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EYPERPLANE SECTIONS AND DEFCRMATIONS

Lucian Bédescu*)

Introduction

This paper is a continuation of [3] and [4]. Here we especially determine
all normal projective varieties X containing a certain given projective variety
Y as an ample Cartier divisor. In many cases we shall be dealing with, the va-
riéty X turns out to be a cone over Y if X is assumed to be singular, Some si-

{ tuations of this kind were already encountered in [3] and [43. The paper is di-

E vided in four Sections. The first one deals with the cases in which Y is either
an elliptic curve (see Theorem 1), or a smooth projective curve of genus >2
(see Theorem 2), Since in [3] and [ﬁ]we classified all smooth projeciive 3-folds
containing a geometrically ruled surface as an ample divisor, -it is natural also
to.see what is going on in the singular case, And indeed, Section 2 takes up'
this problem, giving a complete answer if Y is the surface Fe, with e 2o (see
Theorems 3 and 4), and a partial one if Y is a Pl-bundle over«~a smooth non-ra-
tional curve (see Theorem 6), The higher dimensional case (i.e. Y is & P -bun-
dle over a smooth curve, with n2»2) is much easier to handle, In Section 3 we
improve a result of T. Fujita concerning the Grassmann variety (see Theorem T)s
Finally,-the last Section relates the results obtained previously with the defor-
mation *heory,.

The author thanks P, Ionescu for some stimulating discussions,

? Notations and terminology

Throughout this paper we shall fix an algebraically closed base field k.
#In~general the te:minoloéy and notations are standard, with the followihg pre-
cisations, -

Unless otherwise stated,vall échemes we shall be dealing with will be alge-

braic schemes over k., The term '"algebraic variety" means an irreducible and

*)Partially supported by National Science Foundation under the Grant MCSu:.

77-18723 AC4 and by INCREST Bucharest



reduced algebraic scheme over k.,

By a polarized variety we understand a pair (Y,L) consisting of a projective
variety Y and an ample line bundle L over Y. The graded k-algebra § = s(Y,1) as=
sociated to the polarized variety (Y,L) is the algebra $§§OHO(Y,Ln) graded in
the natural way. Consider the polynomial algebra S[ﬁ] over S in one variable z
graded by the condition that deg(szn) = deg(s) + n for every homogenecous ele-
ment s€S. Then the variety C(Y,L, = Proj(S[b]) will be referred as the prejec-
tive cone associated to the polarized variety (Y,L).

Let Y be un effective Cartier divisor on the variety X. We shall denote by
OX(Y) the invertible sheaf (or line bundle) associated to the divisor Y, and

by N - OX(Y)GQOY the normal bundle of Y in X. A global eguation .of the divi-

sor Y on X is a section § & HO(X,OX(Y)) whose associated divisor in Y.

If Z is an arbitrary algebraic scheme over k, we shall denote by CU% the
Grothendieck duvalizing sheaf of Z. If D is an effective Cartier divisor ean,
then one has the adjunction formula CQb = CC%Q@Og{D)G@OD. This gives in par-
ticular the genus'formula of a curve over a smooth projective surface,

if Dl""'D* are Cartier divisors on a proper d-dimensional scheme Z over

d

k, then D .I,...D,

If in particular; D .= D for every.d = ly...piy.dhen Dl'DZ"'Dd will be

will denote the intersection number of the divisors Dl"'
"Dd' ; 1
also-denoted by D° , or simply by D .

If F is a Coherent sheaf oxn the scheme Z and D a Cartier divisor on Z,
then F(D) will denote the sheaf FQ@OZ(D), If moreover Z is proper over k we
shall dexote by hi(Z,F) the dimension over k of the vector space H%(Z,F).

Tf B is a vector bundle over Z, ¥ stands for the dual of E. If B is of
rank one, we shall also write E—l instead of E.

If S is a graded k-algebra and r a natural number, then S(r) is the graded
(r))

n

k-algebra such that (S = .8 vy ‘Wwhere Sm denotes the homogeneous part of

nr
degree m of 8. - .
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@4 Surfaces containing a givén curve as an ample Cartier divisor

Let us begin by recalling two well-¥nown results:

Theorem A, Let X be a normal projective surface corntaining Y = Pl as an

~ample Cartier divisor, Then (up to an isomorphism) one has one of the follo-

Wwing three possibilities:

2) & 357 sl Tepdithen s straight line or a conic in PZ-
b) X is the geomstrically ruled surface P, = P(O 1(90 1(~e)) (e>o0) and

Y is a section of the canonical projection p: Fg—————e»P

1 :
c) X is the projective cone over P ith respect to the s-fold Veronese

1 =
embedding v_:P ——>P° (822) and Y is the intersection of X with the hyper—

s+l
plane at infinity of P T

Theorem A is classical, A modern reference for it is [14].

Theorem B (Char(klrm o). Let X be a smooth projective surface containing

tne elllptlc curve Y as an ample divisor., Then (up to isomorphism) one has one

of the following two possibilitiess:

@) X _is a Del Pezzo surface ani -Y is a canonical divisor on X;

b) X is a geometrically ruled surface p:P(E)—Y over Y and the inclu-

sion YCX is a section of p (withiE a rank two vector bundle over Y).

: Theorem B is also classieal, A modern reference for it is Efﬂ In connec=-
tion with theorem By it is natural to classify also all normal (slngular) pro-
Jective surfaces containing a given elllptwc curve as an ample Cartiecr divisor.,
As far as we know such a classification is not explicitly containe& in'dny.pa—l“
per, although it turns out to be closely related to the classification of all
d

d
surfaces of degree d in P which are not contained in any hyperplane of ]

(see [31]). The result is the following:

Theorem 1 (Char(k) = o). Let X be a normal (singular) projective surface

”containing the elliptic curve Y as an ample Cartier divisor, Then one has one

of the following two possibilities:

a) X is a surface with only rational double-points as singularities and

-Y is a canonical divisor on X. These surfaces.are classified in ESJ,tMJ,LZQ/

(see Theorem ¢ below),

b) X is the projective cone over the polarized curve (Y,NY X), and Y is
L ” —r
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embedded in X as the infinite section (i.e. X is an elliptic come over Y),

Preof, Let £:¥ ————>X be the minimal desingularization of X, i.e. the ex-
ceptional fibres of f do not contain any exceptional ‘curve of the first kind,
Since Y does not meet the singular locus of X, Yiis also contained in r)il and
and the normal burdles of Y in X and of ¥ in ¥ are the same, In particular,

~s
(Yz)i>o and Y.E>o for every integral curve E on %. The exact sequence

=G =D

g iy ¥e: 0y

—e‘w@%/@Oi(Y)

‘yields the exact sequence of cohomology

o} O NG - 1.\,~__
qm-eﬁ (CJXJ) > H (wxcgox(y))_—_,»g (oY) = k—>3H ((/«JX) _—

e
S (OUS{@CX(Y)).

By duality and the Kodaira—-Ramanu,jm vanishing theorem, Hl(wtf@Of(Y)) = 0,
which implies that g = h (ON) = h ((,UN)él

If-'q - o0 the map & is surjective, and therefore therc iz a section
s(—THO(f, UJ:;\;J@OK(Y)-f)whose restriction to Y is 1; in other words, there is a
canonical divisor K on % of the form X = D=Y, with D>>c and supp(D)NY = T
Since Y is ample on X, the support of T (if D £ o) 1s contained in the excep-
tional fibres of f. On the other rand, since f is minimal, 0o K.E = D.E - Y.E
= D.BE for every ipreducible componsat E of the exceptional fibres of f, Then
a standard ‘argwnent (see C;’Z,] 3 fum/.)o_g Z.) shows that D<o, Recalling that D2>o
we get D = o, and in particular, CU?:/?ZI-? = Oi/f-»Y This' implies.that Cb)’i ijs in-
vertible and isomorphic to OX(-—Y), and -that f*(CUX) = CJri By [2]X has only
rational double points as singularities. Tnerefore q = 0 leads to case a),

Now asgume q = 1. First we show that 2: is ruled,

Claim, Assuming that % is not ruled, then CO’~ Z>o for every 1ntegral cur-—
ve Z on X such that Z > o and pa(Z)/

Proof of the claim. We shall proceed by induction on the number n of qua--

dratic transformations in order to reach X from its (un_ique) minimal model
(see:[8 [)e Tfin = o0y dje. -if % is itself the minimal model, then the classifi-
cation of surfaces (locg cit.) shows that CU’/XJ.Z}O for .eye,r:y-wc-urve Z> on. ’}E
Thus we can assume n3»o, and let E be an exceptional curve of the first kind
on“’}\('. Let & :X———>X be the morphism contrascting E to & smooth pcint xEX,
and set Z' =6(2). We have Z'2 = 22 P m2, where m> o is the multiplicity of

the point x on 2' (m = o if xgéSupp(Z' )). Theréfore 2'22 22> o, Moreover,



pa(Z')> pa(Z)}l. Using the inductive hypothesis we infer that wX.Z'Zo_. But |
oK CU)’E.Z' = 6"‘(0.)’5(-). 6*(2') = 6*(0\3%).2 4 mGy(CUX).E = 6""(&%{).2. Therefore
S*(w}_().zgo. Since (,O’i/ = 6’*(60*’2)@05{(}?‘:), we have (,Cfi.z = 5*(wi),z + B2 =
2E.Z220, the last inequality coming from the fact that E and Z are different
integral curves., The claim is proved,

Returning to the proof of theorem 1 and using the claim (in the assumption
that X is not rulsd), one gets wi'.Y>/o. Then the genus formula yields the
'desired contradiction: .

Ai=op (Y) = 1/2.‘{2 + 1/2.%:;1 4 122 1/2.3{2 4 Lok,

This proves that l)\(/ is ruled if q = 1., Now we can apply corollary 2.4 of
[uj in order to deduce that the inclusion YC?( is equivalent to a section of
a geometrically ruled surface p:P(E)——>7Y.

The point is to show thét the inclusion YC X actually coincides to a sec-
tion of & geometrically ruled surface X = P(E)——>Y. But this is standard as
following, Let g:r}‘(————>¥ be the rulling morphism of X. We have to check that
all the fibres of g are irreducible, knowing that Y,F = 1 for—a general fibre
F of g. Since % is the minimal desingularization of X, there are no exceptio-
nal curves of the first kind not mseting Y. Consider a com,mutatiire diagram

6

D ey ey
g g'

where & 'is a birational morphism (such a diagram always exists because the
minimal models of surfaces birationally equivalent to Ple are the geometri-
- cally ruled surfaces g':P(E)——7Y over Y). Singe Y is a section of g, &(Y)
is also a section of g', and in particular, 6 (Y) is smooth, Let m be the ma-
ximal nuaber of irreducible gomponents of fibres of g, and let F be a fibre
of g having exactly m components. An easy induction on m shows that if m> 4
there is an exceptional curve E'of the first kind contained in P such that
ENY = g. In this way, the assumption that m>1 contradicts the minimality of -

the desingularization f:X—— > X, Therefore m = 1, or else X is g‘éometrically

ruled over Y and the inclusion YCX is a section of g?\i e (o
Write X = P(E), with E a normalized vectur bundle of rank 2 over Y (see
[21], page 373). Set e = -deg(E), and let Co-he'é»‘vthe minimal section of P(E).
2 i
=m0 and o1 P (1). Assume that the vector bundle E is in-

decomposable, Then by loc, cit., Theorem 2.15:(page 377) and Propositions
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2,20 and 2.21 (pag€‘382) it is easy to deduce’that every integral curve on X
has non-negative self-intersection, contradicting the fact that %icarries at
least an integral curve with negative self-intersection, Consequently E is de-
compoesable, i.e. & = OngL, with -e = deg(L)< 0. Again if e = o every integral
curve on X has non-negative self-intersection, Therefore e> o, Then Go is the
only curve on % with negative self-intersection, and oonsequently X is obtai-
ned from i by contraoting Co to a point. Since CO can also be regarded aas the
zero section of the line bundle V(Lal) and deg(L“l) = e> o0, {49]II §8 shows
that X is isomorphic to Proj(s[z][), where § = %3 HO(X,L"m) (with the natural
gradation), 2z 1s a variable over S, and if qé‘S is a homogeneous element, then
deg(sz” ) = deg( ) + m. In other words, X is the projective cone of the polari~
zed curve (Y,L l). Moreover, Y &% Co + eF, and therefore the inclusion YCX can
be viewed as the infinite section of Proj(S{z}) (corresponding to the equation

4 = O)- QnEoDo

Remarks., 1. One..could also prove the rulédness of ¥ and ﬁhe fact that the
inclusion YCX is equivalent to a section of a geometricallyrruled surfdce,
using the same kind of arguments as in [I7], Proposition 1.11.

2. let (Y,L) be a polarized variety, with Y a normal projective variety of
dimension > 1, and let X = C(Y,L) be the cone of (Y,L). Embed ¥iin X as the®
infinite sectinn, so that Y becomes an ample Cartier divisor on X. Then:

1)l (0 ) = 0,

Lidelf 16 Loy 1y ato then & <n st

iid yeaf g *(¥,1%) = o for every nzl and i = 1,2, ani H (U ) = o, then
HZ(OX) =8

The proofs of these statements are standard and left to the reader. Apply-
“ing them to the elliptie come X (if Y is an elliptic curve), one gets that
Hi(ox) = o for i = 1,2 and HI(OX(Y)) i

3. In both cases of Theorem 1 the surface X is Gorenstein and 0]“1 is am-
ple. The surfacea with these propextles have heen studled and cldSBlfled in

ﬁgj 1373 and 2?! The main results about them can be summarized as follows: .

”Hﬁore@mg. ([9], 1], R4]) 1f X is a normal (singular) projective surfacé:

with CU‘ ‘“mple and if we put 4 = (Ok COk s then: S

a) The antl-banonxczl linear system lCU l contains a smooth elllptlc;

curve X.
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= ~] .
b) It Yé{l' , is as above and 6€ HO(X OI‘ ) is a global equation of sy,

then there is a natural identification of graded k-algebras GB H (Y N ) =

= 8/6 s, where § = EB H (K cdk

) is the anti-canonical rlngrof X. in partlcular

QJX is very ample 1f d>’3,

c) DimkHO(-X,w’}Em) = 1/2.dn(m+1) + 1 for every m»o, In particular, if

d}=3, the anti-canonical linear system of X yields an embedding of X in Pd as

a subvariety of degree d,

d) ﬁplassification) If X is an elliptic cone, all positive values c¢f 4 are

possible, If X is not an elliptic cone (i.e. if the minimal desingularization

_of X has irregularity zero), then 1 d< 8. If d = 8, X is isomorphic to the

3

quadric cone of P-, If 1 d< 7, there exists a set §.of 9-d points of P? in el-

most general position (but not in general position) such that X is obtained by

contracting all the -2-curves of the surface V(S) obtained from P2 by blowing

up the points of 8,

--Recall that a subset S = {Pl,...,Pr} (r£8) of points of"P2 is said to be

in general position if no three of them are on a line, no six of them areiron

" a.conic, and ifir = 8, there is no cubic passing through all points and having

a gingularity in one of them, Then one can prove that S is a set of points in
general position iff the anti-canonical class of the surface V(S) is auple (see
[}ﬂ).’xm the case ofvpoints in almost general position, infinitely near points
of P2 are allowed in S (See loc, cit. for the precise definition). Anyhow, the
points of 5 are in almost general position iff the canonical class K of V(S)
has the propsrty that K2>»o and K.CKo for every integral curve on V(S)., More-
over, there are only finitely many curves C with K.C = o, and all of these are
smooth rational curves with self-intersection -2 (loc. cit.).

Therefore we see that - a posteriori - there is no difference between the
class of normal (singular).Gorenstein projective surfaces with ample anti-cano-
nical class and the class of normal (singular) projective surfaces supporting
elliptic curves as ample Cartier divisors, However, Theorem 1 cannot be direct-
ly deduced from. Theorem C. because -a priori - we do not know that such & sur-
face X. is GorensteinaOr‘thatg%%s“elliptic curve Y beléngs necessarily to the
énﬁi—canonicai linear systenm, v

Via part c) of fheorem C, we also see that if d = Y22>3, then Y is a very.
ample Cartier divisor on X, giving rise to an embedding ¢f X in Pd as a surfa-

ce of degree d. Therefore, if d> 3, the classification of these surfaces also



comes from [31], Theorem 8.

Theorem 2 (Char(k) = o). Let Y be a smooth projective curve of genus g>2,

and X a normal projective surface containing Y as an ample Cartier divisor., As-

7

sume that Y42.4@+5, Then (up to isomorphism) one has one of the following two

)

possibilities:-

a) X is a geometrically ruled surface p:P(E)————>Y over Y and Y is con-

tained in X as a section of D3

b) X is the projective cone C(Y,NY X) and Y is embedded in X 2s the infinite
$

section,

FProof, According to the proof of Theorem I, let fiX——>X be the minimal
desingularization of X. We have (Yz)i3?4g45 hy hypothesis, Since X is smooth
we ‘can use Theorem 4.1 of [22] in order to deduce that X is a2 ruled surface
and the embedding Yc:i is equivalent {0 a section of a geometrically iuled SUY -
face p:P(E)———>Y. Using the fact that £f:X——>X is minimal one shows (e—
xactly as in the proof of Theorem 1) that X is itself geometrically ruled; i.e,
X = P(8), with E a vector bundle -6f rank 2 over.Y, and Y is embedded in X &8 a
section.of p. . IfF% = X (i.e. if X is smooth) we get directly situation - o e
not,’i'carries at least an irreducible and reduced curve with negative self-inter—
section and not meeting Y. Then, exactly as in the proof of Theorem 1, one can
assumé:that E is necéssarily of the form E = OY63L, with deg(L) = -e< o, From

this point ore easily gets that we are in situation b), Q.-E.D.

remark. Let X be Plx Pl and Y a swooth member of the linear system

2
lo(z,g+1)[, Ther Y has genus g and Y = 4g+{. This shows that Theorem 2 is sharp

and this is because Theorem 4.1 of [éé] (thc key point in the proof) is so.

%2. Normal 3-folds whose hyperplane sections are geometrically

ruled surfaces

4

In [3] and [4} the following result is proved:

Pheorem D (Char(k) = o). Let B be a smooth projective curve and B a vector

bundle over B of ramk r>2, Denote by Y the projective bundle P(E), and assume

that the smooth projective (r4l)-dimensional variety X contains Y as an ample

divisor, Then:

i ‘
a) lﬁ Y %’P X Py there exists an exact sequence of vector bundles over B




e

0 >0, peall s e & Bigh, Tsdaiiop
with F ample and LEPic(B), such that X is isomorphic to P(F) and Y2 P(E') is

embedded in X via surjection @,
: I

il 1
b) If Y = P X P, one has one of the following possibilities:
3 &

i) X is isomorphic to P~ and Y is a guadric in X;

4

~and Y is a hyperplane section;

ii) X is isomorphic to & hyperquadric of P

: 1
iii) There is an exact sequence of vecior bundles over P of the form

>0y

°~——>0P1 RERE - SR S O(a)@O(b)@O(c)_—f——;E' = 0(s)®0(s)

with a>o0, b>0, ¢>0 and S>o0 (satisfying the equaticn a+b+ec = 28), such that

X is isomorphic to P(F) and Y & P(E') is embedded in X via surjection @,
. —

The aim of this section is to determine also the nofmal singular projective
(r+l1)~dimensional varieties X supporting Y = P(E) as an ample Cartier divisor,
where E is a vector bundle of rank r>2 over Pl. As in the proof of Theorem D, -
the really difficult case is the one where Y is a surface..We have té treat se-

i)

parately the case Y = P x P,

First of all let us recall the following general and useful~leuma (see[??l

=

[46] ; temma 2.8

Lemma 1, Let X be a normal projective variety and Y an ample Cériier divi-

sor on X, Assumc that Y is smooth and of dimension >2., Lei U = Reg(X) be the

smooth locus of X, and F a coherent Oxumodule such that P/U is locally fres

and depthk(Fx)>v2 for every x&X-U, If;H?(Y,FQQH—m ) = o for every p = 0,1 and

T,X

m> o, then HP(X,F) = o for p = 0,1,

Now one can state:

Theorem 3 (Char(k) = o)., Let X be a normal projective 3-fold with singula-

: 1 1 : T
rities gontaining Y = P X P as an ample Cartier divisor, Then X is isocmorphic

to the projective cone C(Y,IﬁY X) and the inclusion YCX is the infinite section,
4 9

Proof, Set N
frool Y,X

a=1orb= 1, Then, using the explicit computation of the cohomology of

= 0(a,b), with a>>o0 and b>o. Consider first the case where

sl 1 ; . —
_?P%x.P*itogether with lemma 1, we deduce that H (X,OK(mY)) = o for every m € Z..

Therefore, for every m> o we get the exact sequence:
, 0 0
o-—.——>1{°(0x((m—l)“‘1))——~—§——>~}§ (0, (¥))——E"(0(na,ub) )——o.

. o2 o -
Thus we have a natural isomorphism of graded k-algebras §/G'S = @@ H (0{ma,mbd)),
== am=0
where S = GE%HO(OX(mY)) and GE S8, is 2 global equation of Y, Since the graged
: m=C :



10
k-algebra ééipﬁo(o(ma,mb)) is Cohen-Macaulay,and generated by its homogenecus
part of degree one, we infer that J is Cohen-Macaulay and generated by Sl' In
particular, we get that Y is very ample and X = Proj(s) is locally Cohen-Macau-
lay, let Xc;~<>PN = ]Yl be the closed immersion given by }Y) and H & ‘hypexrplane
in PN such thdat X()H = Y. Let H' be another hyperplane not passing through the

singularities of X (which are finitely many) and such that C = XNHNEHE' = TNE'

is a smooth curve. Since Y = Plx\P1 and 2 = 1 or b = 1, C is rational, Letw
then z ¢X be a.singular péint of X and H" the hyperplane passing through HNH'
and thé point x (note that since:x?&ﬁ',‘xgéﬂfﬁﬁ'), and denote by S the surface
. XNH". Since X is Cohen-Macaulay, S is also Cohen-Macaulay, Moreover, S supports
the smooth curvggés an ample Cartier diviscr, and hence the singularities of
S are isclated., This proves that S is normal, having a gingularity in x. Since
S contains the smooth rational curve (-as &n-smple Cartier divisor, we can ap-
ply Theorem 4 teo deduce that S is the cone over € in PN. HNow, varying‘the
smooth curve ¢ in the 1i§ear gsystem !NY,X! = lO(a,b),, we infer that for every
point y€Y the line in P passing through x and y is contained in X, This'
sWows that % 4s~the cone over Y in PH, and concludes the proof of Theorem 3 in
case & = 1 or b = 1,

Assume now a2 and b22. If moreover a % b, then part b) of Theorem 5 in

[4 | shtws that X is isomorphic to c(Y,N_ _). The extra—hypothesis "a # b"

X
was necessgary in that theorem only to dzévce that the restriction map o(:Pic(U)
——>Pic(Y) i an isomorphism, wheré U = Reg(X). Therefore it will be suffi-
cient to prove that o is an isomorphism even in case a = h>2. |

Assume the contriry, i.e. @ = b2»?2 and ©C not an isomorphism, Then accor-
ding to the proof of Theorem 5 ij»[4], oL is injective and Coker(x) is tor-
sion-free. Since Pic(Y) = ZxZ , Pic(U) = ZL, with L ample on U. Write LC@OY%
= 0(s,t), and since Coker(x) has no torsion, s and t are relatively prime po-
sitive integers, Write OX(Y)/U = L' and CO%/U-= Ld. Then the adjunction for-
mula yields s(d+r) = t(d+r) = -2, and thus s = t = 1 and r = @ = b>2, There-
fore we get the exact sequenge ‘ 5

: ¥ per Fi6h om
o S-L =1 >~ 0(m,m) —0,

with m>» o0 and G ‘& global equation of Y. Applying lemma 1 to the sheaf F =
: m ; i . : :
= J¥(L ), where j#UC— 5. X is the cancnical inclusion, we get that Hp(K;F) = 0

for p = 0,1 and'every m > o, In particular, the above exact sequence yields

for every m> o the exact sequence:



(1) o-~——>a°<u,x,“‘.‘r)-§—-+a'°<u L‘“>_‘_’>n°<o<m i)t o,

Denote by S the graded k-algebra <£9 R (U i ) = Q9 H (X,a (L )). Then
e am.u)smmstmmsk>s=GBH(mwnD=xk@yTyT,T]KTT TJ,
s k[TOsT q:] is the polyncmial kaalgob“a in four variables (graded in

the usual way). Since S( 2, (%3 H (X, (L )) C} H (X 0 (m )) and Y is ample
on X, we have X = Proj(s s ))m~o

Now, using the elementary arguments from the proof of Theorem 3.6 in E@S}
one deduces that § = k[T ,T., Ty Ty T']/(Q (7 RETEYL )), where deg(T Jag

T4 mod(Q) = & and Q(TO,T TZ,TB,O) e T2T3' In other words, X = Proj(s)

is the hyperquadric Q = o in the weighted projective space P(l Bl r)“g

!

s Proj(k[bo,ml;T ,T’]) If T3 then necessarily Q(T_ yeeesl)) = T, =21,
3 Pherefore the case. r 23 implies

’
and hence X is tie groJectlve cone C(Y, NY
that the map OX is an isomorphism (since X is a cone over Y), contrary to the
hypsothesis that Pic(U) = Z L.

If r = 2 we have two possibilities: eitheﬂwT4 does not occur in Q (and one

gets the same contradiction as in case r»3), or T4 does cccur, and then Q =

= th a€k~jo(). the latt kT, 00N ~
Ll (with a€k-Jo}). In the latter case S kL;O, ,Té]/(Q)‘

kffo,...,L37° Consequently, X is isomorphic to P3,:a contradiction because

W

X was supposed to have singularities. This shows that if a2>2, b>2;ithe map
oA is always bijective, and ~via the proof of Theorem 5, b) in [41-Theorem 3

is completely proved. QeE. D

m
Remarks. 1. Let Y be a smooth hypersurface in P (m>4) of degree =22,
and lei X be a normal projective variety supporting Y as an ample Cartier divi-

gsor, Since Pic(Y) =;Z?OY(1), N = Oy(s) for some s>o0. If s>r then Theorem

Yk
4 of[ﬂ!}shows that X is necessarily the cone C(Y,OY(S)). If instead 8 = r, the
arguments of the proof of Theorem 3 (concerning the case a ='b = r = 2) can be

L))

2, Theorem 3 could also be proved in case @ = 1 or b = 1 by observing that

m
used to prove that X is either P or C(Y,0

(if e.g. & = 1)the subvariety X of PN‘(embedded via the complete linear system
1?})wsétisfies the limiting condition deg(X) = codim(X;PN) + 1, and using a
wellwknown and classical result classifying the non-degenerate subvarieties of
PN satisfying the above equality,

Now consider the case Y = F_ = P(Oé4€DOP¢(-e)), Wit#'ezal. Denote by i

p:Y———~——erPl the canonical projection, and let X be & normal (singular) pro-



tion map A Pic(U)——

J

jective 3-fold combaining Y as an ample Gartien divisor, First we prove a key

lenma:

Lemma 2 (Char(k) = o). In the above notations and assumptions, the restric-

»Pic(Y) is an isomorphism, where U = Reg(X).

Proof, Bxactly as in the proof of Theorem 3, if & would not be bijective

then Pic(U) = Z L, with L& Pic(U) ample, Denote by OY(I) the tautological in-

vertible sheaf of Y = Fe relative to p, and by 0(1) the tautological sheaf of
Pl. Then Oy(l) and p*0(1) form a base for Pic(Y), and hence we can write
LQ§0Y @'Oy(b)qapwﬂ(a) for some (unioquely determined) integers a and b, Since
IA@O is ample on F one has a>be> o (see 2], page 380, Corollary 2,18).

Slnce 1 generates Pic(U) we can also write O (Y)/U 1" and CO’/U d
The adjunction formula yields b(d+r) = -2 and a(dsr) = -2-e. If e»2, then
we easily get & contradiction from these equations, and therefore lemma 2 is
proved in this case,

The case e = 1 is more subtle. From now on (till the end of the pfoof of
lemmaz) we shall ‘assume Y = Fl” Since a and b are relativély prime integers
(recall that Coker(X) has no torsicn), the above equations yield a = 3 and
b= 2, d.o. LOO ¥ oY(z)@p"‘o(g) - ur;l. Exactly as in the proof of Theoremj
one deduces (using lemma 1) that the following sequence is exact:
sl »—HO(UsLm)—-———-}HO(Y,w;m)-——-—-.-—%;b (mn2zo0).
Therefore, if we denote by S the graded k-algebra @gffRUQLm), we have

m=0
: o it
67&.3r and $/58 = (PH (Y,CO& ). The laiter ring is generated by its homoge-

sl )

-1
neous part of degree one and](ifY l vields an embedding of Y in P8 as a subva-
riety of degree 8, Moreover, using Eﬂ, Theorem 8 and its Corollary, we infer =

8
that Y is given in P by n hyperquadrics f_ ,...,f i or else

1
>
L)) H (vil\j )’Vk@ 9@-«,‘1‘8]/ lp.so’I )

m=0
TWow we proceed dgeln as in the proof of Thecrem 3.6 oflgﬁj Let §
= T, mod(fl,.o,,f Y Since 5/6's = k[ﬁ ,.a.,Téz/ ,...,f ) we can find (for

every i = o s1yeses8) some qz CLS such that '? mod(G‘S) = gi' We can then

3:Vanst“gct n hvperguadrlc l,...,Fn from ktf ,...,T8,T iIsuch that deg(T ) =

= Iy -Fi(To"""Tg’o) = fi(To’.”’TB) (i = 1yeeepn) and S = k[To"”’TSt(/(‘RI’
olo’b’n)c.-
If r>3 then the variable T9 cannot occur in Fi’ ive, P (T ,o..,T9) =
' 0

S 2 -1 5
Ii(To,.o.,Ta),'a = ly.o.pn, This shews that X = C(Y,CU& ), contradicting:



the assumption that ol is not an isomorphism,

If r = 2 and T9 does not occur in any Fi’ one gets in the same way a con-
tradiction, If » = 2 but T9 does occur in at least one Fi, then T9 OCCUrS Pre-
cisely in cne'Fi (say in Fl), provided that the system of generators (fl,,.gfn)
is . supposed to be minimal., In other words we have:

Fl(To,...,Tg) - 8y + fl(mog...,ma) , with a €k-{of, and
Fi(TO,...,T9),w fi(To,ac.,T8) 5 TP R
Then we get
g k[@o,.u,,wéj/(Fl,.e,,Fn)'; k{@a,...,mgj/(Fz,...,Fn) 2
2 k[@o,...,Té]/(fz,,*.,fn). |
Therefore X = Proj(8) = proj(k[&o,...,Té]/(fz,.,.,fn))g; 98. Then the in-

tersection of the hypersurface. f, = o with X is (transversal and equals) Y.

i}

TPherefore deg(X) = 1/2.deg(Y) = 4. But X is a non-degenerate subvariety of P8

of dimension 3 and degree 4, which contradicts the well-known inequality

! 8
deg(X)> codim(X,P ) + 1. :
o8 0

The last“cage to consider is the one where r = 1, Since $/6S = SE-H (UJ;m),
the latter algébra is generated by its homogeneous part of degree one-;;d the
degree of & is 1, L‘E'OX(Y) is very ample and yields an embedding of X in p?
ags a subvariety of .degree 8. Moreover, Qogl Q’LZ, i.e. X is a singular Fano

3-fold of index 2 in the terminology of Iskévskih[?ﬂ. If X would be smocth then
Iskovskih proved+that such a 3-fold cannot exist (see loc. cit., page 504). We
shall mimic the proof of Iskowskih in.order to show that such a simgular 3-fold
also cannot exict., The method (classically scalled the sweeping method) consists
in the following. Let Ho be a hyperplane of P9 such that Xf}Ho = Y and H, &ano-

i1
ther hyperplane such that X/1H, ¥ F. and the curve C = X(WHof)Hl is smooth. Then

1 1
C is necessarily elliptic. Consider . .the pencil (HA) of hyperplanes eontaining
HO(\H,. We get a rationgl map X—-**é'Pl which is not defined precisely alohg
the c;rve C. Let P be the divisor on X which is the closure of the subvariety
. of X swept out by the lines.EA of XNH, ¥ Fy (EA is the only one curve of X NH,

= .E £
X NHy @ o)Y
Y.Eo = 1 (E is ihevunique curwe of Y with negative gself-intersection). We get
: o

with negative sélfuinterseﬁﬁxﬁﬁ). For every=}\ we have (eu Bl )

" that P is a ruled surface, which cannot contain the curve C because ( is ellip-

tic and (C.E ) =¥, This easily implies that PNY = Eb,and therefore there is
Qo

2 line bundle M&PEe(U), with M = OU(P/U), such that M@bOYa oY(l). But since



Pic(U) was suppas@drtO be generated by L, we get obviously a contradicticn be-
cause M cannot be a multiple of L (otherwise C?(D would be a multiple of Cu;jh

Lemma 2 is completely proved. Qo EeD.
Remark, The proof of lemma 2 extends the arguments of ['5]

B

Theorem 4 (Char(k) = o). Let X be a normal (singular) projective 3-fold

containing the surface Y = F , with e>1l, as an ample Cartier divisor, Then X
: e

is isomorphic Lo the cone G(Yyﬂy .) end ¥ is cmbedded in X &g the infinite sec- :
§4n
).
Proof, Write N - Qy(t)ééﬁ*o(s), with 8>te >0 (see the proof of lemma

YyX
2). If t = 1 the proof works exactly as the proof of Theorem 3, case a = 1 or

tion of C(Y,X o

b = 1 (using Theorem A), Therefore we can assume t2>2. By lemma 2 there are
L,MEPic(U) such that LOO, & p o(1) and K@O, ¥ OY(I). If F is a coherent
sheaf on U we shall denote by F' the sheaf jﬁ(F), where jsUC—X is the ca-
nonical inclusion, Then using lemma 1 one can show that HP(L‘§9OX(mY)) = 0

map HQ(U,L) = HO(X,L') >»HQ(YQ§%0(I)) (ﬁhose kernel and cokernel are res-

pectively HO(X,L'(SOX(-‘[)) and Hl(X,L'@ Ox(“Y))) is an isomorphism, From this
we infer that the linear system [L{ on U.yields a rational mapping q:U-—~—%>P1,
and there is no loss of generality in assuming it is defined on U (either sim—'
ply restricting U to a smaller neighbourhood of Y in X, or using the arguments
of “the pr&of of Theorem 1 in[}g). Moreover,  the map q has the properties that
a/Y = p and ¢°0(1) & L.

Consider now the coherent O -module F = (ggnﬂiu(q*(o@o(me)),bd))' 5
= (UDM®LY))t, whose restriction to Y is o= gggY(p*(Oﬁ90(~e)),OY(l)) -
g>OY(I)GQ(OY(I)GDP*O(e)). We have the exact sequence : :

(ST, a((Ml"t@L’"s)@(nql“'t@L@"Sv))' T S >0

b §

(indeed, since B avOY(t)é§p¥O(s) and the fact that oC is bijective, we have
9

n
0 (1) ¥ u @1°%). Now we claim that

(2) Hl(X,G) = 0,

Let us assume for the moment (2) proved., Frem the abeve exact'sequeﬁce it

follows that the restriction map Hom(q" (0D0(=~e)),M) >Hom(p%(0€PO(~é)),OY(l))
is surjective, Since p is the projection of P(Q®0(-e)), the definition of the
projective bundle yields & canonical surjectives homomorphism

¢ € Hom(p*(O@O(—e)),OY(l)')-



LT

i~

By surjectivity of the above reatriction map we infer that there is a map
4 I € Hom (g (0@®0(~e)),M) such that ﬂOVY = ¢ . Since ?? is surjective, Nakayama's
lexma shows that we can agsume that ?ﬂ is also surjective,Then by the deflP1~

1
tion of the P -bundle P(0P0(~e)), there exists a unique morphism 7 :U

> Y=
= F_ such that - T (O (1)) ® ¥ and JT/Y = id. Then the conclusion of Theorem 4

comes from the followlng general leuma:

Lemma 3, Let Y be & smooth projective variety of dimension > 2, apd X a

normal projective variety X containing Y as an ample Cartier divisor, Assume

that the ¢ollowing two conditions are fulfilled:

i) ut (L, N_" ) = o for every m>o (automatically fulfilled if char(k) = o Hy

Yk
Kodaira Vanishing Theorem).

- 4i) There exists a rational mapping T :X——>Y defined in a neighbour-

hood of Y in X, such that TU/Y = id,

‘Phen X is isomorphic to the projective cone C(Y,NY X) and Y is the infinite
b 4
section,

Proof of lemma 3, Let U be & (Zariski) open neighbourhood of Y in X such

that UQ;X e apnd T is defined in U, and i:Y&——s-X the canonical inclusion,

Since Jlei = id, the composition of the natural maps

X* o
Pic(Y) = PIG(U)-——;E"——ﬁrPlG(Y)
s also identity. We claim that OX(Y)/UIQ'T?(NQ X)' Indeed, since both line
&9
bundles are mapped by i¥ into N it will be sufficient to know that f% is

Y,X
injective, But the injectivity of i follows from i) and E?Q] éxposé XI, Theo-
rem 3.12.
o
Now, since X~U is finite and X normal, H (U Ox(mY)) Lo Oy (mY)) for eve-
= Fo 50y o

; ' = and = 'l’ .
ry mzo., Set S }@DH (x,ox(m’)) nd S S?O Y,X) Ccmsuder the
natural’’ homomorphism of graded k-algebréas T¥s§——=—> S', so that we get a

‘i

1mmmm®ﬁ&n%:3@}~—+>8'by‘Aﬂ33ﬁ$am1%(T)mG’,wmme(“&°iisa
global equation of Y and T a variable over S (such that the gradation of S[T]
is given by deg( Tm) = deg(s) + m, where s €S is a homogeneous element), The
‘p@lnt 1s to show that /L is aotualiy an iscmorphism, In order to do this, it
will be suff1c1ent to check the surjectivity of A. because S[T] and S' are
both integral domains of the same dimension. The surjectivity of ;L is a c¢on-

sequence of the isomorphism s'/6 s’ % 'S. To establish the latter isomorphism,

one has just to lock at the following commutative diagram (m>>o0): f@;



L

)

« < '1_.0 ¢
H \(x,ox(my)) = H (U,Ox(m‘i)) H ’(7¢U,¢ NY .

l

B (Y, N g} ==K e

Y X) :
(from which we deduce that the res &xctlon map Sff-*~+4ws»(Whose'kernal is

6§') is surjective), Q.E.D.
Returning to the proof of Theorem 4, it remains to prove (2). But (2) is
equi.valam; to the following two equalitiem
PR e S p i e Y
Using lemma 1 these equalities follow from:
(2') .Hl(y,oy(lmt(ml))@ﬁ*o(»s(ml))) o g e
(2m) Hl(‘f,oy(lm‘t(m+l))®p""'ﬁ(e—-s(m+l))) = o for every m'zo.
In order to prove egquation (2') consider the Leray spectral sequence- for
the morphism p (with n = msl71):

EZJ Lk g (s o B p, 0, (Lent)) =21 M+ (y,0 ((1-0t) ®p0(=ns)),

1540 1 0,1
whegeexact sequence in low degrees o \I‘E- = > H : ,]3,2 shows that
1] @ 2 :
(2') follows from hi’. = Ja = 0, Now we have:

1) iy 2y
EZ*" = H (P7,0(-n8)® 0,0 (1-nt)) =

since for every n»l and t” 2 we have l-nt«<o, and hence p OY/l-nt) = O sgince
p is the projection of a wbu.ndle.
On the other hand, by the relative duality we have

gl i
R'p, 0, (1-nt) ¥ Hom 4(0(-e)@p 0 (nt-3); O,4) ¥ o(e) @(s™* 3 (0®0(-e))) =

'nf—E 4 ; ‘n't""_}
& & 0((1s1)e) - (if n=ls '8 . “0BO(=e)) = o).
=0
In these formulas we used the fact that wy pt OY(—2)®p°"O(-e) and the
m th
notation S (E) for the m synmetric power of the vector bundle E, Therefore
we get
& &9 nt-3 o
E?’ = GE it (P O(—n3+(1+1)e))

4

Bt —ns % (1+1), £ -ns 4+ (nt-2)e = -n(s-te) - 2e < o for every o\<i\<
L nt-3, ’Therefore ES”l = 0, -

In a compkla‘cely similar way one proceeds for (2") using the inequalities
"_/i~n5+ef(i+1_)e\<mns%(n‘t"'&)e#} = -n(s-te) - e<o for o&ig nt-3,

Theorem 4 is completely proved, QB Di

; it
The case where Y is of the form P(E)——>P y, With E & vector bundle.of

rank >3 over P* is completely analogous and in fact much e¢asier to prove:



The result is:

Theorem 5. If Y = P(E), with B a vector bundle of rank r>>3 over PlJ is

an ample Cartier divisor on the normal (singular) projective variety X, then

% is iscmorphic to the projective cone C(Y,N_ v) and Y is embedded in X as the
94t

‘infinite section,

: 7 3§ W ;
Theorem. D also regards the situation when Y is & P -bundle (r21) over &
e o : . ; T
surve of positive genus and X is smcoth, A¢ far as the case where Y is a P -
bundle over such a gurve and X has singularities is concerned, we have'the fol-

lowing partial answer:

Pheorem 6 (Char(k) = o). Let B be & smooth projective curve of genus g=1,

E a vector bundle of rank > 2 over B, and p:Y = P(E)w—;w—e>B the canonical

projection of the projective bundle P(R). Assume that the normal (singular)
o, (+)@p* (1)
1,x % Op(p) (D)@ (1),

with t> o0 and LEPic(B), and assume t2> 2. Then X is isomorphic to the projec-

variety X contains Y a8 an ample Cartier divisor., Write N

tive coqgﬂC(Y,NY X) and Y is the infinite section of X in any of the following
9
two cases:

a) T3, or

b) r = 2 and E is decomposable.

Proof, If U = Reg(X) the Lefschetz theorem and the Albanese mapping (see
C#], Theorem 3) yield a commutative diagram
YCe U
A
B :
and the existence of a ME Pic(U) such that M@OY'?:' Gy(l) and OX(Y)/ﬁ’r-‘-’
Q'Mtéﬁg%(L). Consider the following exact sequence
o —(*(Fer )@ ) — (gon (*(8),1) = (FBOW) ——s
> Hgm (" (8),0,(1)) —>0,
where, as in the proof of The orem 4, we denote by F' the coherent Ox—module
= 3$(F)y"where F is a cohe¥ent OUmmodule and j:US~——=X is the canonical inclum
gien.. If we show that :
(3) B Eeren )y -

then (exactly ae in the Proof of Theorem 4) one gets a surjective homomorphism

o)

9

(fléiﬂomi}qf(E),M) whose restriction to Y is the canonical surjection

/*uve,d\ \9 {b§



Lfl € Ho@(p*(m),oP(E)(l)), and therefore & morphism U :U——Y such that 7C/¥=
= id. Then again using lemma 3 one gets the conclusion,

It remains therefore to prove (3). By lemma 1 (3) will follow from

Hl(Y,p"’é(if@Lmlws)(%Oy(lwt«at)) = o for every s> o,

or el‘:ae (replacing s b& g4l):

(4) Hl(ng*(}a@LaS)@O (1-ts)) = o for every s>l.

To prova (2) c.omlder the leray spectral sequence

Egj - 5 (8,507 @R, 0, (1- $8)) =1 (y, 5" (EoL” )®OY(1-‘(;S)),

and its associated exact sequence in low degrees:

1 I Y o =S 1
(5) o——»E, . - (1,5 (B8 %)@ 0, (1»m))-————a~E° 3
If »»3 then R p,,0 (luts) = o for every s>1, t>2 and j = 0,1, and the-
: lo ol
raefore in this case (4) follows from (5) because 132 = E2 = C,

)

Now consider the case r = 2. Then again E20 = 0, and it remains to cheek

that Egl also vanishes if E is decomposable,
“.Since CO’Y/B = Oy(-»2)®p¥(det(}3)), the relative duality with respect to p

gives:

1

R D, Y\Lum) ¥ Hon (v, (0y (st-3)®@p" aet(F))) )=

t 3 5 5t st-3

¢ MB(deﬁ( B®s - (8), 0 ) % det(n)” '®s (E)

Therefore we also have E = 0 if we ghow that:

o o vV _ =8 -l st=3,_

(6) H (B,EQL ®det(E) ®S (B)") = o for every s>1.

In order to dc it, we can assume E normalized, i.e. E = 0_@L', where

L' = det(E) and deg(L') = ~e£o. If we set P = FoL e det(E)“l@) SStm3(E)Y,.;
we have
=1 -8 e st-3 =4 8 st-3 ~-1-i
Fz(QBGBL' RLTRL (DL ) F (L (DL )) @
T=0 (=0
¢t-3

| @ (L ‘“S@(@ TR
Thus, (6) follows if we prove-that deg(L *® L J)<0 for every l\< iEatal,
or else -s-deg(L) + je:./\o for every l\ej<st-1 Recalling that NY X A
¥ OY(*t)@p%(L) is ample then by [21], page 382, Proposition 2,20, deg(L)}te.‘

Therefore -s.deg(L) + je £ -8 deg(L) + (st-1)e = -s(deg(L)-te) - e {o since

N
deg(L)-te (o, a1 and oo
The proof of Theorem 6 is complete, Q.E.D.
Remark, Theoroi 6 would remain alse valid in case where E is an indecom-

posable vector bundle of ramnk 2 over B.if we.could prove (6) in this case.




/ 2y

§3. Grazsmann varieties as ample divisors

In this section we shall prove the following result by refining and simpli-
fying the method used by Fujita in [f5].
Theorem 7. Let Y be the Grassmann variety G. of r~dimensional subspaces

Oyt
of the n-dimensional vector space V. 4Assume that n>»5 and 1<r < n-l (i,e, T is

neither a projective space, nor 64 2) and that Y is contained in the normal
+y

projective variety X as an ample Cartier divisor. Then X is isomorphic to the

projective cone G(Y,NY Y) and Y is contained in X as the infinite section,
g 4
The proof of this theorem uses several lemmae.

Lemma 4. Let X be a normal projective variety of dimension >4 and Y an

ample Cartier divisor on X, Assume that Y is smooth, and let E be a vector bun-—

2 ; ~t
dle of rank r>>1 on Y such that H (Y,§§§(E)§QN& X) = 0 for every t>o0, Then
7

there exists a Zariski open neighbourhood U of Y in X and &' coherent sheaf R'

on X such that E'/Y = E, E'/U is locally free (of rank ) and for every x€ X-U,

LR
depthx(Ex)/fZ.

Proof, If r = 1, lemma 4 is well-known and follows from E&ﬂ. Assume there-
fore r>2. Using the hypothesis that HZ(Y,§§§(E)@§N;TX) = o for every-t> o,
Fujita proved that there is a vector bundle'El on the formal completion f of
X along Y, such that El/Y = E (see (75, proposition 2.1). On the other hand, by
Zééﬂ éxposé X, example 2.2, the pair (X,Y) satisfies the effective Lefschetz
condition, Leff(X,Y). In particular, this implies that there is an open neighe
bourhood U of Y in X and a vector bundle E2 of “ranlk r-oen-U; suech that'ﬁé‘g‘El,
and hence EZ/Y'Q‘E, where ﬁ; stands for the formal completion of E2 along Y.
Since:X~U is finite and X is normal, the sheaf E' = j*ﬁEz) satisfies the desgi-

red conclusion, where j:U¢——3X is the cancnical inclusion, Q.E.D,
t

Lemma 5.(95% corollary 1,4). In the notations of lemma 4, let P be a cohe-

rent Ox4module such that there is a Zariski open neighbourhood U of Y in X

Mith the property that F/U is locally free and depthx(Fx)2>2 for every xE X-U,

Assume moreover that the following maps of restriction HO(X,F)~—n—a>HO(Y,E/Y)'

and HO(X,OK(Y))~—~———-%>H0(Y,NY y) are both surjective and that the natural
TR A :
o 2 0 e} £+l
: ot 3 | QN
maps H (Y,I’@NY’K)Q@ 1 (Y,NY,X) H (Y,F@xy’x .
o
for every t> 0., Then the natural maps HO(X,FQEOX(tY))Qg H (X,OX(Y))~“_*-ff7%*&-

9

) are all surjecti¥e for




HO(X,FGDOX((t+l)Y)O are also surlgcfigg for every t»o. In particular, F is ge-

nerated by its global sections,

Assume now that Y is the Grassmann variety Gn’r of r-linear subspaces in
the n-dimensional vector space V., If m = {:}~1, let u:YC——~—_—a~Pm be the Plil-
.cker embedding and Oy(l) the sheaf of hyperplene sections of Y with respect to
u., Then GY(l) generates Pic(Y). Moreover, a result proved independently by
Hochster, Kempf,'Laksov and Musili (see e.g,[i?]) asserts that Y is arithmeti-

cally Cohen-jfacaulay in Pm. Denote by Vi the trivial vector bundle of rank n

over Y and by E the universal quotient bundle of V& of rank n-r,

Lemma 6., In the above notations one has:

7] HO(Y,E) =V and HQ(Y,EQ§OY(mt)) = o for every t> o,

1 S5
ii) H (Y,EQ&QY(t)) =0 ~for every te Z .
. o
1ii) If r>2 then H (Y,End(E)&® OY(-—t)) = o for every t>o.

(¢] (o]
iv) The natural maps KO(Y,E@OY(‘b))@H (Y,OY(l))—-~———r——+H (Y,E@Oy(t+l))

are surjective for every t_>o,

Lemma 6 is proved in [757(see 4.11, 4.17;.4.18 and 4.20) and relies essen-

tially on some results of Kempf[???.

Corollary (of lemmas 4,5,6 and 1),n@s$ume'that Y=0G

is an ample Cartier
n,r ;

divisor on the normal projectivesvariety X. If n>5 and 3 £Lr<n-1 then the uni-

versal bundle E can be extended to a coherent sheaf B' on X such that E/U is

locally free (of rank n-r) and depth?(E£)2;2 for every x€X-U, with U & suita-

- 3 2 : . % X ; o
ble open neighbourhood of Y in X, Moreover, the restriction map H (X,E')———e»

o
E (Y,B) is an isomorphism and E' is generated by its global secticns.

Proof, Since GY(l) generates Pic(Y), there is a (unique) s € Z such that

N 0,(s), and since Y is ample in X, s>o. By lemma 6, i¥#i)~and lemma 4, E

X
GZ;jbe eitended to an Eﬂ with the properties.stated in the first part of the %
corollary, To see that the restriction map HO(X,E')——~———~—9»H°(Y,E) is an
isomorphism, apply lemma 1 and lemma 6, i) and ii) to £he sheaf F = E'Q@OX(»Y)‘
in order to deduce that Hp(X,E‘@}OX(—Y)) = o for p = o)L The Tact that,E' is

generated by its global sections follows from lemma § and-lemma 6, iv). Q.E.D.

Proof of Theorem 7. First of all observe. that there is no loss of genera-

lity in assuming that r>3. Indeed, there is:a canonical isomorphism between




yields a unique morphism T :U

G and G such that the universal quotient bundle of rank r of (¢ is
Ny T n, n-r n, ner

identified to Ker(VY~———%>E), end so, if r = 2, then n-r>3 (in the hypotheses

of our Theorem). Therefore we can apply the above corollary and deduce that

there ig an extension E' of E with all the properties stated there, Since E!'

)
is generated by its global sections aind the map H (X,E*)~—~———5>HQ(Y,E) = V is

an isomorphism, E' is a quotient of the trivial bundle VX of rank n over X, Re-

calling that E'/U is locally free of rank n-r, the universal property of G
: Ny

>Y = G such thet T*(E) = E'/U. Since

E'/Y'%’E we have 7T/Y = id, Now we can apply lemma 3 to derive the conclusion,
Indeed, we jusf verified condition ii) of that lemma, while condition i) ol
lows (in arbitrary characteristic) since Y is arithmetically Cohen-Macaulay in

P il (:)-1)., Qe E. D,

- Remarks, 1, Fujita proved in[ﬁé}that the Grassmann variety Gn = (n>5 and
b

1{rn-1) cannot eccur as an ample divisor on any smootd projective variety
(see also Eﬂﬂ for:another proof)., Theorem 7 above should be considered as a

strengthening of this result, |
2. In the hypotheses of Theorem 7, write N

’

1,X
Fiore and Freni.also proved & result which is equivalent to Theorem 7 in the

= Oy(s) for some s>o, Di

case s = 1, by extending & classicel method of G, Scorzé?i%n the other hand,
if 8>3 Theorem 7 is a direct corolléry of Theorem 4 in [ﬁi}because Gn = is
given in Pm (scheme theoretically) by gquadratic equations, :

3. Theorem 7 is also valid when n3>3 and (m,r) = (n,1) or (n,r) = (n,n-1),
i.e. if Y is 2 projective space of dimension">,2. This result was proved in
[3], Theorem 1, but it turned out to be classical and due to C. Segre and G.
Scorza (see[37]).

4. The last exception in Theorem 7 is the o;a wvhen Y = Gijé

and the conclusion of Thecrem

< In this case
Y is isomorphic to a (smooth) hyperquadric im P
7 is no longer true in this case. However, one can also enumerate all normal
projective varieties X containing (}4,2 as an ample Cartier div;sOr,‘This comes
from the following more general result: :

Proposition 1., Let Y be & smooth hyperquadric in Pn+1 (r>3) and X a nor-

projective variety containing Y as an ample Carftier divisor, Then X is (isomor-

phic to) one of the following:

i) PP+1 and Y is contained in pi+l a5 5 hyperquadric,




o<, e’

N4 g ;
ii) 4 smooth hyperquadric in P T apnd Y is & hyperplane section of it..

iii) The projective cone C(Y,N_ .
P

) and Y is the infinite section,

Proof, If X is smooth, it is known that we haveeither i) or ii) (see @QL

or[gzj, corollary of %IV). 50 we can assume ¥ non-smooth, in which case X is

isomorphic to a hyperquadric in the weighted projective space P(%iéi;;iziﬁs)
. ny2 times
for some s>o., Using this and remark 1 (after the proof of Theorem 3) one gets

eagily iii). Qe Eo Do
We shall close this section by iwo further remarks, The first one shows
that the hypothesis of normality is not indispensable in some geometric situa-

tions, More precisely:

5 el ; :
Proposition 2. Suppose that the smooth subvariety Y of P of dimension > 2

has the following property:

(%) Every normal projective variety 7 containing Y as an ample Cartier di-

vigor such that NY X‘¥’OY(1) (the sheaf of hyperplane sections of Y withmespect

to P"), is isomorphic %o C(Y,OY(l)).

G : : 3 nyl
Suppose furthermore that X is an arbitrary-subvariety of P such that

n+1 -
there is a hyperplane H in P * with the property that X\B = Y (scheme-theo~

retically), Then there is a point Xx€ X such that X is the union of all lines

T
sosmed oo : 3 5
ofi P joining x and an arbitrary point of ¥,

Procf. Let w:X——>X be the morphism of normalization. Since in our hypo-
theses Y is coniained in the smooth locus of X, Y is also contained in X as
an ample Cartier divisor and N, KIZ Hi - E’OY(l). Since by (%) X is isomorphic
9 ’J\

to C(Y,Oy(l)); let X be the vertex of ¥ and set x = u(X). Let y be an arbitra-

ry point of Y and B the generating line of the cone X passing through (X and)
¥y, and set E ::u(ﬁ), Then. the'curve E passes through x and y, and since the

(1) 7 oY),

degree of @l(with’respect to the line bundle Oi(Y)) is one, and 00
04l '
we infer that the degree of E in P 4w one, i.e. E is a line in Pn+l because

E is integral, . QB D

In particular, let us explain a little bit how Théorem Lot [3] was élas-

n+s>

sically formulatedw(see[ggj). Let VS:PnC———-e»Pm (with m = ( ~1 and n>2)

AL
: : < m 2
be the Veronese emb&édding, and denote by YCP the image of v . Suppose that
: s -
sils m4-1
we are given a subvariety of Pl+ such that there is a hyperplane H in Pm+l

whose intersection®with it is Y. Then this subvariety satisfies the conclusion



of Proposition 2. This fact was first observed by C, Segre in the case of the

Veronese surface in P5 and subsequently extended to the general case by G,
Scorza (loc., cit.). Using Proposition 2 and some standard facts, it is not dif-
ficult to see that this classical result is in fact equivalent to Theorem 1 in
1.

The last remark (which is inspired fronm [3@9 concerns the following situa-
tion, Let (Y,L) be a polarized variety of dimension > 2 such that:

a) L is very ample an& yields an arithmetically normal embedding of Y in
Pn, with n = dim !Ll.

b) For every normal projective variety X containing Y as an ample Cartier
divisor and such that NY’X'%'L, then X is isomorphic to the pro;ective cone
c(Y,L) and Y is the infinite section of C(Y,L).

Put Yl = C(Y,L). Then Y is embedded in Y, as an ample Cartier divisor (via

the infinite section) and N

Y.y % L. Denoting by S the graded k-algebra
, .

i
o 0 : :
é}? H (Yl,OY (tY)) and by 6 € 5, a global equation of Y in Y,
=0 T s
leuma 3, onelgets that S/6 S is isomorphic (as graded k-algebra) to'EB HO(Y,Lt).
, e

and using:

Since we assumed that a) holds, the latter algebra is generated by its homoge-
neous part of degree one, and thus S has the same property. Moreover, since

depth(SAS) 2, we have depth(S)) 3. Therefore a) implies:

a') Y is a very ample divisor on Y, and yields an arithmetically normal

1
31 1
embedding of Y in B adinel =y din | Y|); moreover, H (Yl,OY (tY)) = o for every
B
integer t,
Now we want to show that a) and b) together imply:

b') For every normal projective variety Y2 containing the cone Y. as an

1
Y ¥ 0, (1), then 8 is isomorphic to
17 1

ample Cartier divisor and such that N

the cone C(YI,QY EE)s
3
7 &
Proof of b')., Using a') and lemma 1, one easily gets that H (‘3{2,0Y (tYl)) -
4 : 2
= 0 for every integer t. Again from this we deduce that there is an isomorphism

: oo
of graded k-algebras '/ &' = §, where §' is E&a H°(Y2,oY (+Y,)) and G €8]
2 i : =Q
2

is a global equation of Y  on YQ. From this we infer that S' is generated by

i
Si, depth(S')> 4, and that the divisor Y, is very ample on Y2 and yields an
n42 n42 ;
embedding of Y2 in“P-+ such that there is a2 hyperplane H (in P e ) with the

5 ; 2
property that ¥ NH = Yl = C(Y,L). Let then H' be another hyperplane in Pn+
2



such that Y N HEAH = e NH = Y, Since Y2 = Proj(s') and depth(s')>4, Y2 has
the property %4 of Serre (recall that a local ring A has property S, if
depth(4)» infik,dim(4 ))5 end @ scheme Z has property S if for every point

2z €% the local ring Qz9z has property S ), and therefore X' = Y f)H' has pro-
perty S_. Moreover, X' supporis Y as an ample Cartier divisor and is regular
in cadigension 1, Using Serre's criterion of normality we then deduce that X'
is. normal, Applying b) we have X' « C(Y.,L), and let x' be the vertex of the
cone X'. Now varying H' in the pencil of byperplanes containing the linear
subspace L = H'f\H, the goometiric locus of x' is a curve C, which is easily

seen to be & line in Pn%g. Then it is clear that YZ ig just the Jjoin of the

line G with ¥y which is exactly Bt Yecs BB

Since in this paper a2 well as in [Bj and [4j'we pfovided many examples
of varietics Y satisfying the properiy b) with respect to every ample line bun-
£5)
“ dle eover Y, we can app1§¥€5 several situations, e,g., when Y is a projective

i , ‘ n
space, or a Grassmann variety, etc. In particuler, if we take (t,1) = (B ,005)),

e n
with n>2 and s»1, we get that the cone Y = C(P ,0(s)) satisfies b'), In

3
order to state more precisely what we can get using this exemple, it is con-

venient to use the language of weighted projective spaces (see [12]),

Start with the interpretation P(%l;li;ii;,s) = C(Pn,O(s)). Since the sheaf
n+l times
P(l,y.e,lg )(t) is invertible iff s divides 1, we get that a normal projective
cone over P(l, Lyeeosly g) is a weighted projoctive space of type P(1l,1,...,1,8,
nil times n+l times
t), with t a multiple of s, ard so on., Sumarizing the above discussion for

n
(Y,L) = (P ,0{s)) (n>»2) and using induction, one gets the following variant
of Theorem 1 in[3]:

Proposition 3, let YO(: YlC: YZCZ'... be a sequence of .normal projective -
Moo
varieties such that Y .= P, with n>3 (or n = 2 and char(k) = o), and for e-

very i>1 Yi 1 is an aample Cartier divisor on Y, , Then there exists a sequen-
e AL sca o d ey o 1 =
ce of positive integers Ql, qz,... such that for every i>2 q, R divides q,,
ﬂan&“Y, is isomorphic to the weighted projective space P(1,1,...,1,q seensdy )
\-—-—’-v"‘\-l
e n+l times
for 1> 1, Furthermor®, the inclusion ¥, 1C:Y_ corresnonds to the natural SuT-
iee 1
jection of polynomial k-algebras k{@ ,..ﬁ,T :z—————e~}£E? yeletegls ‘, whlcn
n+id 0 npi-l=’ =

maps T . into zero and leaves the other variables fixed.
— tned




Remark, A more general case of the problem of of weighted projective sgpaces
as ample divisors was considered in [1@], as a natural extension of Theorem 1

in [}J. In particular, one proves a more general result than proposition 3 above.

§4a Applications to deformatiocns of projective cones

It is well known that the classification of certain subvarieties of a pro-
Jective space can give interesting informations concerning the deformation
theory, For example the classification of all non-degenerate subvarieties of
degree 3 in projective spaces (see [}8]) yields in particular an elementary
proof of the non-smoothability of the cone in P6 over Pl><P2 via the Segre em-
bedding. Sphleésinger constructed many examples of non-smoothable oy rigid afm'
fine cones over certain projective varieties of dimensién 22 (see [33}). Using
and refining Schlessinger's idea, Mumford provided examples of affine cones

(see [30])
.over certain smooth curves of genus >2 which are not smoothable} In his thesis
Pinkham obtained more precise results (see [ﬁé}). Hartshorne discusséd some con-
ditions for smoothing a subvariety of P (see [?3]). More recently, Sommese .
[35] and Fujita [14] gave further examples of non-smoothable projective cones,
using results abtout the impossibility of certain projective manifolds of being
ample divisors in another manifolds,

In the spirit of [14] and [36] in this section we are going to apply some
results of ours about ample divisors to deformations of certain projective
cones, Although our setting is slightly different from Schlessinger's, we can-
not claim getting essentially new results, The only reason of presenting them
lies in the fact that the proofs are different from the usual ones.

To fix our setting we need some definitions, Let X be a closed subscheme of

p. 4n {embedded) deformation of X in Pn is a clcsed subscheme Uc:Pn%;T which

I
is flat .over the paramet?r space T and such that there is a k-rational point
0CT with the property that the fibre Xo of U over the point o is isomorphic
to X. Such a deformation will be simply denoted by (U,T,0), or by {th‘téET’
where Xy = U(W(an;Zt}) is the fibre of U over t, if no danger of confusion is

possible, X is said to be smoothable in B if there exists a deformation (U,T,

ol ok in P such that dim(T)> o0, T connected and X, is smooth for every tuf Q.
X is rigid in Pn if for every deformation (U,T,0) of X in Pn there exists . a Za-

riski open neighbourhood T' of o in T such that for every k-rational pointi:



ey Xt is isomorphic to &,

et X be a closed subscheme of Pn baving & certain property (P), el tio
be a complete intersection in p” of type {dl,o.,,dr), etc. We say that every
small deformation of X in Pn has alse the property (P) if for every deformation
{U,T,0) of X in Pn there is a Zariski open neighbourhcod T' of o in T such that
Xt ig also a subscheme of Pn_baving the property (P) for every k-rational point
tehi:

Let X be an arbitrary proper scheme over k., We say that X is (algebraically)
rigid if for every proper flat morphism fsU————=T of algebraic schemes over
k, with T reduced and counnected, such that there is a k=-=rational point o& P
" with the property that fml(o) is isomorphic to X, there is a Zariski open;neighw
bourhood T' of o in T such that fwl(t) is also isomorphic to X for every k-ra-
tional point t€ET'., In the case whexc lk is the complex field Ql, we also say
that X is (analytically) rigid if for every proper flat morphism f:U-———=1T
ofvcomplexuanalytic spaces, with T connsctedsand reduced, such that.fﬂl(o) is
jisomorphic to X for a point o€T, then fml(t) ig also isomorphic to X for eve-
ry point t belorging to a complex open neighbourhood T' of o in T. Whenever
 the term "rigid* is used, it ic undersivod both in the algebraic and analytic
sense (provided that k = C ).

Propositicn 4. Let f:U—————>T be a proper flat morphism of algebraic

schemes over k (resp. of complex-analytic spaces), with T connected and redu-

ced, Assume that there is a kerationnl.point (resp. & point) o€ T such that

_ ~1 L 2 n :
the fibre X = £ "(o) is isomorphic to 8 closed subscheme of P having a cer-

tain property (P). Assume moreover that every small deformation of X in P
o

: i 2
has also the properiy (P), Hl(XO,OX ) = 0o for i =1,2 and H (XO,OX (1)) = o,
- ;

wbemw”ck"(l) is the sheaf of hyperplane dections of X with respect to the

Bl o]

: L aliea [ el

inclusion of X in P,
o

a complex open neighbourhood) T' of o T T such that the fibre Xt = fﬂl(t)

Then there exists a Zariski open neighbourhood (resp,

over every k-rational point (resp. over every point) t€T' is isomorphic to a

E ot & 4 n :
* eloged subscheme of P having the property (P).

Proof. Claim: There is an étale (resp. an open in the complex topology)

neighbourhocod Tj-——e»T (resp. Tlé;T) of the point o€ T and an invertible

sheaf L on U, = U><TTl inducing on X  the sheaf 0, B
S

In order to prove the claim we shall distinguiéh between the algebraicuand =



and the analytic one,
First let us fix some notations, Set 4 = OT . (the local ring of T at 0),
$
m - the maximal ideal of &, £ the m-adic completion of A, and 4 the henseliza-

1
tion of A with respect to m., For every p2 o let U = (X ,O /mp+ O ) denote the

.pth infinitesimal neighbourhood of X, inU (U X ) and set N(p) din (m l/

p ) In both cases, for every P> o consider the standard exponential sequence

X(p)

Z

p+1 p+2 I * o
0 / O Oy =0 >1,
o p+l P
and takinr the cohomology we get the exact sequence
I\ X
H (o (D))~————>Pic(u 1) e Pic(U Y (ou(p))
P+

o A
Since we assumed that H (O ) = o for i = 1,2, we get that the maps &

o

are isomorphisms for every p> o (in the analytic case we implicitly used a
result of GAGA-type).

Now consider the analytic case, We need the following result (see[}ﬂ )z

Theorem E (Banica, Bingener, Kuhlmann), Let f:U—— T be a proper morphism
3 3 z Pasthaiy 5 I

of complex-analytic spaces and o€ T a point. In the above netations, consider

the following natural map (defined in an obvious way):

A : dir lin Pic(U') > inv linm Pic(U )
t P20 o
where U' runs over the set of all complex neighbourhoods of Xoki” U. Then A

injective and its image is dense in the topology of the inverse limit,

In our case we Jjust showed that the maps Ep are isomorphisms for. every

P> 0, and hence inv lim PlC(Up) reducés to PlC(X ).From this we infer that

pz o
the map A~ is an isomorphism, proving the claim in the analytic case.

The algebraic case is more subtle, Consider the following cartesian diagram:

A oy

X U
< : :

l e 5 lf

o 7 il

g > T=Spec (&) — > T=Spec (&) — =

...Pirst we observe that the restriction map Pic(ﬁ)——~¥——a~Pic(Xo) is an iso-
morphism, fhis is a consequence of Theorem 5.1.4 from [ﬂﬂ, chapter III and the
fact that_EP is an isomorphism for every p_> o, Now by Theorem 3.5 in [4] the
map Pic(ﬁ)—~;~——a-Pip(ﬁ) is also an isomorphism, Applying Corollary 2.2 in[ 1]
we get the claim in the algebraic case, Note that the main point in the proof

of the claim in the algebraic case was Artin's approximation theory.



The claim being proved, we can use the base change theorems (see e.g. [21],
chap. III, §12 in the algebraic case, and [#] in the analytic case) and the

asgumption that Hl(}{ »0y (1)) = o in order to deduce that there is a Zariski
< 5
le)

open (resp., &n open in the complex topology) neighbourhood TZ of o in Tl such
that:

dijs TE: weesliGl

iy then g*(L)/Tu is a free O -module of rank n+l, and

2

ii) L/gw i ) is very ample with respect to g/g (Tz) and yields ap embed-
ding of g (T ) in P'x X1, (over TZ)'

Therefore, in the algebraic case we got an (embedded) deformation of XO in
Pn parsmetrized by Tg, and accordingly (by our assumptions)there is & Zariski
open neighbourhcod T} of o in Tg such that Xt*ﬁ'g"l(t) is .a subscheme of Pn
having the property (P) for every k-rational point t€‘23. Since u is étale,. .
u(T}) is a Zeriski open neighbourbood of o in T, and hence we copslude.(ln the
algebraic case) by taking T' = u(L T ‘

Finally, in the analytic case one proceeds similarly, but using the GAGA-
type fact tbat the Hilbert scheme H parametrizing all closed subschemes of P
with the eame Hilbert polynomial asz Xoy represents both the Hilbert functor
defin&i on the algebraic categery and the Hilbert functor defined on the analy-
tde caﬁaggry. Qs E. D

Corollary, Let f:U———T be a proper flat morphism of algebraic schemes

over k (resp. of complex-analytic spaces), with P reduced and connected, such

that thﬁ'fib?@‘&b_m f “(o) over a k-rational point (resp, over a point) o0& T

3 5 ; ; : n <
is isomorphic t0 & complete intersection in P of tyvnse (dl,...,d ) and of di-
AR : sk 20 0L i

mension > 3, Then there is a Zariski open (resp. an open in the complex topolo-

gy) neighbourhoof T' of o in T such that for every k-rational point (resp,

-]
point) tET' the fibre Xt = f. (#) is also isomorphic to a complete intersec-

n "
tion in P Of 'i,‘ypi (dl,a‘oogdr)q

. ; : > n : ;
Proof, Since X is a complete 1ntersectlon in P of dimension > 3, we have -

H (X O (t)) = 0 for every = 1,2 and for every 1nteger t. On the other hand,
o

it is well known that every’small (embedded) deformation in P" of a complete
intersection of iva (d ,ﬂ,.,d ) is also a complete intersection in P of the

same tvpe(see evgg7’]) Thus the hypotheses of Propos, 4 are fulfilled, and

the corollary foilows applying this proposition, - Q.E.D,



Wil
Y i

Remarks., 1, Weiare indebted to ¢, Binicd for showing us his paper [6], which
was useful in the proof of the anazlytic part of Proposition 4.

2. The above corollary is of folqure type. It was included as an illustra-
tion of the usefulness of Proposition 4 on one hand, and because it will be
used in the proof of Theorem 8 below on the other hand, The analytic part of it
was proved in[}g]in.the framework of Kodaira-Spencer's deformation theory
(in the case where everything iz smooth, but - except the K-3 surfaces - also
including the two-dimensional case).

3., The proof of the corollary works also in the case when Xo is.one of the
following: a quadric or a cubic in PB, or & complete intersection of type (2,2)
in P4. Indeed, .we have Hl(xo,ox (t)) = o for evéry integer t (this holds for
every surface which is a oomple%e interaection in Pn), and in the above cases

2
al = 0,
so H (XO,OX ) = o
0
In order to state the next result let Y be a complete intersection in Pn,

and dencte by Oy(l) its sheaf of hyperplane sections. If dim(Y)> 3 Lefschetz's
theorem says that Pic(Y) is generated by Oy(l).

Theorem 8, Let f:U———> 1T be a proper flat morphism of algebraic k-schemes

(resp., of complex-analytic spaces), with T reduced, #nd assume that the fibre

X of f over a k-rational point (resp. over &a p@int) 0ET is - isomorphic to the

(0]

)
cons C(Y,OY(S)), where Y is & smooth complete ‘dntersection in P. of type (dl’°

°"dr) such that n-r>3 and 8> gax(dl,...,dr). Then there is a Zariski open

(resp, an open in the complex topology) neighbourhood T' of o in T such that

for every k-rational point (resp, for every point) tE€T' the fibre Xt over 1

is isomorphic to the cone C(Y 0, (s)), where Yt is & smooth complete intersece
2

5

tion in P° of type (dl,...,dr) (but may be not isomorphic to Yo = Y),

t,

Proof, Let YWL——%>PH(S) be the closed embedding given by the complete li-
‘ : A 1
near system [OY(S)[ (n{(1) = n). Then the cone X ='C(Y90Y(s)) T i Pn(8)+ )

n(s)+1

Step 1. Every small (embedded) deformation of X in P is again a cone

of type C(Yt’OY (s)), where Y is a complete intersection im P? of type'(dl,.

o & ,dr )a

Proof of step 1, Let {X %

t/tEB
B it parametrized by B, such that X = X for a k-rational -:

(s) - n(s)+l

be the hyperplane at infinity of P . Putting::

be an (algebraic, embedded) family of closed

subschemeé of P

n
point oEB, Let H'= P



n(s)

Yt = Xt(]ﬁ we get another algebraic family of subschemes of P parametrﬁmﬂd
eventually by a Zariski open neighbourhoced of o in B. Since the problem is lo-
cal around o, one can aasume that it is parameirized by B itself, Since Yo @

= XG{)H - C(Y,O (s))NH = ¥, we can apply the corollary of Prcposition 4 to
deduce that Y is again (1sonorp 1ie to) a complete intersection in P of type
A(di"°”dr) for every k-rational point t€ B (always shrinking B to a Zariski
open neighbourhoeod if necessary). Since dxm(v ) = dim(Y)> 3, tke chaohe%“"

theorem allows us to write s e e (s,) for some § > 0. Since u (1,0 (s))g
B B
= 0 we can use the base change theorems to infer that

Q 0
dim H (Y g8)) = dim H (Y
im H (1,@Y( )} = dim H (aﬁ,oY (gt))

for every k-rational point t€ B {shrinking again B if necessary), Recalling
that ¥ and Yt are both isomorphic to complete intersections of the same type
in Pn, we then get St = 8 for every k-rational point t E&B. .

On the other hand, since Xo'is normal, Xt can be assumed fto be .also normal
(9], chapter IV, 12.1.6). And now comes the main point of the whole proofiof
- Pheoren 8! SincaAXt is normal, th H & Yt and 8, = s> max(dl,...,dr), Xt is
the cone C(Yt;(}Y (8)) by Theorem 4 in[4](or also by the corollary of Theorem
6 in[4]). :

Step 1 is proved.

Step 2 onﬁcluklnnl We have jusy to apply Proposition 4. In our situation

n(s)+1

the ‘propervy (P) of a normal subvariety W of P ig the following: "there

exists & smeoth complete intersection Y' in P of type (dl,...,d J ‘such that

n(s)+1

W s C(Y',OY'(B)) “, By step 1, every small deformation of X in PB° also

has the properiy (P) (note that by the very definition X has the property (P)).

To apply Proposition 4 we have to know that H (X 0 ) = 0 for i = 1,2 and

H (X 0 (Y)) = 0, But this follows from the dlﬂcu331on preceding Proposition 3,
The proof of Theorem, 8 is complete, Q.E.D.

u , n
Corollary, i) The come C(P ,0(s)) is rigid for every n>3 and s>1, The

. Same conclusion holds for n = 2 if char(k) = o,

‘s : . Yol : n :
11) Let Y be a smooth byperguadric in P , with n> 4, Then the cone C(Y,Oy(s))

is rigid for every s>3.

Proof, Part i) Ffollews in case n»3 from Theorem 8, The case n = 2 can be
treated in a SlmliiT way., Part ii) also follows from Theorem 8 remarking that

any two smooth hypergquadricsin P are projectively isomorphic, Q.E.D.



Using Proposition 3 and the same method as.in the proof of Theorem 8, part

i) of the above corcllary can be generalized in the following way,

Theorem 9, Let n, l,,é.,q be natural numbers such that n>2 and ¢ 1 di=
Ll

vides qJ forsevery ‘o 2,0, i 18 - 2 a8sume morecver that char(k) = o, Then

the weighted projective space P(l,i,oee,lgql,‘ﬂ.gq ) is rigid,
N4 times

1 i
Theorem lo (Char(k) = o). i) Let ¥ be P~ X P . Then the cone €(Y,0(a,b)) is

rigid for every a>2 and b%2, unless a biat 9L

= q
T Tet ¥ be Fl Eﬂﬁ p:Y————>P" the canonical projection of Y, Then *he

cone c(Y,oy(b)®p*‘o(a)) is rigid for every a>b >2.

For the proof use Theorems 3 and 4, Proposition 4, the rigidity of P %lP

and Fl and the same method as in the proof of Theorem 8,

Theorem 11, Let Y be the Grassmann variety Gn 2l with n>5 and 1< r<n-1,
9

For every s2>1 the cone C(Y,0 (s)) is rigid,

Use Theorem 7, Proposition 4, the rigidity: of the Grassmann variety and

the same method as in the proof of Theorem 8,

. Theorem 12 (ghar(k) = o). Iet Y be an elliptic curve, L a line bundle on:

Y of degree >1o and X the projective cone BE¥L) Fét fell———n be a

proper flat morvhism of algebraic schemes over k (resp, of complex-analytic .

spaces) such that the fibre of f over a kerational point (resp, over a point)

0o€T is isomorphic to X. Then there is a Zariski open (réep;:a'complex open)

neighbourhood T' of o in T such that the fibre of f over t igs isomorphic, to the

cone C\Y L, ) over a polarized elliptic curve (Yt’L ), With dev(L ) = deg(L).

The same klnd of conclusion holds if Y is a smooth projective curve =f genus

g2 and deg(L)>4a+5.

For the proof observe that the two types of surféces from situations 2) and
b) of Theorem 4 (resp. Theoren 2) have different Euler-Poincars characteristics,
and therefore cannot fit in the same family. Then use Theorems 1 and 2, Remark
e (after the proof of Theorenm 1), Proposition 4 and the same method as in the
proof .of Theorem 8.

Eégggg; Compare with a result of Pinkham from [}2], which states that (in

the situation of Theorem 12) the affine cone of (Y,L) has no smooth deforma~

tions,
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