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Topologically trivial algebraic 2-vector bundles

on-ruled surfaces.II,

Vasile Brinzanescu and Manuela Stoia

Introduction.

It is a classical result that on compact analytic surfaces
the continuous complex vector bundles of rank 2 are well-deter-
pided by their Chern classes 01,02'(Wu BB]). In particular such
a bundle is trivial iff cl=o and c2=O} For a nonsingular pro=-
jeetive surface it follows by a result of Schwarzenberger . [11} -
that-on the topologically trivial 2-vector bunadle theresare
pomntrivial algebraic structures. In fact these élgebraic bundles
form a véry large family kthat is not bounded ).

In this paper we continue the study started in[3] on the
structure of tonologically trivial algebraic 2-vector bundles
on'a ruled surface. On P~ the oroblem was studied in [ﬂj}d}j}ﬂ.
For stable bundles on ruled surfaces see (4], [8].

The first oroblem,in our case,is to find numerical 'invariants
such fhar if one considers those algebraic bundles with fixed.
invériants they form an algebraic family. In section 1 we
introduce for these ‘bundles two numerical invariants d and r
and we define the set M(d,r) of classes of isomorphism of
bundles with fixed invariants d and r . The integer d is given
by the snlitting of the bundle on the general fibre and the
integer r is given by some normalization of - the:-bundle. The
main result isltheorem 1, which states that M(d,r) carries;a

natural structure of an algebraic variety and that there exists,



locally, a tautological bundle. After some preparatory work-in
section 2, the sections 3 and 4 are devoted to thé proof of £he
theorem 1., hr section‘S we show that does not alwavys exist,globally?
a tautological bundle (theorem 2 ). Finally the section 6 is con-
cerned with the case of rational ruled suifaces,when the algebraic
structure on M(d,r) is more precisely described (theorem 3 and
alenola )

We wish to thank Constantin Bdnicd to introduce us to this

subfect and for discussions .during the preparation of ‘this paper.

1. The numerical inwvariants d and r.

The notations and the terminology are those of [7].

Let C be a ronsingular curve of genus g over fhe complex
numbersvfield and let Z : X—=>C be a (geometrically) ruled
s;rface over C., One can write Xch(Y%), where‘é is a normalized
lecally free sheaf of rank -2 on. Cs Let-denoté By & ke divisor

’ ) . . . 2
on C corresponding to the inwvertible sheaf /\‘ﬁ and e=-deg & .

\. 1 v i c i C =/ ]
We fix & section CO of £ with Lﬂx(co)"c%Dfé)(f) and Py -2

point of C. Let fo=7ﬁnl(p.). Any—element Qf Num X=H2(X,Z) can be
= V';;ittegyh;; QW;; with aj;be Z and C2=—é Csf =1 f2=O. Since"
=0 0 = Lo S 7o o it

the canonical divisor KX on X is given by me -2CO+E*(KC+<$),
hence for the numerical equivalence we have KXE;~2CO+(2g~2—e)fO

(cf. Hartshorne B, Chol+).
We will denote by d%(l) the invertible sheaf associated to the

the divisor SO on. C. If L is an element of Pic G, we shall write

L= d%(k)éaLO, where k=deg L and Loggpicoc. We also denote by



F(ac_+bf ) =F @0, ()@ T* (D (b)) for any sheaf T

any a,b€z ( O, (a) = (ﬁx(acon.
Let E be a topologically trivial algebraic 2-vector bundle

on X kLe. ol(E)=(0,0) et LB S0 Since the fibres of % are

(
2\
: : e 3 = oy
isomorphic ‘to P~ , we can speak about the generic splitting type

of E and we put Elf :fdh(d)(D(Of(—d) for a general fibre f,where

d2>0 (cf.[é] and semi-continuity theorem).

fhe second numerical invariant r is obtained by the following
normalization:
—r=inf{;ﬁ\ tﬁere exists LePic C,degLQg S.t. QO(X,E(-dCO)85ﬁﬂLJ)%O}

One has Ho(x,E(-dCO)®75"(L))_1 H’O(C,Z’*(E(-dco))@)L) and moreover

HO(C,E;(E(-dCO))8>L) does not vanish when deg L>> 0 and is zero

))

when deg L<<O (for, use a suitable filtration of Z;(E(-ﬁco
with subbundles and Riemann-Roch fof divisors on C ). wfherefore,
there exists>such an integer r.

Wie shiall call a topologically trivial algébraic 2;vector bundle
with numerical invariants d and r,simply, a 2-vector bundle of
type (d,r).

Let us denote by M{d,r) the set of classes of isomorphism of
_2-vector bundles on X of fixed type (d,r). .

Our purpose is to prove the following

Theoren-1. Suppose d>0.Then:

(1) the set Mid, ) tarries & natural structure of algebraic
variety,

(2) There exists,locally relative to M(d,r), a tautological
bundle (i.e. for every affine open subset V of M(d,r) there.s
a bundlegron X %V such that for each té&V there is an iscmerph-

ism Ef/4ﬂkiz o= Et’ where ;t denotes a 2-vector bundle corres-



ponding to the class t ).

Remarks. 1. For the case d=0 see the remark at the end of
lemma in section 2.

2. In general does not exist globally a tautological bundle;
see theorem 2.

3, In the case of rational ruled surfaces the algebraic struc-

ture on M(d,r) is more precisely described; see[ﬁaand theorem 3.

2.Some properties of the bundles of M(d,r).
We want to prove the follcwing
Lemma. (1) Every 2-vector bundle E of type (d,r) is given by

an extension of the form

0—> (ﬂx(dco+rfo>®z*(l_2)~—> E -—->3’Y & CQX(—dCOwrfO)@‘/&’*(Ll)_aO,

wheré Ll’Lée Pic®C and Y is a locally complete intersection of
cddimenéion o dn % with deg Y=d{2r-de).

(2) Every algebraic 2-vector bundle éiven by an extension like
above is of type (d,r).

(3) - For évery fixed data Y,L,,L,, where Y X i85 a locally com-
blete intersection of codimension 2 with deg Y=d(2r-de) ,and
Ll,Lze:PicoC, there exist bundies appeariiig as extensions like
sbove ‘and these extensions are uniquely: determined modulo &, by
the isomorphic classes of bundles.

(4) Suppose d>0 and let E be a 2-vector bundle of type (d,r).
Then the data Y,Ll,LZ'from the cofresponding extension are uniquelyi
determined by E (L1 and L, up to an isomornhism).

Broof . (1) 9y the definition of r there exists L2é;ricoc,such

that HO(X, rz(«d*co-rfo)@ﬁ"“(L

?L))# O (in fact its dimension 1is 1)

we choose a non-zero section and apply Serre’s method ([Q]LCh.I,

%ES ) we obtain E as an extension of the desired form (see Lﬁ]for



more details ).

(2) Obviously an algebraic 2-vector bundie given by such an
extension has cl(E)z(0,0) and CZ(F)=O. By restricting the exact
sequence above to a fibre f provided that fNY=@ we get that the
splittimag-type of F-dis(d ~d); a simole-arqument shows that the
integer r from the given extension is the second numerical inva-
riamt-of E, lienee £ is of type (dir).

iy . 3 {7 R G v
7 2\ 1 ' sa s i D 4 i P cy s .

et us denote ==/ E2dEz=Ft o I ana e& =
Eoras oty >\( _ ) & ( 1) € >

=(9X(dCo+rfo)(9 E*(L .Consider the spectral sequence of term

5)

tEg'qup(x,%xfgx(;7Y®;fl,&fz)), which converges to

Ep+q=ExtD+q( 3\{»@ “Zl) oﬁ.-'?). On the other hand, ”’é@o(\"f\/@@gfl)‘j?)cj

ﬁo?fzeb iil and Sl l?f\.,@‘ofl, o“o’)?_)cz A Oved oty = (for

the last isomorphism we use the connexion between the dualizing

sheaves . and OJX and. that dim ¥=0). But one can easily see

that HZ(X,<f2®&£11)=O, hence the exact sequence of lower degree

terms becomes:
0 —HU(X, L@l 1T —sExt (F, 00, L) — 1Y, D) 0.

Now , by & resul t.due to Serre ([9],Ch,1,§5), any element belonging

Lo Extl( 3YQ%51)Kf2) which has an invertible image in HO(Y,CQY),

: 0 =l e

defines an extension of the desired form. One.has H (X,E®&f? = C
and the second statement follows by a .well-known argument.

(4) L, is determined being E%(E(wdcowrfo)). Y is determined as

2
the zero-set of the unique (mod €*) non-zero global section of

E@i;]’, Using again HO(X,E&Z“%)?A(E,‘ jY&,Zf{l will be-well=:



=

Sl

determined and therefore (by ramovability) ;f],that is Ly will be
well-determined by the bundle E.

Remar. For d=0 4t follows from the part (L) that every 2-vector

. bumdlie tE. ot sbyine (O5r) is: of ‘the form E*(F), where F is an alge-

S

braic 2-vector bundle on the curve C with c](F)zo. Moreover,there

is an one to one correspondence between the set of isomorphism
classes of these bundles on the surface X and the set of isormorphism
classes of 2-vector bundles on the curve C with c1=O.Thus the
classification of these bundles.means the classification of the

corresnonding bundles on curves.

3. .The algebraic structure of M(d,r).
In this section we shall prove the part (1) of the theorem 1.
Suppose d >0 and let E be a 2-vector bundle of type (d,r).It follows

by the lemma that E definesi an element EEGExtéX(ﬁYS’j 1> ogz),

4
R and

: o ¥
el d&(—dco—rfo) @ 47(L 5

= v
i OX(doo+rfo) & 6L

o)

q
&

the data Ll’L Y are unigquely~determined by E. If Y#@ (i.e. E is

o
non-uniform; see [3]) then EE#O; if Y=@ (i.e. 2r=de and E is
uniform) we agree to expel the single decomposable hundle of type
(d,r). It follows again by the lemma that the class ef B im.Mid )
defines a unique point in the projective space
(Fxiyy (Iy® Ly, Lo 103 )/ e

In order to parametfize'thg whole set M(d,r) we have to move

and Y and thus to look for the variation of Ext. LetIPO be

L1 ,L2

the Picard variety of isomorphism classes of line bundles of zero

degree on C and let!LO he the universal Poincaré-bundle on Cxﬂjo,

Let IH be the Hilbert varietv of zero-dimensional locally complete
o



imbtersections ol degree d{dr=de) i X and lst 36 §)

N\\\f\\gb?af of the universal subspace YOC:X,x

\\\x

Q)

the ideal

\HO. Recall that lHO 15

smooth connected, quasi-projective of dimension 2d(2r=de)(see [5]l,

~J

Let' us denote by Z the variety WOX.P

diagram with natural maps:

| ave 11iows
dx?Ho. We have the.following

x\g_ﬁ___._dxxfi’ it > XxH,
ﬁ \
f*-) —~7 n
Cx7 > 7 P > H
10’.‘??%*'“2}{ l PiePs
; CXYF ~._————;>[P

We use the notations:

Ak

E e b e e (sop, )

o o)» where S ¥={1 kp )"

Now it dis . natural to consider the relative %z&f:

3@ %xj~<u (D (-dc -rf ))e(TxlsT* (L )@JY,f(@X(dcowfo)\,a(mlzf‘(gz;,),f

Take the spectral sequence

D,q_,,B/y q 7
EL ' =H (A,“&a—,t(gx( 3Y®°<,l)°f2)),
and notice that

20,2 10 x,%;:?ﬁéx( 3Y®$l>$2))y_m

._2
s bty (Yol d))=
L‘S yu&m \Q/Yﬁbvgj_)ogz))
ItAfollows that Extﬁpx(jﬁ(®°f1)cﬁé):o

~7 %
point of Z.determined by Ll,Lq and Y, we

of [2)that

7 X i

g9 43 6 7 =

2 M2 (X, oa”z@:f zl)w

and if we denote by z the

deduce by means of a result

%Z///’%— \}@LZ = rXt(y (J\(@Mﬁ1 )‘:(f?)a

o

1(Xﬂ&%;x(ﬁy@i%)J;”ﬁHlphaYFO;



=

—~J
But,qenerally,Si is only a coherent sheaf. and not a locally

—

ree
one. This- oceurs because,although Z is reduced ( in fact nonsingular)
the function

: Sl il
Z—-———-v——-—a'dlm. Exit (Qx(y\”x?.@”g’l ) (z:(Ll.LZ,Y))

-

. ; o . T i
is not constant. The jump of dim Ext happens alreadv in tnhe csase
when C is an elliptic curve (see an example in [31)

We take the tratlflcatlon given by dim rAt @ (‘JYJ‘j @11 )

-constant and we get (by semicontinuity theorem) finitely many

strata

- {ze7 | din extgr( Yy d 1,5 w e

" N : vy
which are Zariski locally closed subsgets of Z . We choose on Z,
the reduced structure and let S%i he the corresponding relative %RZ.

be the direct sum of

N

Now every sheaf Eﬁi i lecally fres.: Let

Z.. and SQ the corrasponding locally free sheaf on Z.It follows
from previous congiderations that there exists a natural injecfive
map M dir)— P(R¥*) and we shall idenfify the set M{d,r) with
its imAage in the nrojective bundle of the dual of R ,m(ﬁa*)

Tt ie not diffieult to see that M(d,r) is a Zariski open sudset
of P(X) o 1) ‘Lemma 3) and so M(d,r) carrigs a matural strue-

ture of an algebraic varisty.

4. The local existence of the tautol oqwcnt -unoTe

In this section we shall prove the part (2) of the theorem L

Clearly we may Aassume Z = Zi (one stratum) and f%,rf%i. et

Pt XRXRZ—p 7 be the canonical projection and let denote

". A o Ve S ] O\) i £ ,,5. A 3
QJ]—_—!‘;*( (9}((-—r1CO—-r‘l O))@(/LK ]_Z>(ﬁ. Y. and J?"-Uz‘x‘@x(&,(:o+l fo)>®(/ = 1?)(&' >'

Then we haverthat §Q,= ‘%x;é]'(_?j\{(®7l> 972) is a lecally free sheaf



on Z and commutes with base change.
Let P(R¥) be the orogoctlve bundle of the dual of R and.let

P(R*)——> Z be the canonical projection. Con%1Aer the cartesian

diagram
‘X>W%@&) e s KR
l e P
RS e

-and let G%W§§)(l) he the tautological invertible sheaf on P(@F)

: il / :
We use the notations: l=q’%(gfl), Efgzq'*(ir?) and W’:q’*( X ).

The canonical surjection_q*(%ﬁ).—_4>(9W%§ﬁ)(1) gives a morphism

Opig -1V — ¥ @) =Bt S T ,®‘J’l’, T
'hen?e a global sectisn § in é&r) | ﬁ9gq ?’ B o ((9 (R¥) (e
Let,noﬁ V be an affine 5oen subsef in Mid,ric P(R¥) and
(V)=X XV. We have the isomorphism
S ):tisuo(v,%xié.(,.. ))
and. let qze—.-!—?xtl(V’; ff\{(,gg){,%—/ @ p (QP(R*)(I))) be«wthe corress
‘ponding element of "Elv. The element ‘? gives an exten?ion oY

’ .
0= Lo M0, on(1)) F —e e .

where the sheaf g’is obviously flat over V. For ggch t &YV,
reduction modulo 4%t of the above extension is naturally equiva-
lent modulo(ﬁ*with the extension

2 j\/ ®"Z)0]_

where E. is a 2-vector bundle corresnonding to the very class of ot

0,

O"""V:}cf?‘ ——_._aEt

: - Y e gf NS 5 e Ertes e :

Then we have the isomorpnism /4%tf = E, and since & is flat
er . : o Gi

over V one gets that the sheaf ¥ is locally free. ¥ will,be a

tautological bundle on X%V,



=10~

5, The global non-existence of the tautological-blundle.

We shall prove the following

Theorem 2. Let X be the rational ruled surface Fl (e=1).
There is not globally a tautological bundle reslative to ML, L)

Proof. Let us consider the following cartesian diagram in the

general case:

Kooty =T X

T A S

Further we shall preserve the previous notations.
Let us suppose that there exists a bundle on- X% M(d,r) sucn
that for each t&M(d,r) there is an isomorphism gz/ﬁzt?EzEt ,

where Ft denotes a 2-vector bundle belonging to the class of t.

as
The sheaf O%(?Efj ]ﬂ is an invertible sheaf since M(d,r) is
+educed and dim H° ”t®4f21 =1 for any E_. The bundle
%{:/ @D"%/p* CJ@ g/? . is,again, tautological and

o (%ﬁ%bﬁé"l)iﬂ @ . conscquently,there is a scction
~ / 90/_,] 7} :
GCeH (X %M(d,r),gj® 5 ") with non-zero image through the tdenti-
: ' -1 v R B C o ‘ol -1 /_cr/-1
/ o4
=@, The corresponding map 922——w9%r is injective modulo 4%t

: j o ‘
for each t € M(d,r).Then 675-——9~f js injective and its cokernel

52 is- flat gver Mid, ). 2We have the exact seguences:

0 —> bf?_ —> Ef//mt G- S0 A tg e

o R

where g(t)=z=(L+ _-2,Y), &gl;(px(mCo~fo)®}Wqu) and



e

$2=&x(co+f0 ® T¥(L g//ﬂ( \5 \7 @J ?gand 5 ®f7}

2

are flat with respect to p“and moreover isomorphic,locally relative
ta Mlidyr) , since hoi:’-.nd( jY@o‘zf =hOEnd( ff =1 when Y is O-dimensio-
pailcins X EZ] Korollar 5). As %mg :7W =~ J 5. hence there is

en invertible sheaf & on M(d,r) such that @i\jjw,@ 9’f®p'>‘<’($’\‘).

Therefore we have the extension:

e T s ffv,éé 57’1/

> 0,

” / ’
where g ¥ ® p'#(L) is again tautological and let

1

§eEx-t‘()<xr4(d,r);...) be tne corresponding class. Since

: 7/ / 6 S ok . / ; -
kg'bur_l)'( (\YY/'Q’/ET:L )C:T?_ ® p X(;{) ))" ‘gec/t.éz( \(Jwv'g 7 1° 72)@72?2’(1%(%)@%3

hence the image of T by Extl —_— Hoféxfl) gives rise to a map
q*(@é*)-~a uf and as gff 1e - tautologicslater follows (Considering
again the fiSreS of E’)that ok()ﬂ':i@fp(%% )(l) . Consequently we deduce
that if>there were globally a tautolo@ical bundle & . then by
tensoring it with an invertible cheaf, the new tautological bundle

Y : ;

gﬁl/would be given globally by the following extension:
/ < u 2
IoSnay - X < @ el -

0——>9, ®p (QP(@*)(l))—A>f_._~>f7w, :‘Tl 50

In the tase of the rational ruled surface X=F, for M(1,1) we’
have: PozPicOC= one point, deg Y=1l,hence the Hilbert variety
[HO=E:1, the universal subsnace YW is the diagonal A and

dim th(p ﬁy)cf @gfl ~]. It follows that the variety Z consists

of a single stratum and H(l)l)ﬁ{F]. The previous diagram becomes:

= ; ,r*-’* . 3
14

i J_ ERLG ) ¥—1 )( B;l.

5
L D : | l/ PRl
=y

L)

M}_(L >




= T
We have QR «p, (Bl (fj @?Sf]) J5)).but 02’/{/ 34 ®9“l,9/2 ) £

o Bt ( (9@9?1 9, 1~ Q0,69 1@9}' @ca,p X €, ,Cx)ﬁzlxwl:\j

* X ; v e %
le(QUTl) ® p2(@ﬁ:l>' C‘)(Fl' ﬂ’:l(""gco"‘\)'o)r ?l“pl(d)ﬂ‘:_‘(“co"’fo));

~9ﬂ ~,*(C%Fl(c +fo)) and by means of the identification élc:[Fl'

' ¥ e
we getj %:jé{?’ (4CO+5'fo), Then &{F\,%_X)(l)d\% s CQ(Fl(—‘:f(,O—ofo)

and a global tautological bundle will be given by the extension:

05 B @I.F-l(cOwO))@pé(&Fl(w4(:.0-.5fo))~a T Yo p’l‘(&ml(-nco—_fo))—;o

We ehall orove that

Ext™( O ol O, (=057To)) 01O (S5+F,)) @ oS
and we will derive a contradiction. We show that
e 3!4@_0?5( @(Fl(-a.co-fsfo)) ® pz(Qerzc +2f_¥))=0 and by
duality we conclude.

The exact sgquence O-_—agé-eych X{Fl.___g QQ-__a 0 gives

the exact sequence:

HZ (p¥ ((9 (-4C -5 ) @ p-;(@(Fl(?_CO+2fO))) ey Oy (-2C=3F ))—>

,\( : : -4 - '
( o0k (G (-40,751 >>®p2(é}ﬁ<zco+2fo>>>
T H3<p§(\(%:}(--4co -5t ) @pi(&. (2C +2f

(n ((9 ( -5f H@n‘%(@a (’C o 2 ))) £
3 0 2 ﬁl

=~ w2, Op (-4c,-57,)) @ Hom(d
| o ‘

SAD & &)
i ( /CO 5fo), = )

1 =



iz

the map o can be naturally identified to the linear map associated
to - the natural pairing of Serre duality, hence it dis not zero.

But H(pT( O (-4C_-5f_))® ol O (2C_+2f_)))=0 and the proof

il - 1

is owver.

6., The case-of rational ruled surfaces.

ek

Theorem 3. Assume C=P~ ( i.e. XEEFG a rational ruled surface).

Then the set M(d,r) is a nonsingular,connected, guasi-projective,
rational variety of dimension indicated below:
(a) when de=2r and ez1 (uniform bundles)

dim:-M(d,r)

il

Zd(de+e~é)—l
(b) when e=0 (r=0) (uniforﬁ bundles)
dim M{d,0)=-1 (M=@ !)

(c) when 2r-dée >0 and e3 1 (non-uniform bundles) there are
two posibilitiesy r>de, dim -M(d,r)=3d(2r-de)=1, or rg de -and
dim M(d,r)=4(2d-s+1)(es+2de-4r-2)+3d(2r-de)-1 (s:[g2r+l)/%]+l =

(d) when 2r-de >0 but e=0 (non-uniform bundles)
dim M(d,r)=6dr-1.
~/

Eﬁﬂgi; In this particular case the ‘é&jasheaf 8% is locally
free, ite.-rank is well-determined by d,r and e (see[}] for more
details) and thus, the set M(d,r) is a Zariski open subset of

i - ? : : : e
.the ‘nonsingular, projective, rati nal,connected varlety(P(éi,')o
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