\longrightarrow 0,$$
 where $\mathrm{q}(t)=\mathrm{z}=(\mathrm{L}_1,\mathrm{L}_2,\mathrm{Y})$, $\mathcal{L}_1=\mathcal{O}_{\mathrm{X}}(-\mathrm{C}_0-\mathrm{f}_0)\otimes \mathcal{T}^*(\mathrm{L}_1)$ and

 $\mathcal{L}_2 = \mathcal{O}_{\mathsf{X}}(\mathsf{C_o+f_o}) \otimes \mathcal{H}^*(\mathsf{L}_2) \text{.Also } \mathcal{E} / \mathcal{U}_\mathsf{t} \mathcal{E} \simeq \mathcal{I}_\mathsf{Y} \otimes \mathcal{L}_1 \text{. } \mathcal{E} \text{ and } \mathcal{I}_\mathsf{Y} \otimes \mathcal{I}_1'$

are flat with respect to p'and moreover isomorphic, locally relative to M(d,r), since $h^0 \operatorname{End}(\mathcal{J}_Y \otimes \mathcal{Z}_1) = h^0 \operatorname{End}(\mathcal{J}_Y) = 1$ when Y is O-dimensional in X ([2], Korollar 5). As $\operatorname{End}(\mathcal{J}_{Y'}) \simeq \mathcal{O}$, hence there is an invertible sheaf \mathcal{L} on M(d,r) such that $\mathcal{L} \simeq \mathcal{J}_{Y'} \otimes \mathcal{J}_1' \otimes p^{\prime *}(\mathcal{L}^*)$.

Therefore we have the extension:

$$0 \longrightarrow \mathcal{T}_2' \otimes \text{ p'*}(\mathcal{L}) \longrightarrow \mathcal{F}'' \longrightarrow \mathcal{T}_{V'} \otimes \mathcal{T}_1' \longrightarrow 0,$$
 where $\mathcal{F}'' = \mathcal{F}' \otimes \text{ p'*}(\mathcal{L})$ is again tautological and let
$$\xi \in \operatorname{Ext}^1(X \times M(d,r); \ldots) \text{ be the corresponding class. Since}$$

$$0 \longrightarrow \mathcal{T}_2' \otimes p \overset{*}{\sim} (\mathcal{O}_{\mathbb{P}(\mathbb{R}^*)}(1)) \longrightarrow \mathcal{F}'' \longrightarrow \mathcal{T}_{W} \otimes \mathcal{T}_1' \longrightarrow 0.$$

In the case of the rational ruled surface X=F $_1$ for M(1,1) we have: \mathbb{P}_0 =Pic 0 C= one point, deg Y=1,hence the Hilbert variety \mathbb{H}^0 =F $_1$, the universal subspace Y is the diagonal Δ and dim Ext $^1\mathcal{O}_{\mathbb{X}}({}^0\mathcal{O}_{\mathbb{Y}},\mathcal{L}_2\otimes\mathcal{L}_1^{-1})$ =1. It follows that the variety Z consists of a single stratum and M(1,1) \simeq F $_1$. The previous diagram becomes:

We have $\mathcal{R} \simeq p_* (\&xt^1(\mathcal{J}_{\Delta} \otimes \mathcal{I}_1, \mathcal{I}_2))$, but $\&xt^1(\mathcal{J}_{\Delta} \otimes \mathcal{I}_1, \mathcal{I}_2) \simeq 2$ $\simeq \&xt^2(\mathcal{J}_{\Delta} \otimes \mathcal{I}_1, \mathcal{I}_2) \simeq \mathcal{O}_{\Delta} \otimes \mathcal{I}_1^{-1} \otimes \mathcal{I}_2 \otimes \mathcal{O}_{\mathbb{F}_1}^{-1} \times \mathbb{F}_1$, $\omega_{\mathbb{F}_1} \times \mathbb{F}_1 \simeq 2$ $\simeq p_1^*(\mathcal{O}_{\mathbb{F}_1}) \otimes p_2^*(\mathcal{O}_{\mathbb{F}_1})$, $\omega_{\mathbb{F}_1} = \mathcal{O}_{\mathbb{F}_1}(-2c_o-3f_o)$, $\mathcal{I}_1 = p_1^*(\mathcal{O}_{\mathbb{F}_1}(-c_o-f_o))$, $\mathcal{I}_2 = p_1^*(\mathcal{O}_{\mathbb{F}_1}(c_o+f_o))$ and by means of the identification $\mathcal{I}_1 \simeq \mathbb{F}_1$ we get $\mathcal{R} \simeq \mathcal{O}_{\mathbb{F}_1}(4c_o+5f_o)$. Then $\mathcal{O}_{\mathbb{F}_1}(\mathcal{R}^*)(1) \simeq \mathcal{R}^* \simeq \mathcal{O}_{\mathbb{F}_1}(-4c_o-5f_o)$ and a global tautological bundle will be given by the extension: $0 \longrightarrow p_1^*(\mathcal{O}_{\mathbb{F}_1}(c_o+f_o)) \otimes p_2^*(\mathcal{O}_{\mathbb{F}_1}(-4c_o-5f_o)) \to \mathcal{F}^* \to \mathcal{I}_4 \otimes p_1^*(\mathcal{O}_{\mathbb{F}_1}(-c_o-f_o)) \to \mathcal{F}^*$

We shall prove that

 $\text{Ext}^1(\ \mathcal{J}\otimes \text{p}_1^*(\ \mathcal{O}_{\mathbb{F}_1}(\text{-C}_0\text{-f}_0)), \text{p}_1^*(\ \mathcal{O}_{\mathbb{F}_1}(\text{C}_0\text{+f}_0)) \otimes \text{p}_2^*(\ \mathcal{O}_{\mathbb{F}_1}(\text{-4C}_0\text{-5f}_0))) = 0$ and we will derive a contradiction. We show that $\text{H}^3(\ \mathbb{F}_1\times\mathbb{F}_1,\ \mathcal{J}_\Delta\otimes \text{p}_1^*(\ \mathcal{O}_{\mathbb{F}_1}(\text{-4C}_0\text{-5f}_0)) \otimes \text{p}_2^*(\ \mathcal{O}_{\mathbb{F}_1}(\text{2C}_0\text{+2f}_0))) = 0 \text{ and by }$ duality we conclude.

The exact sequence $0 \longrightarrow \mathcal{I} \longrightarrow \mathcal{O}_{\mathbb{F}_1 \times \mathbb{F}_1} \longrightarrow \mathcal{O}_{\longrightarrow} 0$ gives the exact sequence: $H^2(p_1^*(\mathcal{O}_{\mathbb{F}_1}(-4C_0-5f_0)) \otimes p_2^*(\mathcal{O}_{\mathbb{F}_1}(2C_0+2f_0))) \xrightarrow{\alpha} H^2(\mathcal{O}_{\Delta}(-2C_0-3f_0)) \longrightarrow H^3(\mathcal{I}_{\mathbb{A}} \otimes p_1^*(\mathcal{O}_{\mathbb{F}_1}(-4C_0-5f_0)) \otimes p_2^*(\mathcal{O}_{\mathbb{F}_1}(2C_0+2f_0))) \longrightarrow H^3(p_1^*(\mathcal{O}_{\mathbb{F}_1}(-4C_0-5f_0)) \otimes p_2^*(\mathcal{O}_{\mathbb{F}_1}(2C_0+2f_0))).$

Because $H^2(\mathcal{O}_{\Delta}(-2C_0-3f_0)) \simeq H^2(\mathbb{F}_1, \omega_{\mathbb{F}_1}) \simeq \mathbb{C}$ and $H^2(p_1^*(\mathcal{O}_{\mathbb{F}_1}(-4C_0-5f_0)) \otimes p_2^*(\mathcal{O}_{\mathbb{F}_1}(2C_0+2f_0))) \simeq \cong H^2(\mathbb{F}_1, \mathcal{O}_{\mathbb{F}_1}(-4C_0-5f_0)) \otimes Hom(\mathcal{O}_{\mathbb{F}_1}(-4C_0-5f_0), \omega_{\mathbb{F}_1})$

the map \propto can be naturally identified to the linear map associated to the natural pairing of Serre duality, hence it is not zero. But $H^3(p_1^*(\mathcal{O}_{\mathbb{F}_1}(-4C_0-5f_0))\otimes p_2^*(\mathcal{O}_{\mathbb{F}_1}(2C_0+2f_0)))=0$ and the proof is over.

6. The case of rational ruled surfaces.

Theorem 3. Assume $C=\mathbb{P}^1$ (i.e. $X\cong \mathbb{F}_e$ a rational ruled surface). Then the set M(d,r) is a nonsingular, connected, quasi-projective, rational variety of dimension indicated below:

- (a) when de=2r and e \geqslant 1 (uniform bundles) dim M(d,r)= $\frac{1}{2}$ d(de+e-2)-1
- (b) when e=0 (r=0) (uniform bundles) $\dim M(d,0)=-1 \ (M=\emptyset \ !)$
- (c) when 2r-de>0 and e>1 (non-uniform bundles) there are two posibilities: r>de, dim M(d,r)=3d(2r-de)-1, or $r\leqslant de$ and dim $M(d,r)=\frac{1}{2}(2d-s+1)(es+2de-4r-2)+3d(2r-de)-1$ (s=[(2r+1)/e]+1).
 - (d) when 2r-de > D but e=0 (non-uniform bundles) dim M(d,r)=6dr-1.

<u>Proof.</u> In this particular case the $\mathscr{E}_{\mathcal{X}}$ -sheaf $\widetilde{\mathcal{R}}$ is locally free, its rank is well-determined by d,r and e (see[3] for more details) and thus, the set M(d,r) is a Zariski open subset of the nonsingular, projective, rational, connected variety $(P(\widetilde{\mathcal{R}}^{*}))$.

REFERENCES

- [1] Bănică C.: Topologisch triviale holomorphe Vektorbündel auf \mathbb{P}^n , Preprint INCREST, (1982).
- [2] Bănică C., Putinar M., Schumacher G.: Variation der globalen Ext in Deformationen kompakter komplexer Raume, Math. Ann. 250 (1980).
- [3] Brînzănescu V., Stoia M.: Topologically trivial algebraic 2-vector bundles on ruled surfaces I, Preprint INCREST(1981);(to appear in Rev.Roum.Math.pures et appl.).
- [4] Ellingsrud G., Strømme S.A.:On the moduli space for stable rank-2 vector bundles on \mathbb{P}^2 . Preprint, Oslo (1979).
- [5] Fogarty J.: Algebraic families on an algebraic surface, Amer.J. Math. 90 (1968).
- [6] Grothendieck A.: Sur la classification des fibrés holomorphes sur la sphère de Riemann, Amer.J.Math.79 (1956).
- [7] Hartshorne R.: Algebraic Geometry. Springer 1977.
- [8] Hoppe H.R., Spindler H.: Modulräume stabiler 2-Bündel auf Regelflächen. Math. Ann. 249, (1980).
- [9] Okonek Ch., Schneider M., Spindler H.: Vector bundles on complex projective spaces. Progress in Math. 3, Birkhäuser, 1980.
- [10] Schafft U.: Dissertation, Göttingen (1981).
- [11] Schwarzenberger R.L.E.: Vector bundles on algebraic surfaces.

 Proc.London Math.Soc. 11,(1961).
- [12] Strømme S.A.: Deforming vector bundles on the projective plane.

 Preprint,Oslo (1982).
- [13] Wu Wen-tsien: Sur les espaces fibrés. Publ.Inst.Univ.Strassbourg XI,Paris (1952).