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ABSTRACT

We prove the stability of the index and the semicontinuity

of the dimensions of the cohomology groups of semi-Fredholm
complexes of Banach spaces and clcsed linear operators with
respect to perturbations of the operators and of the under-

lying spaces which are small with respect to the gap topologies.
It seems that, even for single semi-Fredholm operators, some of
the statements are more general than the current ones. The results
are applied to -obtain semi-continuity for joint spectra of;finite

systems of commuting bounded linear operators.
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STABILITY OF THE INDEX OF A SEMI-FREDHOLM COMPLEX

OF BANACH SPACES

Ernst Albrecht and Florian-Horia Vasilescu

1. INTRODUCTION

The aim of this work is to study the stability of the
index of a semi-Fredholm complex of Banach spaces (see Section 3)

of the form

p+1

-1
oP =T - (1.1)

S ey
where P is a closed linear operator for every p€Z, with
respect: toithe.gap topology,.  This means. that boﬁh spaces and
operators may be perturbed. The main result of the present
paper asserts that the index (i.e. the extended Euler,characs
teristic) of such a  ¢Bhplex. is stable under small perturbations
and the dimension of the groups of the associated coho%ology
is upper semicontinuous, at least for complexes of finite
length (see Corollary: 3.6)..However, we obtain adeguate. ins
formation even for complexes of infinite length (see Theorems
3% 5 randr83ai] Jamsling.particulan, Jwe. extend. the correspoud;ng result
from. i8]} ,..as well. as. the, standard. result, of.stability, (in. the
gap.topology).of the, index:of a semi-Fredholm operator. It seems
that actually in the context of semi-Fredholm operators we
obtain more general assertions than the,cuprent onés. This -
happens because we allow the variation of both spaces and
operators. In addition, our methed enables us to give in some

cases effective estimates (see,.:for instance, the proof of

Proposition :2,.20).



The dcurrence of complexes of Banach (or Hilbert)hspaces
in rather different domains of mathematics, for instance
in £he theory of the 3-operator in strongly pseudoconvex
manifolds [6], [ 715 Ftel5 157 ete. ) Pag’ " well'as " in~the spectral
and Fredholm theory of several commuting operators [17],[4],
[191,[5] shows that they are remarkable mathematical objects
whose intrinsic¢ systematic study (see also [12],[17],[16],
Et9l,[20]),[5) ete:) could be of intérest. It -is. the purpose of
this paper to show that a highly abstract concept of a complex of
quotients of Banach subspaces has important stability
properties under a general type of "small" perturbations.
The choice of such a concept has bheen dictated by some
technicidl ‘reascns, mainly by the invariance under duality,
~as well as by some significant examples,  discussed in the
last section.

We shall follow, as a ruvule, the notation and terminology
from [8]. Nevertheless, for convenience of the feader‘(and
to point out some small differences), we shall T strsehe
symbols that ‘are used in the present work.

Let X and Y be (complex) Banach spaces. Then C(X,Y)
is the set of all closed linear-.operators that are defined
on linear submanifolds of X and have values in Y. The subset
of those operators from C(X,Y) which are everywhere defined
(and hence continuous) e denoted by e, Y We set
C(X) : = G(X;X).and £(Xf: =¥ y#X). For an arbitrary S €C (X,Y)
wé denote by D(8),N(8),R(S),G(S) and Y (S) the domain of
definition, the null-space, the range, the graph and the
reduced minimum modulus of S, respectively. Let ®+(X,Y) be

the set of those operators S from C(X,Y) such that R(S) is



closed and dimN(S) <. Similarly, & (X,¥) is the set of
those operators S € C(X,Y) su‘ch that dim Y/R(S) <« (this
condition implies, in particular, that R(S) is closed [8]).
The set @_(X,Y)lJ®+(X,Y) is the class of semi-Fredholm
operaters, and 0(X,¥) : = @_(x,y)r1®+(x,y) is the class of_
Fredholm operators. The index of a semi-Fredholm operator
S will be denoted by ind S.

The direct sum X®Y of two Banach spaces X and Y will
always be endowed with the norm Iix@yll2 = IIXH2 + Hsz for
all x€X and y €Y. This convention automatically covers
the case of Hilbert spaces: The family of all closed linear
subspaces of a Banach space X will ke denoted by i, "k
7 € My, then e is the annihilator of % in the;dual~X$
of X. For every sk £ the symbol d(x,2). stands for the
distance from x to Z.

We recall that the gap topology on ¥(x) is defined. in

the following way: Lf Y and 2 are in $(%), then ong sets

SU¥,Z2) v+= sup dly,Z) ,
veEY
Nyl £1 ,
and sS85 20 somomaxt s 0¥ ,2) w8.02,%).} . ;Then the mapping 8 A¥ . T ) s

"which is eqguivalent to the Hausdorff metric on the set of
all anit baldls.of the spaces. from :f(X), defines the gap
topology of ff(X): One can define in a similar way the gap
topology on C(X,Y);_by settinq

s T =S (G (S )G (T))

. and 8(s,T) =max{s(s,T),6(T,8)} for all s,T€C(X,Y).
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We now give a brief deocription ofirtne contents of
the present work. The second section is concerned with
the semicontinuity of the dimension of the kernels and
cokernels of certain semi-Fredholm operators, with respect
to the gap topology.‘Although intended to provide the
auxiliary apparatus of the whole work, this: section contains
some results that are, we think, interesting for their own
sake. Particularly, Theorem 2.2 is not only the. core of the
second section, but it also yields a general method of
solving linear equations by successive approximat?ons (see
also Corollary 2.3). This method leads to effective estima-
tes (see the proof of Proposition 2.20}.and can even be
combined with some non-linear cbjects (see the proof.of
Lemma 2.16) .

The third section is concerned with the stability ef:the-
index of a senmi-Fredholm (Fredholm) complex under small per-
turbations in the gap topology.

The fourth segtion contains applications of the results
from the previous sections.. The first example shows that the.:
study of complexes of pairs of subspaces (a concept somehow:.
suggested by [12]) can be reduced to the study of usual
complexes. In particular, we obtain the stability of semi-
Fredholm pairs. of subspaces, as made in [8], even for the
case when both arguments vary (see Remark IV. 4.31 from e,
Then we discuss the invariance of the class of semi-Fred-
holm complexes under some natural transformations. The third
“example concerns a class of objects which are complexes

modulo compact operators, and whose properties can be obtained



from those of usual complexes, via a nétural transformation.
At this point the use of complexes of quotients of Banach
subspaces is effective. Finally, we apply our results to
obtain semicontinuity statements for joint spectra of
conmuting finite systems of bounded.linear oepexators. We are
especially interested in operators induced on invariant or
quotients of invariant closed.subspaces by globally defined
linear operators.

This work has been prepared while the . second named
author was a guest of the University of Saarbriicken as a
Humboidt Fellow. He would like to express his gratitude
to'the:Alexander von Humboldt-Foundation for its support

and: te the Universttyoff Saerbidcken For'its hespitality.



2. SEMICONTINUITY OF THE DIMENSION

The standard framework of this section is described
by the following:

2. %~ DERINITION.;Consider . the Banach. spaces . and f),
and let XO,XE:fMﬂ and YO,YE:fﬁm be - such. that Xoc:X and
YOCZY. For every operator S € C(X/XO,Y/YO\ we define the

following linear spaces:

Now):={x€x;x+xO€N$)L-
RO(S) = {yE€Y¥Y; y+YOtR(S)},
G,(8) : ={x®yeX® ¥ix+X €D(S),y €S (x+x7)}.

It issplain-&hat N(S)==NO(S)/XO, R(S)=:R6(S)/YO and G(S)

is naturally isomorphic to GO(S)/(XO@ Yo)“ Insparticular,

NO(S) and GO(S) are closed, whereas RO(S) is c¢losed if and

only #:f R(S]) 1s closed. If Xo=:O and YO==O, then

N_(8) =N(S), R_(S) =R(S) and G_(8) =G(S). If X XeF(x) and
§0,§€:f(m)'are such that ig::i and Yoc:?, and if Se€ Q{%/ﬁo,y/?o),

then we set

and 6O(S,§): = max{do(S,S),é

§ =20 = A 3 ::Vz T = <
T® 9 If X 5 O and Yo fo O, then SO(S,S) §(S8,8) and

Let © be as above and let M be anbther Banach space.

Let also A€ £OLY/YO). Wei.define an extension S, of S by Ehe

: 1
equation;ST(iC>v)f:S£-+Ameor all £ €D(S) and v € M, and hence
S, € G((X/XO)G)M,Y/YO). Since (X/XO)@ M is naturally isomorphic
to (XEBM)/(XO@%O)q the entities given by Definition 2.1 make

senseforﬁ%; withe¥ replaced by ¥@® M. If dim M<e, then we have




dim N(S1)/N(S)+<dim R(S1)/R(S)==dim M, (2.8

whére i Maidantified with ¥© 0. The ‘Proof of (2.L.V)ecan be
found Hns 197, Lemma 2 .7.
Wet X¥hbe an Arbitrayy ‘Banach space' tand let Y € %4%)
be such that dim X/¥Y<m<ew, For every € >0 one can choose
a projection P of X onto Y such that lIPlIg1+m+e (see, for

instatite [14]1). In the following, we shall stress the' choice

of such ausprojection P.by.saying that ||Pll depends only on.m.

2.2. THEOREM. Let S and g be~as 20, Defindiktion 2431« If

S € @_(X/XO,Y/YO) and the numbers SO(S,g) and &6(Y,Y) are

sufficiently small, then §€£®~(§/§o’?/?o) and

~

dim (Y/?o)/R(’s“) Sdim (Y/¥%5)/R(8)*
Proof. We shall essentially refine. an approximation
method from [17], Lemma 2.1 (see also [19], Lemma 2.1). The

proof will be 'divided into several steps.

1° Note that the space (Y/YO)/R(S) ig digsemorphic to the
space Y/RO(S). Therefore, dim Y/RO(S)==m, where
m: = dinﬂY/YO)/R(S). Let P el aiprojection’ o ¥onte RO(S)

such that Pl depends only on m. The null-gpace of P will
be denoted by M. Since dim (Y + M) /¥YSnm, we can choose a
projection B of Y+ M onto Y such that [Pl depends only on m.
Let us also note that Y (S) >0, since R(S) is closed.

-1

Q Let us éhoose some positive numbers r > (89 '

2
§5 6(¥;¥) . and aos 6 46,5 1 5(¥,Y) and 6, (5,8) are suffi~

ciently\small,'then we may assume that

' 5 2. Ve
-m(ao,rs,r):=||Pi|(6+60(1+6)(1+r) ™ P R i %



We shall show Bhabiif 62 2) I fulfilled, then'?‘:Ro(g) + PM.

3° Let 376 Y be arbitrary .« Lt ’37#0, then by the choice

af & i 20, there exists y € ¥ such that Iy -ylil<é lIyll, and
hencaw iyl < 6L #88I v L+:In the tuivial case V=0 % Ealie
Yy =0w»elne has tesproceed -similarly-in-the folilowingiestimates,

where we shall constantly omit the trivial cases.
4° We can write y =u, + Vo where Uy € RO(S) and V4 €'M.

1 + YO = S£1 . Moreover,

the vector e’;1 can be chosen such that H«i1 [ <J:HS¢E1 Vs Let

Then there exists 8;1 € D{8). such‘that*u

X € E4ebevstch that llx,l I <rHS€;1 [l . Since u, =Py, and hence

g Il < (1+8) IIRIL F1 by 3%, ‘we have

!!X1 H<xllu dl < x(1+8)HPH 1T

1

5° Notice that x,®u, € GO(S) .. Therefore, by the choice

1 1

of 50, there exists an element §1® '1\1'1 € Go(g) such that.

o 2 L 2 2 (2
Hx1 "IH +Hu‘I uy i <6O (HX,]H +Hu1,l Yoig
- 2 2 O e
$s2 1+ 820+ uennyu?,
by the estimates of HX1 Il and Hu1 Il from 4°. 1In particular,
v 2 il s
le1—x1l|<60(1+6)(1+r ) =S el P
and
s 2.1 A~
- < \ |
Hu1 u1l| \60(1+c3,(1+r ) o B
6° Let us consider the vector ?1 =§—51 —'13'\71'6 Y, where
Vs EM (see 40). Cne has

~

II'}\;1 5= H@J(ﬂ\/-u1 =

A

1)

S HPH(NY -yl + !18’1 - AP é@(séi&’,r) Ny,




with m(éo,ﬁ,r) ae sime (222}, wWhere we have used the estimates
of Iy -y Il and ‘.131 —HTH from 3° and 50, respectively. Since

v, = (1-P)y, we also have

o e T i ~
HX1H:|VIX1 X1H + H>\1|l = p,]((SO,(S,r) Hyll

and

v 1l éozwﬂl?ll,
where

AR
0 (808, 1= (1+8) (x+ 8,01 £ £2) 2y ye s

(24 3)

pz((S) w1 = B

(We have used the estimates of Myl llx I and %, —§1II from

30, 4° and o respectively.)

7° We can now repeat the previous steps, replacing thé
vector §’ by -Ehe &ector '{/’1 defined in 6°. We obtain a system
of vectors (§2,§2,52,v2) such that
§2=§1—52—5V2=§—'ﬁ1 —E2~'§'(v1+v2),
15,11 S0l 7, S T,

p1w1\’§t\,

A

n§2n

I

‘N
p1l‘y1H

1

Hvzll s pzﬂy1 I! szpHyll

and uZES(x2+XO), where @ :=<p(60,6,r), Py 5 01(60,6,r)

and Py = 02(6) . In this manner;,; we obtain by induction the

sequences {?n}nc?, {gfn}nc'%, {ﬁn}nCY and {vn}ncM such that

an un€ GO(S) '

~

ynzy—- (u1+.‘..+un) —P(V1+...+Vn) )

Ny 1 ey,
NE Il < p1tpn_1 Tedi® (2.4)
v 1l S e e :

5



for all integers n2 1. From (2.4) and G221k follows~
that the serigs Z';;n and Zvn are convergent in ¥ and M

to -certain vectors % and v, respectively. Since "_\Jln—>O

as n-o and P is continp.ous, the series Zﬁn is also con-
vergent. Hence the series Zg(§n+§o) is convergent and
its sum must be equal to §(§+3{,0) , because 8 is o elosed
operatoxr. Moreover, if U is the sum of the series Z'ﬁ'n,
then X®UE€ Go(g) . Conseguently, '§=§+'15'v, where UE€ Ro(g)

and v € M.

8° we only note that the space (¥/¥ )/R(S) is (alge-

e}
braically) isomorphic to the space ?/Ro(g) and that
dim?/Ro('SV) "< dim PM S dimM =m . Ir#particular, RS be @losied.

This completes the proof of the theorem.

2.3. . COROLLARY. With the notation of Theorem 2.2,

let ’516 COX/X )® M, "?/r\fo) be given by the eguation

o
'§1 (?,'@v) =E)F -i--Kv, where Av =DPv + ?O, For alil €€D(§) and

v € M. Assume that

(,OO:=LD((SO(S,S),G(?,Y).Y(S)—‘l)<1- (2.5)

Then the operator S1 is surjective and one has

B0 s (-9 e, +eng e (2.6)
where
e ¥ =t (6748 B8 (B i 807
756" 02(6(?,\1})
Proof. TE-{2.5) is falfilled, "then P v an

appropriate choice of the numbers 60,6 and r such that
(2.2) is also "fulfilled. Then we have ?'=RO('§) HPM, and

hence Y/?O =R{SY'+ (PM+ ?O)/'ﬁ\fo, so that the operator '§,|



is surjectivelsiliet ﬁ€E§/§O and € >0 be arbitrary. Choose
§e:ﬁ such that YIS (1 +¢e)lInll .. From the proof of Theorem
2.9 it follows that there exists a triple (Q,H,v) such that

§::G4-5v and QGDGEZGO(g). From (2.4) we obtain the estimates
1

; ~ ‘< ~ S s -’ ~y

l|XI|=:n§1Iixnll_ (1 =) 01!lyli,
< 4 < L -1 o

IRVl =ni1anH = (1-9) szyIL

Tt €==§4—§o, then we can write

~s ~o .. 1 ~
IZovii SFevi £ (-0 e+ 0.2) 201+ e nFI,

and §1(§(Dv)==ﬁ. Therefore

1

s o L 1
FEN -0 el 0l B v e,

1

Letting 60-+60(S,§), 6-*6(?,Y), r—*Y(S)— and £~>0, from the

last inequality we derive (2.6).

2.4. Remarks. 0T fhe operator S from Theorem 2.2
is surjective, then the projections P and P are identi£ies
and: M =0 (see the step 1° of the proof of: Theorem 2.2).
Then the operator §1 from Corollary 2.3 is equal to S. Note

also, that dn/ this case we have

ils D e 4% P S PRyl
o’ v o ’

o (8, ,8,5) = (1+8) (x+8_ (1 ¢ p2yley

02(6) =0,
which are derived from (2.2) and (2.3).

2° In the case of Hilbert spaces it :is not necesséry to
consider guotient spaces. We have, in general, lipli= 1Pl =

e Bl =3 Bothoin (2.2) anded@i3).



2.5. COROLLARY. Let X,Y€ ¥(Z) pe such that Xc¥Y

~ ~

and m o= dim¥/X <=, Let also ?,YE?(E) be' suell that Xc¥. If

CT A (S (Y)Y % 2 [T M, Xy (1 808, X)) =,

<
=M.

then dim¥/X
Proof. We apply ThHeorem 2.2 to the canonical inclusions

B XxoY and §¢% 7. we hawe :6¢5,8) 5648, %) BE) = 1

NPIIS1+m+¢e and Pl $1+m+¢e, vhare € >0 is as small as we

desire. Then the condition -from the statement implies (2.5),

whence we derive the conclusion.

2.6. LEMMA. Let S and S be &8 i@ Definit@on 2. 1= LF

8iis dengely defimed, then GO(S*) :GC‘)(-—S)J“, where Go(—-S) s

the spt GO(—S) regarded as a subset of 9® ¥. We also have
!

|
N, {5%) =RO(S)”“§;1_C1 R (5%) CNO(S)“". When R(S) is elosed;” then

the last inclpsion is™an eguality.'IT S is also densely

de Fined| ¥ ghenl SOYS+; shyfiotgs) .

Q'L /XL) by thesnatural

/X‘L(XOl and XJ‘ computed in &)

Proofivi Netice Hhat S*EG(YO’L /Yl,.X
idenfification of (X/X_)* with X_
and a similar identification of (¥/¥_)* with Y_/¥.
I8y 2xXeN® ¥ and it n=y+YO,- &:=x+XO, ‘then we have.
y@xEG(;(-S) if and omkyHf @& € GL (=88] (where G (=8]) 1is
G(=8) with the changed order). Similarly, if g@f € @ %t
and 1f G=g + Yl, F=f+Xl, we have g@fEGO(S*) if and only . if

GO®F € G(S*). Since we have the followina duality relation

<CAF,n®E>=<G,n>+ <F,EL>=<q,y>+ <f,X>= <q.0f,y® x>

Forall "xe X, v EY; fEXO’L 7 gEYOL , and G(S*) =G'(—S)J' (see
[8], ITT.5.5), then we easgily derive that _GO(S*) =G(')(—S)J'.




gl

Using the relations N(S*) =R(S)™ and R(S*)c:N(S)l, as

well as the fact that the last inclusion is an equality
. when: R(S8) is closed (see [8], Theorem IV.5.13), we obtain
readily the assertions concerning NO(S*) and RO(S*) from

the statement.

Now, let us observe that

g d(E%, 5%) =<S(Go<§*),co<s*)) =

& isita i)

T 5 2
LB, 6 (8)7) =8, (5,8,

by the first part of the proof and Theorem IV.2.9 from EB 1.

We now give a dual version of Theorem 2.2.

2.7. THEOREM. _Let S and S be as in Definition 2.1.

’ (= 7-"‘ = { < =T =]
£ S\_®+ (X/XO,Y/YO) and the numbers 6(XO,XO) and 60(5’5).n

are sufficiently small, then Se€&0o (?/io,?/§o) and
dimN(S) € dimN(S).

Proof. With no loss of generality we may assume that
both S and S are densely defined, and thus s* and 5% exist.
Let us check that the conditions of Theorem 2.2 are fulfilled

) *« i 3 A X il AL ! I
for S* and S*. We have S<€.§I>__(YO Yy ,Xo /X7 )e in virtue of (8],
_!_ "~
= ( a
5 ) =6 ‘Xo’Xo) and

that GO(S*,g*)==6O(§,S) by Lemma 2.6. Consequently, if

Theorem IV.5.13. Notice also that 6(%;‘,X

G(Xo,go) and 6b(§’s) are sufficiently small, then, according

to Theorem 2.2, g*E@_(?;'/?,ié'/ﬁi) and

aim( % /% /R(E) < ain (x /xh) /R (S),
which implies that Se Q+(§/§O,§/§O) and that dimN(S) £ dimN(S).

@]

2.8. Remarks. 1 - Let us consider the. function

/

5 1 ‘
@*(60,6,1:) : =PI (8 + 8o 1+ 68) (1 +r2) /an*n) S (2 4y

where P and P correspond respechively to. the projections



P and P in. (2.2), when 8 and & are replaced by S* and S*, If

S & -1\,
@*(SO(U'S),(S(XO’XO)'Y(S) ] <1, (2.8)

then the conclusion of the previous theorem holds. Indeed,

in this case we can apply Theorem 2.2 to

~

5% and S* (note

that ¥4{S) =+ {5*), by Theorem IV.5 13" fron” 3]~

Note also that the functiens; (2.3) can-beswpititen in

this case in the following way:

e Ry e
fat Vo 1O nEd G o' b, ek e

(el
Py £8) 4 &= S Vb 8Dl 4B e

e : B4 ; :
2 Ifthe“operator §' is inyective “ftand ‘hernce’ §* s
surjective), then the functions ©®, and P 1% fEromit (2807 ). and

(2.9) resp.)iare’;equal to the function @ and Py as givenss

by Remark 2‘4.10, while pz*:'o.

2.9. LEMMA. Let S and § be as in Definition 2.1, +and
let R(S) be closed. Then we have the estimates

§(R_(8),R (’C\“)) S ek Y(S)HZ\.I/Z o
TRd o e ) ¥ /

(S

o(S:5)

14

ey -2
§(N_(S3,N_(8)) 5 (1+y(S)

4

1
Ve 5«
) SO(L SS9k

ERodt » et 6:>60(S,§) and r:>Y(S)—1 be Fixed. Lot aleo

y € RO(S). Then y~bYO=:S£, and we can choose £ € D(S) such
<

that [lell <« lkse il rilyll. Let also x€ £ be such that

x>l <rllyll. Since xC)yGZGO(S), we can find an element
§®§E Go.(g) such that

x=-%12+ 1y =512 <62 (s 2oy 12y <62 (1422) 11y 112

Therefore

A T 1
(R (85),R_(B)) Ss(1+12) %2



Letting 6—%60(8,5) and r-*Y(S)—1, we obtain the first
estimate of the statement.
Let us prove the second estimate. We aSsume, with

no loss of genefality, that both S and S are densely

defined. Since R(S) is closed, then NO(S)l==RO(S*) and
Ro(g*)c:No(g)l, by«virtue.of Lemma 2.6.
Hence
s () N () =8N _(s)1,n_(B)h) <
o) "Eo "o =

A

O
Tl e iy d Wi g .
S(R_ (%), R_(§%)) S (1+y(s%) %) %26 (s7,8%) =

= 1 .
ko (8)500 28 (8,504

n

by the first part of the proof and Lemma 2.6.

For the next statements we assume that the Banach

~.subspaces XO,§O,X,§ are in (%), Yo,yO,Y,§ are in F(%)
and Zo,io,z,f areAin S .

210, ' PROPOSITION. Let SEC(X/XO,Y/YO) and

T € C(Y/YO,Z/ZO) be snch that R(S) €N(T), dimN(T)/R(S) <=

ant R (1) isvaliosed. : Lot also Se C(X/X ,?/?O) and

~

?E”C(?/?O,Z/fo) be such that R(S) eN(T). If the numbers

GO(S,§) and éo(ﬁ,T) are sufficiently small, then

Aim N (T) /R(S) £ dim N(T) /R(S)

and R(T) is closed.

Proof. Note that S € @’_(X/XO,NO(T)/YO) . FProm Lemma 2.9,
it follows that 6(NO(T),NO(T))'is as small as we desire if
GO(T,T) is suffieciently small. Tf,; 4dn addition, GO(S,g) is

sufficiently small, then §eo_(X/%_,N_(T)/¥) and

dim N(T) /R(S) £ dim N(T) /R (S),

by virtue of Theorem 2.2.



We have only to prove that R(%) is closed. Let
T EC(Y/RO€S),Z/ZO) be the operator induced by T (note

that (Y/YO)/R(T) is isomorphic to Y/RO(S)). Then

N

U

TOE ®+(Y/RO(S),Z/ZO). since R(S) (and hence RO(S)) may
be supposed to pe closed by the first part or Ehe proof,

s

O

~ T

we can also congider the operator %OEZC(§/RO(S),Z

) GEELIL )

0

w

induced by T in a similar way. Then %O€i®+(§/RO(
by Theoremn 2.7, provided that 6(RO(S),RO(§)) and 6O(ﬁO,T )
are gufficiently small. Since G(RO(S),RO(g)) is‘as small

as we want 3 £ SO(S,g) is sufficiently cmall (Lemma 2%

o ™ = ™ (& £ 2 m =
and SO(TO,TO) SO(F,T) (note that G (ﬁo) GO(T) aoo that

o

~

ENMT ) e B 2k follows that BTy = R(T ) is closed if
(@] (@] @] O X

the conartions of COUL proposition are fulfilled.

2.11. DEFINITION. - p pair of operators (S,T) as in
the statement of Proposition 3 10 will' b€ galited semi-Fred-
holm. .

Then Proposition Qe ftabll ity result for semi.—.
Fredholm pairs of operators. 5

5.12. COROCLLARY. with Egg_gggﬁitions 95.259295&2&92 2. 1@5

suppose Eng.R(S) = WLTP)» LL
602 max{éo(S,g),éo(%,T)},

¢

v

- 1 ~ - 1 ~
e (B Ry & S fos (F,13),

v

r = max %Y(S)—1, Y(T)—1},

and if @8, 8,7) <1 then R(S) = N (®y smd R(Ty i closed,
MoreoVver,
o) = ’ : A
ERPIEY T Ty S s(l—w(&o,é,r)) . 01(60,6,r), (2.%0)

where © QQQ pq are Aas in Remark 2.4.10.



Proof. We follow the lines of the proof of Proposition

2. 10, SinceeN(T). = R(S); then the operator S € @_(X/XO,NO(T)/YO)
is surjective and we may apply Remark N SOEESO(S,g),

~

2yl =
5> (1+y(m 7D 2 s (F,m) 2 8 (v, (1), N, (D))

(Lemma 2.9) and rZ'Y(S)—q, and. it m(do,d,r) <1, then, acecording
to: Corollary-2.3,awe)obtain that R(S) = N(T) and that

=

B i 08 1 522D Vi

p1(6ol6lr) .

The equality R(S) =N(T) also implies that the operator
TO€ C(Y/RO(S),Z/ZO) is injective. Therefore we may use Remark
28,0 AbE ST b
o)

@Sy = s, oy

Ll g n
5 (1hyA8) "% /2 5 455 2 8 (R, (8),R,(S))

(Lemma 2.9) and rZZY(TO) 1=:-y('l‘)”1 (both quantities. are
defined in the same way), and fuif w(éo,S,r) <1+ Ehen %o is
also injective and

e T L -1
Y(I‘O) '—Y(I‘) = (1 @(6Or61r)) 01(60,6,1?)

by Coxellary 2:3, wia Remarks 2.8, 12 and 2.8.2°. Conse-
Ghently, 1f.Lhe conditions . of our corollary are ful:filled,

~

then R(T) is closed and (2.30) helds.

278 Remark. A particular case of Propositiont2.10
(obtained in a.different way) can be found in [51]. 5 1In e
fourth section (Proposition 4.2) we shall show that«Pro=
position 2.10 implies another type of semi-continuity of
the dimension. A

We need a certain version of Corollary»2M5 whiéh does
not involve any dimension. We start with some auxiliafy

results.

N

}}9 o \Qk Lo
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5.14. THEOREM. Let Y be a Banach space, letl X0

My I D e

andelot ne Y= Y/ % be the canonical mappind. Then there exists

a continuous homogeneous map p:Y¥Y/X~->Y such that mp(y + X) =

= v +% for all yE€Y. Moreover, for every >0 We ¢all choose

p such that lply + X1 € (1 +e) iy + X1l

This result has been proved in [90 (eeevaleo st 22l

9 .15, Remark. With"the conditions of the previous theorem,
we have the decomposition:¥ =X + M. where M= plN/X) Yo fiok
necessarily a linear space..Indeed, for every VE Y we have
that %:=y- p(y + X) €X, since ixkr=0. Henee V=X V; with
v=p(y+X). Notice that this decomposition is unique. 'j[ndeed,
; if y= X4 +v, =X, ¥y where X1 ¥y

Le R and . thus O= n(p-(n1) - p(nz)) =0 5 Y so that

then v*1. - VZ

V4 =¥ and Xy =Xy In this way we can define a non-linear pro=
jection P of Y onto X by vthe squation By =y = ply +X) forall
viE ¥.Note thet

1) eyl = lly —p(y + VIIE(@+e) liyll.
We also have

2V YY) =PY 4

I fu by ) s ust Py
fordalliru@xiand y.eY, by the uniqueness of the decomposition

Y=X+M.

5. 16. LEMMA. Let X,Y € ¥{%) be such that Xc¥Y and

dim Y/X <. Let also X,¥€F(%) be such that Rl

then dim ?/f}\f < o,

€ X and v, =p(n1),vz= p(nz) €M v

TN



Progf.  Lekt  p: Y/X+Y be as in Thecorem roTA T Emd et
M and P be as in Remark 2.15. We shadl follow the lines of
the proef of Theorem 2.2, with some changes due te the non-
linearity of the method.
Let &> 6.(Y,¥) and 6ot>6(X,§) be fixed. Let also
§W€§. Then there exists y €Y such that H?-—yH<<SH§H. We have
the decomposition y=x1+—v1, where x1EZX and v1==p(y-kY)€M.

Notice that

U= Hpylls (2+e)llyll € (2+¢€) (1 + &) NS

le1
v, NS +e) iyl s (1+¢e) (1+8) UYL
L.et us choose §1€£§ such that Hx1-§1H<6oihH|l. Hence

o= 321 Il <8 (2+e)(1+ YNyl

We now consider a mapping

S:Y+spM/§—> Y+ spM
as in Theorem 2.14, where spM is the linear space generated
by M. Let also P be the-non=linear projection of Y+spM

onto ¥ that is associated to T as in Remark.2.15. Then we

define the elements 51:=v1-3(v14—§)63T and §1==§—-§1-$1.

Let us note that, by the properties of P ‘(Remark 2.15), we

have

|ﬁ—§1—ﬁﬁn=nﬁﬁ-§1

i

n&]n o Yl <

A

(24 ) NF - F - v, 11 S (246) (NF =yll +15; = xq 1) 3

IN

(2] (O 60(2'+ TSy n <

The condition $rom the statement implies  that we can choose

the numbers e >0, §>6(¥,¥) and 8, > 5(x%,X) Such that
‘q:=(2+eua+5om+gﬂ1+5n<1.

Conseqdéntly, as in the proof of Theorem 2.2, we may continue



this approximatiocn procedure. We find the seqguence {?n}nc:?,

e eX andady » ed-such: that
ntth n'n

T ol Sl et e AP B
¥, Sy sulx, %) (Pv, n),

n?nllgafln§n,

[T §r1qn~1 nyn,
Hede ] §r2q“‘1 kAl

for all integers n 2z 1, where r1==(2-+e)(1 + 6% r2==(1 ekl o).
We also have

~J -—-1 ~v
HBv_Ils (2 +e)r2qn Hyll,

by the . properties, of P from Remark..2.15. Therefore the series
zZn and ngn are convergent to certain wectors X € X and V€Y,
respectively. Thus we have the equality §==§-+$. We.ighall use
th#s representation of an arbitrary element §(E§ to prove khe
inclusion :

~

e o iyl s 1) e fRex et s ol PR ~H2.11)

where Kc ¥ is a compact set. Let us observe that if H§H§1,.
then

VasaRip i) €L o= aline /X IglFs T ol

and the set L is compaé¢t since Y/X is finite dimensional and

p is wontinuous. Similarly, vn=:p(yn_1‘+x)<£qnf1L for all

nz2 (where Y4 GY'and.]lyn_1llS (1+~§)2n_1), sinee o is.a

homogeneous map. Then we have quiﬁ: = L%—S(L4—?), where T
5 ) g

is compact since L+ Y .is compact and p is continuous.

: s . ~o n—~1~ r 1 ~ .
Analogously, vnéiq I, on account of the fact - -that p 15 also
homogeneous (n z 2). Consequently,

V€ L+ gk q2L+... .



-~

and the set §1: = an I is compact’ (as'a‘'rangesofia: compact
set by a continuous mapping). Hence ve R £ %1r1§, so that
(2117 “helds.

Now, by virtuerf (2% 179, the uni®+ball -ef ¥/X is re-

latively compact which implies dim ¥/X <e.

2.174% Remarks. 1° Let us note that the method from the
proof of Lemma 2.16 can also be adapted to the proof of
Theorem 2.2. In such a case, one obtains aﬁ estimate of the
type (2.5) which does not depend any longer on dim W/R(S).
However, the conclusion of the theorem isg, in this case,

poorer. Namely, one only obtains that dmnW/R(§)<an

95 Recently, it has been shown that if in Theorem 2,14
one has m: =dimY/X <w, then the map p can be chosen. such
that oY/ X) Wl ies ih a finite dimensional space, whose dimen-
sion depends, in general, both on € and m. This: yields a
certain simplification of the proof of Lemma 2.16 and_givés an

estimate for dimY/X, [18]..

2. 18 . 2PROROSIETION . 4. cLet SEZ®+(X/XO,Y/YO) and

T€o_(¥/Y_,2/2,) be such that R(S) SN(T) and dimN(T)/R(S)==.

If,§EZG(§/§O,§/YO) and fﬁic(?/?o,ﬁ/io) are such that R(S) eN(T),

~

and if the numbers 6(XO,§O), 8§68 50 60(§,S) and GO(T,T) are

gsufficiently small, then R(S) and R(T) are closed and

Aim N (T) /R(S) = .

Proof. Wiﬁh no loss of generality we may assume thét
all involved operators are densely defined. Aecording to
Corollary 2.3, if 8(%Z,2z) and SO(T,T) satisfy (2.5)_(writteﬂffor

this case), then there exists a Banach space M with dimM=m,



where m : =(ihn(Z/ZO)/R(T), and a surjective extension
¥1€ C((§/§0)® M,?/%O) of T such that the assignment
ff‘-w(ﬁ)” is bounded when 6(%,2) and §_(T,T) tend to zero,

as follows from (2.6). Let TO be the (trivial) extension of

A

T to D(T)®0c (Y/Y ) ®M. Then we have §om B yEe (1T,
o} S one | e}
since %1 extends T. Hence
T ok * > * = T <
G(RO(’I‘,I ),RO(T ) ® M*) ‘S(NO(TO)'NO(*1)) =

— 1 ~
2 sl e

1
by Lemma 2.9, so that the number 6(RO($:),RO(T*)C)M*) can be
made as small as we want if GO(T,%) is sufficiently small.

Let SO and gc,be the operators S and S with wvdlues in
(x/Y Tom el (?/?5)C)M, respectively (by c;nonical imbedding) .
If 6(XO'§5) and 60(§O,SO)==60(§,S7 are sufficiently small,
then there exists a Banach space N such that dimN £n, where
n:=dimN(S), and a surjective,gxtension gf‘ of g;‘ to the
space (?Ol/?i)C)M*GBN such that £he assignment g—vy(§1*)—1
is‘buunded when 6(XO,§0) and 6O(§,S)‘tend to zero. Let SS%

be the (trivial) extension of SS‘ to'D(S;)C)OC:(YOL/YL)C>M*C)N.

~ Tk ~ % X Y %k = *N_ ~ s
Ther we have 60(500,51 ) SO(SO;SO )-60(8 ,S)——SO(S,S), since

A

b3

2 extends 5 Thereforé, by Lemma 2.9,
1 o)

Fopa
SO (570, R (5 )1 £ (1% y(E5 ) Y7 (850,

0+ 00 © ]
so that the number 6(NO(SS;),NO(§: )) can be made as small
as one wants if 60(5,8) is sufficiently small.

Now assume that dim N(T)/R(S) <~ for some pairs (%,g);

when the numbers G(Xo,ia,é(f,z),éo(g,s) andiéo(T,ﬁlbtend to

~ A : ~ N* .
zero. We have dimIJCT1)/(N(T)Q90) Sm and dimlﬂ(sﬁ:)/(N(So)GDO)én,

by (2.1). Since R(E )an(T@ocN(T,), it follows that
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dim N (8 * )/R(TF)@0) = dim N (§}* )/ (N(EF)@o0) +
+dinm N (S 53 ) BT EOY = Gl S /¢ s* )® 0) +
+dimN(’T’1)/(N(T)@ 0) + dim N(T) /R(S) <.
Hence,
dimN_ (8" )/ (R (T * )@ 0) = AimN(SF )/ (R(T*)® 0) <.
In particular, we may apply Lemma 2.16 to the subspaces
ok oo x * o or *
RO(T1 )®OC_NO(S1 ) and RO(T ) ®M @OCNC(SOO) ~N(SO ¥ @:0%
By the previous remarks, the requirement of Lemma 2.16 is .
fulfilled when §(X_,X ), 6(%,2),5_ (8,5) and §,(T,T) are
sufficiently small. Consequently
i = i ( {3S) = i =
dim N(T) /R (S) dlmN 'I‘)/R (S dlmNo(TO)/RO(SO_)
= 1 q * X oo
dlmNo(“o )/(RO(T ) ® M) <o,

which is a contradiction.

2.19. LEMMA. Let S and S be as ingbefinitieon “2.1,%and

let 2,5, and M be as in (2.1). Then there exists an extension
§, of § to (X/X )®M such that

60(81181) < 8{m+ 1) de{(SO(S,S) s L)

ol 2 ~J ~y
<

60(81,81) = 96 fm 1) max{GO(S,S) YRR,

provided that [A]l.5 7, where m: = dimM.
Proof. Let <SO> cSO(S,g) and 6> 6(Y,Y) be fixed. Let also

{v,",...,vm} be a basis of M such that Il_v1 F=7 = Rl
and for each V=Z)\jvj € M one has IAjI S vl Bor - al S T Ee e E e

The existence of such a basis follows from Auerbach's Lemma [1].
‘Let €>.O, and let y.jEAvj be such that Ilyj I £ (1+¢) ”AVj g1+ €
for all j. We define AOEs!:(M,Y) by the eqﬁation AO(ijvj)=Z>\jyjﬂ.
Note that HAOVH <m(1+¢)llvll for all v €M. Then we choose

§'j € ¥ such that y —373. T anyjn <1+ €) 8 We also define

B e (N th ton e v.) =807,
AOE (@) ey e equatio O( : j) jyj.



Let us observe that
HA v=-2A& vil $md(1+¢€) vl o e tE
o) o
If A€ :ﬁ(M,?/?’O) is given by Kv=KOV+YO, then we define the
extension 'SV1 of S by the equation 51 (F@v) =ST +Av for all
EED(g) and v € M.

Now let x®v®wE GO(S&) berarbitrary. "Then \we choose
uES(X+XO) such that llull £ (1+e€)llS (x+X_) i agiinee

xf@uEGO(S), we can find an element T@uE Go(g) such that

2 2

il 55 R R SR e T ot R ol

o
Note that y_ := w-u-A VEY , so that 0® y €G_(S). Then
, o o o w0
there exists '5('(')@ §'O€ Go(g) such that
- L OB 2
HE 12y, - ¥ % s e 2y n. _
Let W = §O+ U+ Z’X’ov. Then (X + ':Zd-f) DvOwE GO(E) , and we have

ol e (§O+§)@v@mr2 <
N ~ ~ -2 1k _.N --N —N 2
(Mx-F11+ WE 102+ Uy -G 1+ 1T+ iagv-E i ® <
2

A

+m2s (14e)2 llvIP ) S

HA

2 2 2 2
|
4(6O (Ux 1T+ Huall )+6O Ilyoll

WA B

e i enaneas? (i % e n e’ (ee) 21vin?) +

e 2

+ m252(1+ g) plies

Note that dimR(S1)/R(S) £.dimR(A)S m. Therefore, there

exists a projection P of (ST) onto+R(E) such that |IPI!

depends only on m. Then u+ Yo T P{w + YO) = PAv, and hence

Hull $ (1+e)llu +Y IS (14£e) UPILUHwI +11 vII).

Consequently,

lx ®vew- (§+§O)®v@€71|2 <

A

-y 2 2 2 2 2 2
4(6_0 =1l +<1Oéo- Clze)s BB +4<S'O-)llwl| <

2 2 i 2

i 3. 2
(108 2 (1 + &) 2 e it 2eas 2 n? (14 €) 2me? (14 0)2) v .

1

Since we may suppcse that [|Pll Em+ 1+ ¢, we have

2 2 2
o

2 2 el e 2
A0 SAfe ) TIPS 4 68 1 2566 = (+e)” (mi 15bie)



and
408 2 (1 POEN e e 52 (Trej2e i8R (iHendng
< 60(1+e)2(m+ 1+4¢)°maxis’, 6},

siesthat

Ixovow- K+E )0 vewl’
564H+ﬂ2m+1+€ﬁ1me§,§}HX@V®w”2.
Therefore, letting 60~+60(S,§f, 6—96(?,?) and €20, we obtain

the first estimate from the statements.
The second estimate can be obtained in a similar way,
with some minor changes. We start with an arbitrary element

§CDVC)§€EGO(§) and proceed as above. We only note that there

~

exists d“projection P of R(ET) onto ETET such thati!?!! depends
only on m, tha# HKOVH Sm(1+e) (1+6) llvll and thatfﬁﬁﬂléuﬂovn
for all v € M. (One also hasnl-+6(Y,Y) SIS We onbE . he details.
We shall largely treat, in the next section, the stability
of the index of a semi-Fredholm complex (in particulay f of &
semi~Fredholm operator) under small perturbations in the gap
tépology. Nevertheless, we shall end this section with a
stability result for Fredholm operators, as an #llustration

of the resources of the preceding statements.

5 20. PROPOSITION. Let S and § be as in Definition-2.1.

If S€ ®(x/X_,¥/Y,) and the numbers §(x_, %) 8(¢,¥) and

60(8,5) are sufficiently small, then §Eﬁ¢(§/§o,?/?o),

~

dim N (&) € ainN(s), din (¥/¥ ) /R(5) £ dim (v/¥_)/R(S) and

ind S =ind S.
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Proof. Let n : =dim N(S) and let n1-==dinx(Y/Yb)/R(S);
We have, #nSpartiular,tsE ®+(X/XO,Y/YO),and therefore we
may apply Remark 2.8.1°. Since [l e ne kil e and Jlp s+ Tr e
in (2.7), with €>0 as small as we want, if
§: = max{E(xo,SiO> AE(E ,&O(s,é’)}
satisfies the inequality

=2

1
S+ 1) (1T+ (n+1){(1+8)(1+v(S) )/2)<1, @12

then (2.8) is also satisfied. Hence S € ®+(§/§O,§/§O) and
dim N(S) £n, by virtue of Theorem 2.7.

Aecupingudhet, k2. 120 is. fuifilled, let P be 4 projection
of Y/YO ontosR(S) such that Pl Z2mtd+ e Let:M besthonull-
space ofs P IfAAE*fiM,Y/YO) is the @anonical dnclusion, then ‘the
.operator S1 from Lemma 2.19 dis surjecti¥ve. Let gﬁ be the extension
of S that.is given by Lemma 2:19. According fo this lemma,
60(81,§1)§230n¢1)6. Let us observe that

\{(81)_2 = (1+-Y(S)—2)(m-%?}2~+1.6

Indeed, if r:>y(S)— and n==S£-+v6§R(ST), we may assume'that
HElN <xllsEll. Therefore

neovi? <r?usen?envn? sx2upn’us zovii? +

+ (14 RIS, (E@v) e

= (L + ) IR+l s, (@ v 112,
from which we derive easily the desired estimate. |
By Theorem 2.2, if 60(81,51) and §(Y,Y) are sufficiently
small, then §1 igs also surjective. More precisely, if
M1+8m+1ﬂ1+6H2+hm1ﬂ(rwum—%)%<1_, (2118)
then, by Remark 2.4.10, the operator 51 is surjectiyeﬁ 1Lk
particular,

G e : ~ o~ e
dlnl(i/YO)/R(S) = dimRI(S.)/R{(S) & dimMi= m,

by (2. 1)



S

We shall show that under certain conditions we have

dim N(§1) = (iUnN(S1). Let us note ‘that

6(NO(S1

A

2o 1 ”
5 gl i o

),br()<51)>§(1~w(s1 =

1)
: B (i)
e s e ) () 2))1/"- ;

by Lemmas 2.9 and 2.19.
Let @1 be the left side of (2.13). Let also
piq = (146) (88(mk1) + (1 + 85 (mt1)) (24 (m+1) 2 (14y (8) 2)) 2.
Theﬁ we have

=2 2.2

~o g i3 en
by (2.6), via Remark 2.4.1O and the previous estimates for
50(51,51) and {(81) . Therefore ; :
=2 b
GlH 1= Py )
byeLenma 259, Let n, be the right side of (2.14) and, let n,

) /N (7)) £8(m+1) 6 (14 (1-0,) (2 15
be the right side of (2.15). If'n = max{n,,n,} and if

(n+1) (n+ Y2(n+1) 8 (140)) < 1, Gt R
then we ean apply Cerallary 2.5 to XOCZNO(ST) and XOF:NO(S1)

in both directions, and we deduce that
aimN(§ ) = dimN_(§)) /X =dim N (s,) /X = dimN(S,).
Consequently
ind §= aimN(8) - dim (¥/¥)/R(E) =
= aimN(8,) - dimN(§,)/N(8) - dim (Z/T B
- @imR(8,)/R(5) = dimN(5,) - dimM= dimN(S) -
—dim(Y/YO)/R(S)= dad- L8,
,Where we have uSéd (2.1) .  The proof of the propositiom s
complete.
Let us remark that (2.12), (2.13) and (2.16) can effectively

be used to find a positive number § for which the assertion. of

the proposition holds.
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3. STABILITY OF 'THE INDEX

When a complex of Banach spaces of the form (1.1) is
giVen, we may assume with no loss of generality that every
operator oF is a closed operator in a certain fixed Banach
space ¥ which contains X’ as a closed subspace for every p
(take, for instance, ¥ to be the space GBpo, endowed with
the L2~norm). However, in this case the dual object is no
longer of the same type. More precisely, the duality replaces
the subspaces of ¥ with quotient spaces of 5%, Since the
gap topology is defined on the family of .subspaces of the
same Banach space, a unique and natural treatment of the
previous cases is .provided by the following:

3.1. DEFINITION. Let ¥ be a fixed Banach space.

A countable family of opnerators a==(ap) + where

nEZ

ob € c(xp/xg’,xm1/x§+1) and xg,xpe:f(x) agdh Bhabe R e T

;

for all p€Z will be called a complex in %. The set of all
complexes in ¥ will be denoted.by 5(%). If D(aP) =xp/xg
for all p€ Z, then the complex g is said to be densely defined.

For every o€ 9(%) we define the quantity

y(o) : = infy(aP).

pEZ
If y(a)> O, the complex o is said to have closed range. The
cohomology of the complex o is the family of linear spaces
(HP (o))

pEZ

- o where HP (@) 3 = N(up)/R(ap“1) (and the latter is
iéémdrphic to No(qp)/RO(@p_1)). ‘ |
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If S is an operator as in Definition 2.1,'then S gan

3 ZEeS - N i :
be identified with the complex as (QS)pEZ’ where

+
oPic Ol PPl B R Sx kP x il Ly cgfbang)
S e} e) e} (¢} o (@)

S.

il

Xp=Xg=O if p€ {0,1} and ocCS)

p

3. 9. PDERINFITON . "slet o = (o) € 9 (%) be densely

p€Z
defined. Then g e G(Xg+1l/xp+1l,xgl/xpl) has the property

that R(up*)C:N(ap—1*). Therefore o = (a—p_1*) € 9 ( fﬁ and

PEZ
is called the dual of a. It is easily seen that Y(u*):=y(a)

and that Hp(u*) is isomorphic to H P(a).

3.3. DEFINITION. Let a= (aP) A

pPEZ
10 The complex o #is said to he semi-Fredholm at the step

g o) if the pair (up_1,ap) is semi-Fredholm (Definition 2.11).

2° The complex o is said to be semi-Fredholm if o has
closed range and at least one of the functions

2.5k > dinHOR ) €z, U (=},

2k+1

Z 2>k »dimH (a>ez+u{w}

jo (Eindiee andthas! finite support.

3° The complex o is said to be Fredholm if a has closed
range and the_function
z3p »aimaf (a) €z, U {=}
ie Fintte @nd has Sinite ssupport,

TE €0 (%) isssemisFredholm, then we define its index

by the equality

il st Vo BRI G P (0) ¥ s
pPEZ

The - number v (3.2) is finite if and only if the complex o is

Fredholm.



Let us observe that if o € 3(¥) is densely defined
and semi-Fredholm (Fredholm), then a* €3 (%*) is also semi-
Fredholm (Fredﬁolm) and  inda* = dndo. The ‘convesse i also
true (see the comment following Definition 3.2).

A complex a € 9(%) is said to have finite lenigth if

of = 0 for all but a finite collection of indices p. If a
nwas finite length and R(ap) Be¥closed for all p (N partrcutary
iF dimfﬁ%a)<<m for all’p), thefi“a " has closed range.

A complex o € 3(%) is said to be exact at the step p

it Hp(u) = 0. If Hp(a) ='0 for all p, “then "the compleX @
18- said to be exact.

The smain-aim of this section is. e prove ‘the stabiliikEy
of the: number (3.1) under small perturbations-in the gap
topology. Frow the results of the previous section, we

derive rirst some "local" consequences.

3.4, -PROPOSITION. Let al=(aP)x e (g):

pEZ

I

o is.semi-Fredholm at’ the step p, then there;exists

an € >0 such that if a= (a3) _._€3(%), 6 (up—1,5p—1)<<€ and
g€z O

,up)<<€, then o #sdlsovsemi-Fnedholm atthelstep p

and <1nan(&d < din1Hp(a). In particular, iff e is exactiat sthes.

sktep p, . then a is also exact afithe sitepip.

0]

2° 1f g ds exact at the gfeps p~l dnd prl, and'miF

y(qp"1):>o and Y(ap+1):>0; then there exists an € >0 such

Ehat if ‘ : .

¥ (dpui,gpf1 ,Go(ap,a ),6O(§p+1,ap+1)}<€,
then o je exagt ati the steps p-1 andd p+ri; Y(Ep—1)2>0, Y (

= p=2 -
‘max {60(a~ £ G

up+1)

>0

~

and dianp(a) = dianp(a).



proof. 1° The assertion is precisely the content of
Proposition 2.10. When Hp(a) = 0, we can also give some estimates
(that are needed in the sequel), which are obtained directly

from Corel Tarya 2o Nancil v, 1§

5. somax b (aP7 BP0 (B 0P Y

ot 1 = - - ~
s 2max ((1+y (P71 72) %5 (aP71 57T (14y (aP) A %25 (5P, oP) )

o) r
(3.2)
Bd mas {Y(up~1)_1,Y(ap)—1},
PSS 2
then R(EPHT) = N(ap), R(&p) is closed, and
iy (8RB TN B (1068, 6,80 e (8,8, 80, (3.3)
with ¢ and Py as in Remark 2.4.1°.
2° We take some positive numbers 60,6 and r that satisfy
(3.2} For both steps p=1 and phi (notice that {32,2) is written
for the step p). From (3.3) and Lemma 2.9 we infer that
= = =3 ' =1
8 (R, (0P71) R (GPTH) S max {(1-0(8_,8,7)) " "0y (8,,8,7)
St 1 2 o = ’
(e s ool R e
(3.4)

- p Np & o g Sy 1
6(No(a ),No(u ) ) = max (1 w(éo,r,é) p1(60,5,r),

o Bt v
(147 (B) 7 2) /z}éo(ocp,ap).

Lot in and n be the right sides of the inequalities (3.4),

p2

arnd dlet np: = max{np1,n presetlen mp: =dimH" (¢) is finite and if

p2
) e R (e 1) (3.5)
P P P

whicheis possible .if éo(ap~1’&p—1) and So(ap,gp) are sufficiently

small jisthen by -Corodlary 2.5



aim #® (@) = aimN_ (&P) /RO<'oTp"1) = aimN_(aP) /(R G i

@)

The case mp=co follows from Lemma 2.16. Indeed, if
2 1T4+2(1% <545 (3.6)
np( ( np))

then according to Lemma 2.16, we cannot have dim Hp(a) < o
(otherwise we would have dim HP (a) < @) .

The following statements are concerned with the "global"
consequences of the results from the second section. For every

pair o,B € 9 (%) we define its "gap" by the eguation

A

5, (a,B) = sup 5o<ap,ep)' (3.7)
p€zZ

One always has éo(a,B) < 1. Moreovers iehis function induces a

metric topoicgy. on 9 (%).

3.5, THEOREM. Let o = (up) € 9(%) be a semi-Fredhelm

p€Z

complex thet is-not Fredholm: Then there exXigts an e >0

D

such that if q = (a~) (cxi&J) < e, then o is

pez = G

also gemi-Fredivolm. Moreover', for'cach p € Zrwe hralve ¥dim Hp(a') =0

dimHP(a) =0, dAimHP(T) = » if dinHP(0) = ®, and AimH® (&)<

if
if

dim Hp(u)< @, In particular, .divd o = ind a.

In addition, for every nen=hnegative dndex g there exXists

a positive number Eq ge guch that if § {ey0) < o then
dim#P(8) < dimuP (a) when Ipl sgq.

Proof. With no loss of generality we may suppose that

2k

Seredftuncten kK SaimH (oc). s Finiteamd hastsEimitel SUpPOL e

Therefore, these exists a.non“negative ~integer'kO such that

L B e & ¥



Let us consider some positive numbers 60 z SO(a,g),
% -1

2 1 =
§ 2 (1+y (o) 1) /2 Go(u,a) and r.2yla)

v

If & (a,d) is
(@]

suffidiently small, then we may assume that @(éo,é,r) <5

with ¢ as in Remark 2.4.10. Hence, if Hp(a) = O for a certain
p, then P (q) = O, by:Proposition 0 S PR partieular, H
2k

BT (6) cepesitg k| > k . We also note that the right side of

(3.3) does not depend on p = 2k if [k!>>ko. Thus

2=

inf {y(& PR U

lk|>k
i T

If By igetlhic sBunetiion | fromof3 5 ) iand o1 9 =IghD {nZk;[k[:>ko},
then, for éo(a,a) sufficiently small, we have 2n(2n + 3) < 1.

Ingpastichlar, (356) da fulfilled for ]k[>>ko, and hence

dim H2k+1(a) = o lor (iUnH2k+1(a)<<w) implies
Ao

2k+1

(d) = © (or dimH (0) < ).

Now, we have to discuss only a finite number of cases.

“Since (a2k“1,a2k) is a semi-Fredholm pair, then (52k—1,32k

)

is also semi-Fredholm if 6O(u,g) is sufficiently small. In

~2k =1

particulam, ¥(a el and,y(aZk):>O N 8 ) $k,r SO that

Y (3) > 0.

»

If dima2kt!

2k 2k+2

() .= = and either dimH (o) or.dimH (a)
is non-zero, then Proposition 3.4.2° does not AP Ve LD Ehidis

case we can use Proposition 2.18. Indeed, assuming with no

loss of generality that D(ap) = Xp/Xg for all p, we have

2k

2k 2k+1
o€ ®+(X /Ro(a

@]

- 2k+
2k 7),x k+1 e

(@)

/X
- where aik'is_induced by 0°®. We also have

+ +
a2k+1€ @_(X2k+1/X02k+1J$§a2k 2)/X02k 2).



)) and (N (3K*2) y_(

2=

; ~2k-1
Since S(Ro(a ),Ro(a

R -

can be made as small as we want (Lemma 259 and

~ 7 ~2
a2k a2k azk ‘_k

e 60( S0 Tniiers aék is obtained from ¥2K

60( ®)

as agk from aZK), we derive,” from Proposition 2. 18, that

dim BT LG jeniaveg §la, o) e o 0EEI S000SYS W1l

. ~o % . . +
In particular we have indo = ind% = -©if dlanZk 1(oc)=Co

2k+1

for some k € Z. Suppose now that dimH (o) << Eor all ke I

As o is not Fredholmw, the function k> din1H2k+1(a) cannot have
finite support. Assume now that H2k+1(a) = O for some k€Z

with fk]:»ko. We can chose 60 and 6 so small that we have (with

np as in the: proof of:Prepositien 3.4.20)

nglhYT (T gm0y €1 (3.5)
fioe g1p p(SZ,]p!:>kO. From (3.4) and (375) we see that :
Corollary 2.5 can be applied with X=:N(32k+1), Y==R(&2k),
§==N(a2k+1); §::R(a2k), ahd'm =<innH2k+1(a) = 0. We conclude
that also H2k+1(u) = O. Hence, k%®H2k+1k3) cannot have finite
support and we conclude that ind a=ind o =~ o,

The laét assertion follows from Proposition o1 (the
cases of infinite dimension. are already settled, by the
previous argument). Note that the Proof of Propooition 3.4.10,
which is based on Corollary 2.5, involves the dimension of
a quotient space, and the setvof all these dimensions is)
in general, non-bounded. Therefore, the condition from
Corollary 2.5 can be realized, in generals,’ only fer-a fimite

number of indices. Hence, we also have the followimgh &%

3.6. COROLLARY. Assume that the complex o from

Iieorem 3.5. Was finite length, Then, if g'is big enough

we may take € : = €4’ SO that dim B (&) < aim &P () forsall

e 7



3.7. THEOREM. Let a= (a®)__ €03(% be a Fredholm

DEZ

complex Ehenthere exicts an. & >0 such that if a=(aP)

and ¢

€93(%

(a,a)<:€, then the complex o is .also Fredhelm,

o)
dim BP(3) £dim HP (0) for all p€z and ind & =ind «a.

Proof. Since a is a Fredholm complex, there exists a
non-negativeaindex B such that HP(a) = O if lpl ipb. Thexetore,;

A

as " in the proof of Theorem 3.5,..1f Go(a,g) is sufficiently small,
then Hp(g) N0 e ipo. According to the same argument,
we have y(3) >0 and dim HY (3) <dim HP (0) for all p € Z, provided
that Eo<a,5) is sufficiently small (we note that in the present
case no infinite dimensions occur and all pairs (ap_1,ap) are
semi-Fredholm.

The only thing to be proved is that ind e=ind o if

~

6O(u,g) s suffieiently small. With no loss af generality we -

may assume that dim HP (o) = 0 if p< O Set
n(a) : = min{n20; B’ (a) = 0 ¥ p=2n}.
We prove our assertion by induction with respeet to'n :='n(a).

L = 0 then ke assertion follows from the first park of
the proof. Assume that the assertion is true for a certain B 2.0

an. let a.have the property that nle). = n+1. Then ¥e can write

n+1 n+1

R(an)4-M = N(a ), where M is a complement of R(un) in. N (o

)
with dim M = dim H" (a) < «. Set ) = £®M. ‘We shall consider a certain
complex B::(Bp)n€Z€ 3 (M that extends the complex o. Namely,

by identifying % with £®0, we set P = of if p+n-1 and

n-1 n-1

2" Nz @v) = o™ 1(g) +v for all £€D (0™ ') iand v €M. Then B

is a Fredholm complex with the property that .n(B) =n (since

n—1) n—1) = N(un_T). The complex

R(B }) . Note also that KEB

& will be extended in a similar way. Namely, we define

it . ~N .
#s.obtained from a as in

4
~) -

- P pano1 whereas B



Lemma 2.19 (with an~1 FoTSs &ﬂ—1 for S and the canonical

+ ¢ n-1 n
inclusion Mc:N(OLn 1) for A).. Since R{o ) e Nia ),

R(an_1)cN(an) and,; by (3.4),_

~

n oo Do SRR
6(No(oc ),NO(CL J s céoxon,a),

where ¢ 20 does not depend on o, it follows that 6O(Bn—1,§mf1)

can be made as smcll as one wants, on account of the estimates

from Lemma 2.19. Therefore G(B,E) is as small as we desire if
S(a,a) is sufficiently small. By the induction hypothesis, we know
that E is Fredholm and that ind g-:ind B. Since we have

ind B = ind <x-%~(—1)n“1 dimM ,

ind B dnd B =1 | gin
which follows by Proposition 2.9 from [19] (or directly from

(2.1)), we obtain that ind a=1ind o if §(a,q) is sufficiently

small, and the proof of the theorem is complete. "

4. SOME AFPLICATIONS

In this section we shall present various consequences of
the results from the previous sections, as well as related

observations.

a) .We start-with some aspects concerning the geometry of
the metric space ¥(%), where ¥ is"a fixed Benach space.

4.1. DEFINITION. Let {X1,Y1,X2,Y2}C§O(I) be a quadruplet

with the property that X1+-Y1c:X2r\Y2,

‘We say that this quadruplet is semi-Fredholm if

dim (X2{1Y2)/(X1+-Y1)-<m and X24-Y2 is closed.

5
-



Let us mention that such quadruplets have been presented

in [12] under the name of Fredholm links. The next result is

a slight extension of a statement in [12]. We are not aware of any

published proofiof s{this: result.

4.2 "PROPOSITION. © Let {x1,y1,x2,y2}cbp(}:) be a semi-

Fredholm quadruplet. If {%1,Y1,§2,?2}<:j%z) is such that

! 1c:§2r1?2 and if the numbers 6(X1,§1), 5(Y1,?1

IR

G(Y%Yz) are sufficiently small, then the guadruplet {%1,Y1,§2,?2}

e

is also semi-Fredholm and

2

2 1

aim 22 0 50@ e T < aim 22 Ay ST o

Proof. Consider the operators sP e £D§)®YP,Z<D£) given by
the eguation Sp(x®y)=(x+y)®(—x~y)fkn:all xexP and yEYp, v 12

Note that

1 2

Bl i o e X gl Lo LS

~..MoreoVver, R(S1) is isemorphiec to X1+-Y1, N(Sz) is isomorphic

to X2(1Y2 and R(S2) is isomorphic to XZ-%Yz. Therefore the pair

R(s!) = {(v®(-v) ;v EX

(81,52) is semi-Fredholm (Definition 2.11). Let gk be defined

in 4 similar way for the spaces (ik,?k),k = 1,2, Teowildl be

2), and this fact will

enough to prove that the pair (§1,§
follow from Proposition 2.10. Since
llx @y ®-(X+y) @ (-x-y) - XOF ©(X+Y) @ (-X-9) e =
< s(nx-%N2+ Ny -F1?)
for all el yE;Yp, YeXB, vedr, pi=o12 v derives that
6(sP, 82 <5 (6 (xP, )2 + s (¥, ¥ %), (4.2)

‘" and a similar relation with changed order. In particular, 1f

6(X1;§1),6(Y1.?1),6(§2,X2) and 6(?2,Y2) are sufficiently small,

then 6(S1j§1) and 6(§2,82) are as small as we want, and the

conclusion:of the proposition follows yvia Proposition 2.10.



4.3, Remorks. 7 Proposition 4.2 suggests a concept of
a semi-Fredholm complex of subspaces. First-osl 411, ddouble

family of subspaces (X,%X) = (Xp,Yp)pEZC?(}E) ig ‘Balid Bo be'ta

=1

complex of subspaces if qu + yPTBEeP g yB e e pie 2.

Using an idea from the proof of Proposition 2.2, we can reduce
the study cf complexes of subspaces to the study of complexes
(of operators). Namely, if sP e :zZ(Xp@Yp, ¥ @ )iis ‘defined as
in Proposition 2.2 (for an arbitrary p), theén R(Sp) cN(Sp+1) ,A
R(Sp) is isomcrphic to % + YP and N(Sp+1) is isomorphic to

Xp+1 N Yp+1 . Moreover, from (4.2),

S AR L s PP % o

o Gy R SR 2l g) 4 - ;
whera  (X;Y) = (X" .3 )pezcj(;.;) d:s another complex of subspaces
and 48" )'pe.z are"the corresponding operators. Therefore, the

whole inrormation concerning the complex of subspaces (X,Y)

is transmitted to the complex S:= (Sp) €E%(x®%). In parti—

PEL

cular, ‘a Fredholm theory for complexes of subspaces can be
obtained from the Fredholm theory of complexes (of operators),
as developed in the preceding sectien.

Py

~O
2~ Conversely, every complex o = (2 (%) ‘can be

6T

associated with a complex of subspaces. Namely, if

+
of € C(Xp/Xg,Xp 1/Xg+1) , then we define the spaces

YJ_

Lozezec (PexPexCe. ..,
(@] O O

P = ...01020 20 L0 i

il

@i ey

which are subspaces of the space ® '¥. Since
, pEZ

. : +.1 ; +
Go(ocp) n (xoxg ) = No(ap)® xg 1
N)

+
and }C@Xg : + Go(o."') = % @Ro(ap), it is easily seen that



W g = Yp+1 n Zp+1 and that the guotient space

(Yp+1f‘lzp+1)/(Yp + Zp) s clsomorphic to Hp+1(a). However,

the metric relations do not seem to be as good as in the

previous case. Indeed, if Q€ 93(%) is another complex and

we construct the spaces ¥ ana 7P for @ in a similar way,
8

then S(Yp,yp) (ox (Zp,ﬁp)) should be expressed in terms of

A = ; A ot ~D+
6(dp,ap) but also of S(Xg k,Xg k) for k2 2. As we have seen
in the preceding section, our main results (see Theorems

3.5 and 3.7) do not require the use:of the numbers S(Xg,ﬁg).

3° One can consider semi-Fredholm pairs of subspaces of
a Banach space ¥, in the sense of [8], Chapt. IV, Sueh™8 Pair
(X,¥) e fta) can be regarded-as a ‘complex of subspaces with
Cax vy, BovP -0 ifpeco and' #PPDER ~ Bk paile
Then the associated complex (of operators) is semi-Fredholm
and we can apply oﬁr results from the previous section. In
particular, we obtain.stability results when botih+variabiles
are perturbed in the gap tcpology. Although mentioned in [31,
such resultsare not provedsthere.

bl We shall show that the family of semi-Fredholm (Fred-
holm) complexes in a Banach space ¥iis invariant dndexa class
of natural transformations, which also preserve the index,
provided that these transformations are "close" to the identity
in a certain sense to be specified.

Let BO(X) be - -the family of all- .complexes q:(ap)pEZ
in % - such- that Dlol) €%(%) for all p. In pargicular, '
ape £1D(ap), D(ap+1)). (We work with the family 35(2) only
for the sake of simpliéity; most of the assertions are valid

in general, with suitable modifications.) For every pair sui

o,BE ao(g) we define the set Hom(g,8) as the collection ofl:



- A -

D

maps A = (A7) such that AP €20 () ,p(8F)) and

peZ i
gPAP = Ap+1ap for all pe€é. For every )€ Homlu,p) we deline

the quantity

v(A) : = sup sup 1ix - APxil ; (433)

PEZ xED (uP)
1<

which is not mecessgarily .a finite number. Note that we have

sup §(D(aP),DBF)) < v(n). : (4.4)

peZ
We can even give estimates of the same type for é(up,Bp).
Indeed, if xGBaprZG(ap), then pr @hp+1upx = Apx @Bpkpx%EG(Bp)
and one has

Hx @aPx - kprBBpoXH2¢=le—kprz-%Ilupx—kp+1upr2 =

s vin? lixedPxi? .

Hence

sup §(af,8P) 2 v(h). : (4.

pez

EBO(x) be a semi-Fred-

4,4. PROPOSTTION. ILet 'a=(aF)

p€EZ

holm complex and let € >0 be diven. by Theorens3.5 (or Bhiserem

3. nuhssune shatsfor a certain 8 = (8P)

%
b€z 680( ) there are

A€ -Homla, B) and u.€ Hom(B o) » such: that Vo)< e and Al e

Then the complex B . ig.also semizFredholmiand ind £ =ind o.

Proef. . Indeed, from (4.5). it follews. that

~

5 (0, 8) = 6(a,8) £ max {v(h), v} <.

Consequemtly, we can apply Theorem 3.5 (or Theorem 3.%), which
implies the conclusion.
Of course? the other consequences from Theorem 3.5 (or

Theorem 3.7) are also true for the complex R.

5)



4.5. COROLLARY. Let S€ X' ,X°) and let T € 2(¥', v%),

whiere % %2 v e Jian Tat atso 2P e LP 9Py ang BP € 2132 %B)
(po=-1,2). be. such, that TA1 = Azs and SB2 = B1T. Ifas € Q+(X1,X2)
and if, thesnumbexs i1 =P 1, 401 - BRI (p = 1,2) are sufficiently

5
small, then T€®+(Y1 Yooaiand s and T o= dmd 8.

!

Proof. The result is a simple consequence of Proposition
4.4. We only note that I -a”1 (or 111-8P1) is computed in
Ah 2y top VP 2y

c) Given a Banach space ¥, one can consider collections of

operators (ap) in- £ that are ne:longer: complexes:but

pPEZ
"almost" complexes, in a sense which will be specified (i.e.
modulo compact operators).

Let Lm(%) (or 1 (%)) denote the Banach space cf all
#bounded (or totally bounded) sequences of elements of %.
Let alfcosie(y) = = Lé(f)/T(X). Ly is another"Banach spdece, thenm for
every._operator«S € £(%,7)) there exists an operator k (S) € Lk (X}, ()
that lssinduced by theradction of S on componentsisTn=fack, tho
assignments

X skiZ), Sk (8)

define a functor which is..mentioned and studied in [3] (see

alise:[5 i Since KiS) =0 if and only if-S is compact, the

action of k(S) is determined by..ithe action of S modulo compact

operators.
4.6. DEFINITION. Let a= (") ., be a collection of
closed -operators in % with xP : = p(aP) €eY(%) (i.e. each oF

- is bounded), R(ap)k:Xp+1 for all prand D(ap)=o for all- buth.a



finite family of indices. We say that « is an essential complex

je o)

b Pt IEP - 5 SP gP T2y Y & compeaiet for all pEZe Then

cla) £ = (e (@) o, €8(L7(D), where (6P e ik (RPF e xPEL )2
The family of all essential complexes in % will be denoted by
ae(x), An essential compleg a is said to be essentially Fredholm
sf HP (ko)) ="C Tor all pEL.

Let us remark that the study of essential complexes
requires the general setting (i.e. operators between quotient
'spaces) from the preceding section.

As in the case of complexes (see eq. (3.7)), the topology

of Bé(i)‘is induced by the function
§(a,B) = max 6(a¥,8P) B E D ).
e e
pEZ
We shall show that the set of essentially Fredholm complexes

is open in Be(ﬁ) with respect to this topology. We need some

auxiliary results.

4.7. LEMMA. Let X,YEff(E). Then one has the estimstes

SIL (R L (1)) 28R},
SHT (R TAT )~ = 38 (X F P
Proof. The first estimate is obvious, so that we shall
deal only with the second. one.
Tet .§ > §(X,¥), and let {Sn}n and {en}n be two sequences
of positiye numbers such that 6:>6n > 6., Gn-+6 as n > o,

for all n and .21 €n<:w.'We can. also assume that
) n::

s R S
mnon ,
622, Let.O=t£::{xk}kE.T(X)ﬂfaﬁd let A be the sequence E regarded

n+1

as a subset of X. Since A is totally bounded, for evexry integer

n 21 there exists a finite subset A <A such that d(x,An)<en!!£H



for all x € A. With no loss of generality we may assume
that An = {x1,x2,...,xk Y. We wank to construct similar sets
n

in ¥. Let Bass {y1,...,yk1}<:Y be such thatﬂlxj—yjll<61lejl!;51lI€H

For- 7 =wilns o ke Assume that the sets B ..,Bn have been

1°
constructed’ such” that“d (VB

T

) <6£kl!£H for all y€B, , and

K one can find a vector vEZBk

such that Illu- vl <6kI|€H forcheh d . = 11 28, n¥ Leltcus cbtain

k

kieods, e =l sand foxr every. M E L

the set B Let . x. GA be with kn-%1 Sank Then there

Tk 3 n+1 n+1°

exists a vector u, € A such thatlix.-u.ll <e_ |l&]|. By thesin-

J n =) n
duction hypothesis, there exists vjEEBn such that,lluj—VjH< Sn[lEH-
Let dlso ijIY be such.that

| [0 =, =~ e || oSl e 6 .
20 wj!l = s R o I1El

Then define yj: = vj -+ wj, and note that

< < L~ I € Rl

d(yj’Bn) _ijl|_.(1+<3n)|lxj ujll< Enén(1+5n)llil __Senllil

We also have

A

llxj*yjll ij~ujll+ Hu,-v. Il + ijil =

:] o4
S e 48 tea S (I8 ) B HE (T2 48 ) ell<s o4 ILENL.

The seguenece n=={yk}k is a totally bounded set. Indeed, if

e > 0. dis given, then there is an index n guch thag 6[£} = g >e.
kanlx

It is easily seen that d(y,Bn)<:e for every vector y in the

sequence n, by the properties of the sequence {B We also

k}k'
have

Fenll = sup llx v, |l S sllell,

whence we derive the desired estimate.



il

4.8. LEMMA. TLet S €£(X,Y) and let S€ &X,¥), where

o~

X,%,Y,Y€¥(%). Then we have the estimate

1 :
5, (k(s),k(5)) % Sl ls S 2max{s(s,8),6(Y,9)}.

ProGfJLet Ec@néEGO(K(S)). Then n - S& €k (Y), where
£=={xk}k €4 (X) and SE : = {Sxk}k. Fiix 4o number 6 >46 (5,8 )5
Then fer-every i1ndex K théere exists: a veator §k<)§§k€ZG(§) such

that
2

L I R
xk ka X Xk | % | Y xk

Fix another number 61 >6(Y,§). By "Lemma 447, pwe can’ find a
vector T € 1(¥) such that

[P = e =21 S Thny™ o5y

T = {%k}k, we set N := St +%. Note that we have
lg@n -2 ofll2=supllx, ~F 17+ [In-8F-FI® <
k IN -
< 62 sup (Ix |12+1sx 11D + (5, lIn-sgl] +|lse-3E 12 <
e | <
) % ::.
< s2a+ils el 2+2r62 s Bdlzenll s f (s P2 e 112D <
0
¢ 501+]s)i?) maxls®, 67 Ylizen] %,

from which we infer easily the desired estimate.

4.9, LEMMA. Let S and S 'be as in:lLiemme 4.8. Then

Af
& £%,3%) §(1+IHSHL)’66(S,S). Moreover, if (PSS e ie) =1, Lien

(1+11S11)8(S,8)+1Isl

NS g _
=TS ) o (5,80

Birgof. Lek 6:>6(S,§). Then for evervy x € X one can find

X € X such that

oSk -Sol? el ot

In-pargicular,
Sl ey s,

which implies weadily the first assertion.



= g5

Now, let &> 6(S,8) be such that (1+ !|s|)§< 1. Let
also ¥ €% be such that [IX]| £ 1. Then we choose x ®Sx € G(S)
such sthat

|| x® 8% - x ®@sx]|| < §||X®8%]|.
Erom thig-estimate we derive that
Ix1l < [IXI] + 6 (J|Z)]+]18
Similarly,
1% ] < [Isx|] + s (Ix|[+|I8X]]) < 6+ (1+8) |Is|[+s (1+]|s|D) ||8X]| -

Hence

1

Sx]] ¢ (1=8(1+1]s!)) ™ (s+(1+8) |Is]) ,

which implies the desired estimate.

; o i e B o
4.70. - PROPOSTITTON. Let. o= (o )pgzeae(}:). If o is

esgentiallpiredhiolm, ;then thergwexists ‘an .2 0 gsuch . that if

B=:(Bp) eae(x) aud if S{a,Bjr e, then B 18 aléo essentially

pPEZ
Fredholm.

Proof. We shall apply Theorem 3.7 to the complex k(a).

Let llall: = max!|aP|| <=, and similarly !|B8!] : = maxHBpH<°O
! H . o
(since of * 0 and B8P %0 only: for a finite nufiber of indices).

If (1+ ]]all)8(a,B) <1, then, by Lemma 4.9,

sl ) 6o, By llia )
1-(1 +]alh & (a, B)

Bl

This shows, in particular, thab HBH is bounded if &6(a,B) is
sufficiently small.
Now, let X : = D(P) and let Y® : = D(8P). According to

Lemma 4:8, we have for every p€lZ

~

5, (k (oP) ,k (8P)) g /B'(1+maxCfall, || 813 max{s (a,8),

6(Xp+1,Yp+1)}.



On the other hand,
E(XP,YP) < (14—max{{!u{l,”8|}})g(a,8)
for all p, by Lemma 459
Therefore, g(K(@),K(B)) can be made as small as we want
if g(a,B) is sufficiently small. By Theorem 3T ke conplex

P

k(B) is Fredholm and H" (x(B)) = C for all p when 6(o,B8) is

sufficiently small. The proof of the proposition is conplete.

4.1%7, Remarks. st particular cade oL Proposition 4.10

occolrs “in 54

2° One can define a concept of an essentially semi~Fred-
holm complex and obtain similar statements. Also complexes
of 1hnfinite length can be taken into cmn@ideration?

1° Ve end this discussion with the following guestion:
Is there any way to assign an index to every essentially Fred-
holm complex?

d) The results of the previous section can be applied
to’ obtain Statements'concerning the semicontinuity of the
joint spectrum (in the sense cf (471 ¥ of several commuting
operators.

Let ¥ be a Banach space and let a==(a1,...,an)c:£(X) be
a commuting system. Set

Lat (a): = {XEN(%); anC>L S et

For every X € lLat(a)let o(a,X) denote the joint spectrum of a,
whetr-acting dne%: This ssek ls defined in the following way:
“Let 0==(O1,,..,On) be a fixed system of indeterminates. Then
4lol for APlo1) is the exterior algebra over € generated by

61,,,,,Un (or the svace of hcmogeneous exterior forms of degree

HA

poin Gyreteer Oy 0<p

= n). Then a point z==(z1,...,zn)€ Ola )



iff the complex (6p

is exact, where
z—-a)pEZ € 4

6§_a: = GZ“aiAp[o,X], £1Plo,x1 : = x®AP[o] and

dz~ag = &H ®o1+...+an®(%ﬁAg

for all £ € Alo,%¥] : = ¥®Alc]. Here one puts ég—a = 0

if pi© or pran- (see -[17] or [19) for details).

5 XO,XEILat(a)and Xoc:X,Athen the system a also acts in
X/XO (the induced action) so that one can define the set
o(a,X/XO) in a similar way. We shall show that the joint
spectrum.c(a,X/XO) is semicontinuous.in all of its arguments.

Let b= (b .,b_ ) c£(% be another commuting system. We

1l n

define & distance between the systems a and b. by the formula

Ha=bll:=" max {lax -Db.l].
l<jsn J

4.12. PROPOSITION. Let a=(a .2 ) =£(¥) be a

g

commuting system and let XO,XEILat a be Ssueh that Xoc:Xb Then

fon evew obenisek U:DO(a,X/XO), there exists a positive number

GU such that ié bi= (b

o \ | — l s 18
Y ,Y€Lat (b),¥ <Y, la - Dbl < 8yyr 8(X_,¥ ) <8y and 6(X,Y) < 8,

1,---,bnlc;ﬂi) is a commuting system,

then o(b,Y/YO)c:U.

Proof. We note first the inclusion

( X )e { C [Z l.edla H}
o(a,X/X 2 oEal e . ;
4 O J=1 J 3Lk Ap)

and a-similiary Inclusien fer o(b,Y/YO) [17].vOn account of
these inclusions and since Hij is as close of.Haji[as-we
want if |la-Db|l is sufficiently small, it:will be enough to
consider the case

UcB:= {z€a”; |lz]] ¢R}u

with R>0 sufficiently large.
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For every z € BSU®the conplex (6p ) Istexacts (mote

z—-a pPeEL

that here nga dets on Ap[o,X/XO], whileh is natturally iso-
mofphic to Ap[o,X]/Ap[o,Xo]), and hence Fredholm. Let
€, >0 be the positive number given by Theorem Sn 7 Ber e s

Fredholm complex. If we€C” and if

) Rp
sup co(gz_

BE
- p€zZ e

2 b) e ” (4.6)

12
then the complex ((Sw_b)pEZ

Theorem 3.7. If 6S~a and 85“b are regarded as operators on

5 Al dot exact by villrtlle oL

Ap[o,%] (which is isomorphic to a direct sum of (;) copies
of ¥ and is given the topology induced by this isomorphism) ,,
then we have

| 2 =P ||« ndllanlls e wlll

since !{ojAgi] < [lg]]l for al¥ j-and &. We alsoe hewe

—u AP e, xT AP0, Y1 <6 (%, ¥
and a similar formula for XO and YO° Therefore the fulfillment

of (4.6) will follow from the following:

4.13. LEMMA. Let S,T€ «£(3), let X ,X€TLat(S),let

¥ Y ETat{Tyand let 5 and T Dbe-the cperakors induced by

Shama Toan X/XO and Y/YO, respectively. Then we have the
estimate

(8 s )= 2001+ |['S 1P (8 (%, ¥)+S (X ¥ ) y+4|ls - Tl .

Proof of Lemma 4.13. We take 6:>S(X,Y) and 60>>6(XO,YO).

Tf x(Du%EGO(SO),,then u-ﬂS%iEXO, We choose:the vectors y €Y
and w €Y such that [|x-yll< 8llx|| and [u-sx-wll <s_[lu-sxll.

Set v: = Ty +w. Then yEBv(EGO(TO) and we have
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Ix®u-yaevil < llx-yll + Ha - vilg8lIxIl+lu~-Sx~wll +]ISx-Ty || <

1178

SHxI+8  (Hull'+] |

) +8HsIHIxT+(1+8) 1S lIx]l <

A

2(5(1+HSH)+5O(1+IISH)+(1+<S) HsS-TI1) llx®ull,

which implies the desired estimate.

Returning to the proof of Propogition 4,12, if |la=blj,
Iz —w]l,g(X,Y) and g(XO,YO) are sufficiently smalls then
(4.6) is fulfilled and we can apply Theorem 3.7 and obtain
that the complex ((.Svl\jzmb)pEZ is exact if w is in a neighbourhood
of z. Since B~U is compact,it can be covered with a finite
number of such neighbourhoods, and (4.6) must be fulfilled only
for a finite set . of points.z. Consequently, if. . la=Dbi é(X,Y)
and g(X‘O,YO) are sufficiently small, then the complex
(657—13)1362 is exact for every we€ B~U, so that o(b,Y/YO_)_.;: U.

Using the functor considered in.the previous example,

we can give the following:

4 lilsse DERTNETION: 2o dic 4 iheti tars fa <rany) EL(%) betan

el n
essentially commuting systemn  (ise. k (e} ¥is Ja commuting system in
Z£(k (%)) and let X € Lat(a). We define the essential Joint spectrum
of - a yin: Xebyusthe «fonmula

O ola X dlis caliclaly, wo(XF)
where k(a) : = (K(a1),...,|<(an)).

A version of Proposition 4.12 can be also stated for the

essential joint  spectrum.

4.15. PROPOSITION. Let a=(a;,...,a ) c:£(¥) be an

essentially commuting system, and let X € Lat(a). Then 15_(2_1_:‘ every

Jopenaset U:Oess(a,x) thered issapositivelinumbe®w ™8 ‘such-that if

Pl i R

b= (b 'D_) = £(%) is an essentially commuting system, ¥ € Lat (b)

{0 e B =2 28

lla = b || <6U and ¢ (X,Y) < 3§

then  Umsg (b Y

1 ess



Proof. Since Uoolkila),k(X)), we may try to apply ‘Pro-
position 4.12 to the system of operators éﬁ=(a1,‘..,an) when acting
in £ (%) (on components), and to the invariant subspaces

X7 = 47(X) and XT: = 1(X). Let also Y := 4" (¥) and YZ 2= 1(Y).
©

ékla-b]g(ua-—b!hn is computed in BT,

I
I oo

Since |la-Db]
G(Xm,Ym)E:S(X,Y) and S(Xz,Yz)gé(X,Y) (both estimates follow
by Lemma 4.7), on accountief Proposition,4,12 we deduce that

if lla=b]l and 6(X,Y) are sufficiently small, then

Uowgilelh)  gl¥) ) = Gess(b,Y)-

e) Complexes of infinite length occur in the cohomology
theory of Banach:algebras. We shall use the notations of B. E.
Johnson's survey article in [21]. Let € and % be two Banaéh
spaces and consider the situation (A,Q,X,P,p,uL,uR) where A
resp. X is a complemented closed subspace of G resp. %,

Q€ £(Q) resp. PEL(Z) is a projection with R(Q) =A resp.R(P)=X,
P:AxA->A is a continuous asscciative multiplication on A which

turns A into a Banach algebra, and U, :A x X »>X resp. X xA =X

MR
are left resp. right A-module multiplidaeiions “svuch ‘that' 'x
becomes a two-sided Banach A-module. We also shall consider a
perturbed situation (A,Q,X,P,p,uL,uR). We define the continuous
bilinear mappings B:Q X GG , ML:G><I-+%, and MR:IXG_Q"Ekw
B(a,b):=p(0a,0b), ML(a,x):suL(Qa,Px), and MR(x,a):=uR(Px,Qa)
for a,b€Q, x€%. The corresponding rappings in the perturbed

situation will be denoted by E’ML’MR'

4.16. PROPOSITION. Suppose that the ﬁbchschild cohomology

e - s ; :
groups #% (A,X} are finite dimensional for O 0 <n.(n'€ W Vand
: =2 9 o’ —

that the coboundary operator Sn+1;£n(A,X)4;£n+1(A,X) has closed




range. Then there exdists an e=ci(n) >© such that:for;all

perturbed situations with

!|P~§ﬂ<a,llQ—5H<w,llB—§H<e,}lML-ﬁLH<a,IIMR—ﬁRH<s (4.7)

the coboundary operator Sl R P of the perturbed

situation has closed range and such that for" 0 <o 1y

dimuPiE X < aimul (B R+

Proof. Pirst let us notice that each T EiP(A,X) has a

canonical extension to a p-linear mapping from cP to % given by

soe-Jee T Aa o)

(a RERRRACN olaqr. -

1,.“,ap)-*T(Qa

for a1,..

closed linear subspace of 2P (G, %). The same can be done gn the

.,apfiﬁ. In this way we may consider ﬂF%A,X) as a

perturbedesituation. For allIQEIN,T‘EﬁP(A,X) we then have

Sp(T)e =S§(Te), where S]G-Z:;f:p'1 (G, %) »:2£2(G,%) is defined by

D(Sg) = {7 |7 s %) . and

P = =
(%e(Te))(a1,...,ap)—~ ML(a1,T(Qa2,...,Qap)) T(B(a 1,a ), a3,.a Qag

+T (Qa (a 2,a3),Qa4,...,Qa sk own

P
B(a

e

+(-1)P 1 (0a ,0a h +

I p=2"" Pp1fp
e A e
+(=1) “R(L(QaT"V"Qap—1)’ap)

for T‘Ei?(A,X) and a1,e.g,ap62@. Thus, instead of considering

DEN and (S )pEDJ’

Then G(Sg) and G(gg) are both contained in

the complexes.(sp) we now work with (Sg)p€1N

=P
and (Se)p€EJ'

£pw1(6,£)><£p(a,§). The result will now follow from Proposition
20500 if we show tbat 8(82,%5)(p==1,...,n+1) is as small as we
% desiré,if'a'is small enough.

o R e G D(Sg). We define T e 2 V(a1 by

(a Y= P Te(Qa1,...,Qap_1) for a1,...,ap 1 €G- .

1o e
Clearly, T ED(§E) and’ for a1,...,ap_1 € we have



N (TefTe) (2, - ,ap_1) <
< H(P_P)Te(aW’ °,ap_1)|| +
= 5 S 3
+ Hpji,i rl.‘e(a,}, ,ajm.l) (Q"Q)aleaj+1 { (e »; anp__»]) H
Capege 3
& L . 5 > 5 i
< EIITeH Iia1H s Ilap_1H(1+iH.H:“ WOHE)
=0
This shows that for ¢ <1 we have
Hr -F Il <ec_HT_II (48
e e P e
p-2 : _
where C_=1+({IPH+1) X (1H2H+1)j does not depend on T or ¢.
P §=0
Moreover, :
P P /m ley
(Se(Te) Se(fe))(a1’°°"ap)
SR : SNl T il Wi
‘ML(dT’De(a2"°"ap)) ML(a1, e(az, ,ap“
= B2 P s S
(TeyB(dj,az);GB,...,a ) =T (B(aT,az),aB, ,ap) - o
Bl - % i = i v
+ =P e, pa) o BlaL e T fa e L MBlE gty
S Ti p " - - -—-N m ~
+ (=1) (MR(re(a1”°"ap~1)'ap) NR(Ie(aT""'apﬁi)'ap)

From this, (4.7), and (4.8) we see easily that there 1s some

constant Cg:>0 not depending on Te or®e, suchithat

i P/m _P & & oot
4sPer) <R, ) 1< el fleCp

/ e e |

Phis and - (4.8) mow, imply:that 6(5?,%2) <8 vCi-&Cé2 In the same
. =2 RS E

way one obtains 6(§£,SZ) S&Cé‘for some constant C;'.

(f) Wer'end this section with a second simple example in-
volving complexes of infinite length.
For p€ IN we denote by Sp'the group of all permutations of

L, TR T et dnd Kk .,kp) G then we define

g

=FOor n?Eebr ﬂ*(k):=(k p))' Let now  be a compact Haus-

(b

i
; ) .
dorff space and denote by AI(Q,E) the space of all continucus

functions f:Qp-+§ that are antisymmetric, that is, such that



s o

£(n® (u))= f(m7T = son U~ f (@)

| (1),...,wﬂ(p))
foriali w=(w1,°..,wp) € oP ana all ﬂ(iEb. It is.clear that

Ap[Q,I] is a Banach space with respect to the norm

[LEl :=sup d e lu)ill e 98] we also define AO[Q,Z]:= ¥ and
APla,x1:={0} for p <0O. Let now a:Q » A %) be a continuous function
with commuting range (i.e. whose range is contained in a commu-

tative subalgebra of £(%)) . We define continuous linear operators

up(a):Ap[Q,IJ—+Ap+1[Q,£]

by ap(a)==O fortp:< 0 (ao(a)x)(w):=a(w)x LORS e, €00 cand

p+1
P e it ~ .
(o (a)f)_(w).—p+1 ki] {(=1) a(wk)f(w1,...,wk,...,wp+1)
Hone £f€AP[0, ¥]  and W= (W, .. ettt One can easily see

"wp+1

P*l(a)aP(a) =0 for all p €Z,:s0 that (AP[9,%],0P(a)]

that « PEZ

is a complex of Banach spaces (intgereraljof (infinite length).

Let us denote by Lat a the family of all X €M(%) such that

Walw)XcX for a1y eq. vor X eLata ,” we have'ap(a)Ap[Q,X]CAp+1[Q,X]r

so that we may also consider the complex (AP[Q,X],ap(a,X))p€7

where ap(a,X):=ap(a)|Ap[Q,X].

DEFINITION. The function a is said to be of semi-Fredholm

type on X €Lat a if thg associated complex (AP[Q,X],ap(a,X))pEZ
is semi-Fredholm. In this case we- define the index of a on X,

; e o p p
say 1ndxa, as tEhev i ndese ol (N 05 X, o (a,Xﬂpez.

4.17. PROPOSITION.E Let a:qQ - £(%) be of semi-Fredholm

type on' X €Lat a. If a:0 »>£(%) is also a continuous function

"with commuting range and if the numbers

la-all =sup lla(w)-a(w) !l and &(X,%)
NEN




Zchas

are gufficiently small, where % € Lat &, ‘then a ie of Eemi—

Fredholm type on ¥ and ind_a=ind a
; % e X

>

PROOF. Clearly S(QP(a,X),ap(g,ﬁ))= 0 for p <0 and & direct
computation shows
e (e 2, v, ) (145 (%, %) (Na=F1+ (1+lalD 8§ (%, %) -

Base now: P des For £ EAP[Q,X], £ EAP[Q,%] we have

HeP(a,x)E-aP @, X Ellllall =T hallala it 1l s

<llall - HE-FN+1la-31 (HEN+ITE-TI)

From this we obtain

~

3 (0P (a,x)50P (3, %) s(1+||a|1)_8p+na—3n (148) (4.9)
where %p:=g(hp[9,x],AP[Q,§]). We shall now prove

gp < g(X,i) ForraElisp Cenl (4.10)

Fix an arbitrary 6>3(X,§){ Then there are §',p >0 such that
§ix 2piees" < §1enp < SveaTEof € AV By thien By the continuity of
f and the compactness of { we find a: finife open covering
{U1,.:.,Un?of @ =uch: that for all 15 (iT""’ip) EINE (with

W m= (s e i g0d ald s’ € U Xe cox UL T wei Have
n i lp

HE(w) = f(w") Il <pllEll.

For each i EINE we fix now an arbitrary point

e =(wl,...,wl) E o I sm e las L.IEAS 0% e ol 1S Al lopen covering
1 P i 2 1 n
P
of O there exist continuous functions @.:% > [0,1] with

J
Supp(gjc Uj (Hel eenn ) aid ®1+...+wn =1

§', there exist for each i €INE elements §}€EX~suchfthat

en ‘@. By the choice of

~i g il

W g ln e s et s ol Ll e define now a continuous
function F.0P -% by
~ 5 * ]
Flw)ey= ¥¥ z sgnm L ® <w1>*---=wﬁ (wa ) m* (1)
b n€s, temR T B



for w=(w1,..».,w ) €oP. Let us show that fé/\p[Q,'i}.

p
Eor ok SD we have
1 ~r R (1)
Pl Gil)i= —a T Lsanae X 0. [ Vi oo @, ) X .
p! TES SENR = F o:(1) lp o.(p)
o) n
1 ~ (o) (o7 ) * (1))
=== % sguin X 4, (w1)-. N (w_)x
P* nes ieEWP * -1 -1
D neoo- (D v o))

=—%— % sgn(“ﬂ)Sgn(0_1) )z Q. (w1)-...-w. (w

= . Pe "7 J b
nC:b 3€1Nn 1 P
5 e o R
=SENIT . = Z SQT 2 Q. (w1)-... O L) =
P 1es jewP 9 Ip

;ognwj-%(w),
where we used sgn<jt:sqmafj and:- 'the fact that the mappings
L%
m » no from 65 to E% and o ! :Dﬁzﬁ Ng are bijective. Hence, we
have ?(EAP[Q,§].

Fix now e02 s f is antisymmetric and

> iy st o0 L )=
el g ls 4R
n
we obtain
Elw)= % Py (w,) @ L JElu)e =
j p
jEINn 1 o)
1
=0 o edui) . (W )= £ sgnmuf(n¥(w)) =
jemwp J1 ! Jp P P nESp
= s D ) O, (w )£ (m* (),
pe n€€b jGINn J 1 7p

so that



- 56 -

0 : ~ - X 1 Y
?(w)—f(w)=i%- g 2 pwj “H)-"'.@j (wp)(xn (3)—f(n*(w)» (4, a4
n€6p ]€INn 1 p.
FOY w=(w1,...,wp) Esupp<pj X...xsupp(pj c Uj X...XUj agd
1 p 1 p
n €6 we have
P
¥ (w)=(w s o e %oin s
n(1) U(p) jTT(1) ]ﬂ(p)
On the other hand, also
wn*(j) €. X ol
I (1) In(p)
so that
. x . * . * .
T L ow (ot 2 " Ol (o e g™ OV -2 e tod) 12
2 S I EN+p Ll g o TIEET
- Hernice we obtain from (4.11),
HE(w)=f(w) ll< —%— i B-To T8 & o LR BT (w yal £l =611 £l
P nes B D - Jp P

and therefore,

HE- £l <81I£fll. As & was arbitrary with §>6(X,%X), we see that

A~

stiPIa,x1 . 1P, %)) <61%,%)

In the same way one obtains
s (nPia, X1, A Plo,x1) <8 &,%)

and (4,10) is‘proved.

Now, because of (4.9) and (4.10) we see that

~ o~

5(x(a,x),a(d, %)= sugg (o (a,x) , o (3,%))
: CepPEZET " |
<(1+11al) 6 (X, X+ (1+6 (X, X)) lla -all oo

since this is smaller than a given € >0 for' 6 (X,X) and
lla- 2]l small enough, we obtain the statemgnt of the proposition

now from Theorem 3.5 resp. 3.7.
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