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MOHODROMY OF FUNCTIONS DEFINED ON ISOLATED
SINGCULARITIES OF COMPLEYE IWTERSECTIONS
by

Alexandru DIMCA

A basic tool in the study of an analytic function germ

B - o : ; . ) e
,0) —(C,0) with an #solated singularity at the origin

£ (€
(or” of the..cofresponding hypersurface gern Yﬁf—l(O)) .8 Ehe
wellknown local monocdromy group ( 4], [é]; EQ])@;

This widely studied monodrohy group can be defined in
two equivalent ways:

(i) Usting a mersification of the function T,

(ii) Using a line in the 'base space B of)a versal deforma-
tion fer Y in geheral pos¥tion with respect to the discriminant
hypersurface A CB,

In this paper we extend the construction (i) above to
function germs f:(X,0) —=(C,0) defined on a complete intersec-

n+i e . y ' .
TP 0) with an isolated singular point at the

tifen ™ (X P0rc (¢
origifrTand “such thate Xo=f“1(0) I'ssvalso a compiete intersection
with an isolated sihgularity at 0 (here n=dim X > 0),

T sEhds wéy we ‘Obtain an-action of a-fundamental group

T é‘nl(Disc \{S points{) on the exact sequence of the pair

(o Cod . . ol . .
(X,XO) i1 homology  (with &-coefficients):

() 0 ——-s»nn(EZ) ——-——*Hn(?i,‘I Yoy TT o 4K ) )



where i,i\?o are the Milnor fibers of X and £ ([51) chosen such
that QOC X and s=!w(X)+f.L(XO) is the sum of their Milnor numbers,

More prgcisely, the action of g -on Iln(ff) is trivial, while
thé actions on the other two homology groups can be described in
terms of Picard-Lefschetz feormulas with respec't to thimbles
Akeh‘n(x,NO) and corroapondlng vanishing cycles 6 ~dA 6 Ho_p 31 -

The T( -exact sequence (%) 1is proved to be a contact invari-
'anf: of the function f i,e, it depends only on the isomorphism
class (in a natural sense) of the pair of complete interseétions
(X,XO) ., This fact, as well ‘as the independence of the sequence
(2¢) oﬁ the choice of the-morsification for £ is obtained by a simple
application of the Thomni-Mather Second Isotopy Lenma.

To_nge some explicit examples, we compute next the ¢ -se~-.
qde‘nce; (%) for all the R-simple functions £ defined ‘on an isola=
ted aypersurface singularity X of dimension n 1, as listed in l:l-l.

Note ‘that the I -sequence (%) gives us in particular two

nonodroiy groups

I\ e &
G (f)=im {u--—sAut Hn_l(xo)}

G(£)=im { T -—> Aut E_(X,X )} .
L n o)
We prove that Go(f) isprecisely. jtne monoaromy gEOUP «of the ccom=
plete ‘interseetidn XO defined as in (ii), In fact the morsifica-
tion ‘process used 'above_gives rise to.a line in the basge space
B of a (suitable chosen) versal deformation of Xo , whose direc-
_tion depends’ on. t‘he function £ and is not generic with respect
tc the disériminant NCB;

That is wHy we need a slightly modified version .0of a result
of ‘I-i_an(m-lu.??: on tite fundamental group ’i(l(B\A) (see Lemma 3,5).,

Then we show that the other monodromy group G(f) is a semi-



direct product of Go(f) with a free abelian grdup ﬂ?c,and we also
give some estimates for the rank < ,

Finally we remark that constructions similar to some of
ours (i.e, morsifications and connections with versal deformations)
have been used many a time before (e.g. by Iondin [7] and Lé
[10]) but always with different aims in view, as far as we know,

We would like to express our deep gratitude to Professor

V.I.Arnold fer a very stimulating discussion,

§l. MORSIFICATIONS AND MONODROMY MAP.OF PAIRS

Let K:gl=...=qp=0 be an analytic complete intersectien in
a neighbourhood of the &rigin of er p' with an isolated sipgular
point at 0, (ny1l, pz0). Consider also an analytic function

germ

n+p

£: (¢""P,0) —> (€,0)

i i . ; . A
(0) N X is againza complete intersection with an

such that Xo=f*
isolated singularity at 0,
For €>>d50 chosen sufficiently smell, it is known that

the Milnor fiber of X

Xr={x€ B ;g(x)=r}

&

«Q ; ’ | s . . :
is a compact C -manifold with boundary for any r€.¢p sufficiently

general with 0 <lr|g § , where

. - i o o~
The space X (denoted in theswintroduction by X) has the

homotopy type of a bouquet of n-spheres, the number of which is



by definition the Milnor numberfk(x) of the complete intersection
X

For r small enough, it is easy to see that tl=flint Xy
has only a finite number of critical points Byreesrdy and: more=
over a; — 0 when r—»0 for any 12l p i 5K

Let us denote byfA(f',ai) the Milnor number of the function
¢ at the critieal pbint aj .

One has the following proyperty, in analogy with a result

of L& ([i0], (3.6.0)),

Proposition 1l

2 i; H(f’,ai)=#(;<)+fh"(rio) 7
e 4

Proof:

Let Dg denote the open disc {ze C; (z\<:g}, For #&.; §d and

r suitable chesen, the inclusion

, e =3 |
(1.2) L-—-Arnf (DJ ) = X

b

is a homotopy equivalence (sce for instance [lO] {(:3rd>) ) =and -more-=

over the restriction
s fla_.t AE —> D K ~ =% O 0
) 3E - Dg where QL= 7 r[\f (D&)

is a submersion,

Lgt b €Dy be a regular value of EkflE and ;et ci=f(ai)6D5
bé "the . (not necessarily distinct) critical values of £,

Then Fzg—l(b) is the Milnor fiber of the complete inter-
section Xé andvthe exact .segquence :of theapair=(E,F) shews that
hn(m,F) is a free abelian group cf rank S:IA(X%+fA(XO). (Z-coef=

ficients for homology are used throughout in this paper) .



We conpute now this ¢roup in a different way, following
(ois $8vs
Choose small disjoint closed discs Di centered at the critical
values c; and fix some points b, €9dD;.

For eachui,dtake a €7 -embedded interval €i from b to bi
such thatf'=<¢/€i can be contracted within itself to b and Dy

can be contracted to C=LJDiLJ 0 k3

o~

‘Since f induces a (proper) locally trivial fibration

BV oy | Bifegl ,

these retractions can be lifted to the corresponding subsets of

E and we get the following isomorphisn

S e

I B Sl (8 (C),F) & nn(?_-"l )i &),

By execision, the last group'is equal to

o Hn(%“'l(oi>, £ i)

Bl

~

assume that Aiqeeeepd, are the critieal' points-of f£-in.the

n

fiber over Cye Let Bj be the intersection of a small closed ball

o~ e e |
centered at aij withif l(Di) and denote with Fi the fiber £ l(bi)°
It follows that
) m m
1o & ~ » o R i 7 T = B 2 .
B R (D ) F ) Hn(jk:{li.jUIi,El) j%3llxn(L],:3][\Fl) :

Moreover

5 . ‘ .
Hn(Bj,BjﬂFi) = hn__l(bjﬂfi)

is a free abelian group of rankfk(f',aij) by the definitiopr o
the Milnor numbers of f'’, if the discs Dy and .the.balls Bj are

chosen small enough, B



We consider now the problem of the existence of morsifica-
tions of the fuwetion f':Xr-«>¢, i,e., small deformations of f!
having only nondegenerate critical points with distinct critical
values,

If P denotes the vector space of polynomiais in XI”"'Xn+p

of . degree | '3, dt+is..easy to show by standard transversality ar-

guments that there is a Zariski open subset. U P such:that ithe

function
fq=(f+q) Xr

is a Morse function for any g€ U,

Moreover, if we have chosenalready &3> d> 0 such that
(1.2)‘ahd (le3)" hold true for any generic r e cP with Ir| ¢ § ;
thnen ther¢ is-an yz>o such that {ql( Q implies similar properties
Ferf

! _

Suppose now we have two polynonials qo,qle U -suchtnat
lqi[<yl. We canvdfiind & C“D—path q£ in U such that 9,.=4, for Ogtga,
q =4, for dsagtgl and ]qt|< Q for Bny t € @,1], where a € (0,1/3),

Consider the spaces

D=b¢ x(0,1) and E={(x,t) €X.x(0,1); fqt(x) eug}

and the proper map

¢ :E D, )= (E G0t
et o

If-ai(t) (resp,;i(t)) denobe: the.critical points (respscritical

values) of rq; forwlml,...,sfoDQ4‘PUXO), then we can stratify

the map f’as followus ([2], Chap+l), The strata in D are given by

§ e a0 o Lhie e, G A s
t.)l“ {(Ci(t)p'ﬂ).p t € (O,l); 1—1""FSJ and 1)3:::D\ Dl .



L d
The strata in L are given by

'Ef {(ai(tnt); e (0,10 i=1»~~v5}

= ¢ =i . ~
B, = {etiteo,n), x € (g | (g (EIVABR, ¢ 1=lyauasS]

= =i > -1 o o %
Bpneim {18 €001 % @1 1oy 8 N Ink Kiasorilats 151

B, =(3Xx (0,100 ENE,, )

o~

E2n+1=h \ the union of the other strata Lk defined above,

The lower index gives the xeal dimension of the stratum.
(fhese definitions work for ny 2, The simplér case n=l ds left
to the reader,)

The Whitney-Thom regularity conditions are obviously satis-
fied for any pair of strata,

By Thom-iather Second Isot opy Lemma ([ﬁ], IT s 105 « 80 e

obtain a cournwutative diagram

¢, %) g7t x(-))
£ ; oxl £
d, 4
v T v
D& AR > Déx(l"- <)

“ where €&(0,a) and H, h are homeomorphisms compatible with the
induced stratifications,

In particular we get the following result.



Lemma 1,4
The topological, type of the map .0f pairs

£.3 (£ (Dg )}, 21 (@) = (D

SRR q ) b

where C is the set of c¢ritical values of the function fq is in-

'dependent of the polynomial gqe€ U, [q1< Q o

It is also clear the independence of £he topological type
of the map above of the choice of (suitable) &, g'and ¥, Moreover,
if we change the function f to a function fl=f+k, where k. 1s a
function in the ideal (gl,,.,,gp) of the complete intersection X,
note that the distance ”fl*f ” 4 can be made as small as S e
by taking r small enough, !

Using a stratification argument as above it follows that
the “topological type of the map of pajrs in (k1) depends only on
the restrictien f|X i,e, on a .funetion in mx=m/4gl,.o.;qb), where
1nc:cr is the maximal ideal,

n+p
We shall consider throughout in this paper only functions
f61nx such that Xo=fnl(0) is a comﬁlete intersection with an
isolated singularity at 0),

The discussion below will also imply independence from the

defining equations gi=0 of X, and hence we can give the following,

Definition 1,5

The topological type of the map of pairs in (1,4) will be.

called: the nonodrouy man of pairs of the function féx%K and will

be denocted simply by

* #

£ (E ,EZ) sl L

This topological object is constant in rkwconstant families



in the following precise sense (compare to IﬁE], §9).
: n+

Let (Xt,O)C.‘(Qln p,O) be a smooth family of complete inter-
sections with isolated singular points at the origin such that
dim thn and fA(xt)zconst. for te[O,l}° Assunme that ftemXt is a
smooth family of function germs such that /L(le(o))=const,

Using the construction of morsifications and stratification
argunents as above, one can then show that the monodromy map of

pains of the fumcition ft is independent of t,

A special case of this situation is the following,

Definition 1.6 [l]

We say that two function germs fl, fzelnx defined an: the

complete intersection (X,0) are X (contact)-ecuivalent if there

is an automorphism u of the local C-algebra C& such that
(u(fl))z(fz), where (a) means the ideal generated by a in (7X"

Since the complete intersections X and X0i=f;l(0) i=1,2
have isolated singularities at the origin, the question of K-
~equivalence of fl and f2 can be Sett}ed in a jet space
Jk(n+pfp+1), via the action of a connected algyebraic group Géc
(the particular case when X is a hypersurface is treated in de-
gadl dm L El .

1t follews that (X,fl) and (X,fz) can be connected by a
f&wconstant family (Xt,ft) as above and we get thus the following,

Corollary lﬁ7 o . x

~

1Ff two.functicn gexms fl,fze Ty are K~equivalent then their

: * *
associated monodromy maps fl and f2 are the sane,



§2. MONODROMY EXACT SEQUENCE, EXAMPLES

* 7 : 3
Let £ :(E*,EZ)-4~(D,C) be the monodromy map of pairs of

a function f€m, as i

It HE BNG ang = (27 ¢

(b} ; then the lodally“trivial £i=
bration E*'\Eff“¢0\c defines in the usual way an action of the
fundamental o¢roup ﬂ::’Ki(D\\C) on the middle homology group

13 3 E 2 '-\»Q

Jn“l(F) of the fiber

Moreover, for any homotopy class w e T there is a well

defined homomorphism

S #
Tl P =B (B

called the extension along the path w, For a detailed construc-

tion and the main properties of'zw we send to ([9], (B d) ),
We capn define an actien of the fundementaligreolup &, on

the homology group»nn(E*,F) by the formula

G270 ' w:x=x+(-~-l)n-~l

d x
Gt )
where d is the connecting homomorphism in the exact sequence of

"

the pair (b LF)

iy o .

- Hn(E Wl sl Lo

(2 0 o rzn(zf’) (F) —> 0 ,

n=-1

If we consider the trivial action of T on Hn(h*), then this

exact seguence is a U -exact seguence, i,e, the homomorphisms i

and ¢ are T -equivarianty
St » ik o~
Let X (say equal to xr in §l) and xo (say equal to .
e i : S : :
Xpﬂf (b)) denote the associated Milnor fikers of the complete. in-—
tersections X andAAo.

The corresponding exact sequence



Y

2‘3 : ,:u e F o o d
( ) 0 ~¢Hn\x?—wvﬂn(X,XO) » hn_l(Xo) — 0

is isomorphic to the exact sequence (2.2) and via this isomorphism

we can transfer the JU -actions on the homology groups in (2,3).

Definition 2,4

The T -exact sequence (2,.3) constructed as above is called

theé monodrouy exact sequence of the function £

Exanple 2,5

If the complete intersection X is smooth, then the sequence
(2.3) becomes

~ e 9
0-—-90--7Hn(X,A' ) ——— H

o ln-l(Xo) e

and hence it contains the same information as the action of TU

on Hn_l(go) i,e, the classical monodromy action for «the<hyper-

surface XO . D

Put again s=}A(X)+r&(Xo)zran(g,go) and let C={pl’°’°’cs§°

We denote by wye’n the elementary path encircling Sy ({9} (610

and chose the order of these paths such that
V‘]S. es & "‘]l=w

: . a ; T
where w_ 1S the class of the patn wo(t)=bse2 P , 0stsl (we

assume here [b\).]ckl for any kel caerB) o

We recall from the proof of (1,1) the isomorphisms

]

~ Y

. e -1, "
Hn(A’Xo)szhn(E*'b):fgahn((i*) (DI £ B

%* £ : ,
since £ is a morsification, each of the last homology

groups is free abelian of rank' onher



We shall denote by4ﬁl,...,ZXs the corresponding generators
of the group Hn(i,go), which are precisely the thimbles of
Lefschets ([9] (BF2EP,

With these notations, the q{-actions in the exact sequence

(2.3) can be described in terms of Picard-Lefschetz formulas,

Liénma 2,6
Wm

n(n+l)

Cex=x+(=1) 2 (ax,aAk)Ak

For xe}%“X,xo):wk

n(n+l)

. e A R
For €. (XO). vy X x+ (-1) (x,aAk)aAk

~ -
the intersection form on Hn-l(Xo)“and

>,
=Y
o
H
(v
~—~
-
o
©
fa)
G
prs
o
6]

The second formula is theusual Picard-Lefchetz formula
(see for instance ([8], §5)). The first cne follows from (2,1)
and the formula for "Bv,givan in_([9], (6Tl ) ]

It follows that in order to determine the monodrony exact
sequence it is enough to fix a basis %éy} of the group Hh—i(xo)

and to compute with respect to it the vanishing cycles Blﬂi and

the intersection form,

As examples of this method, we give the description of the
monodrcmy exact sequences‘cf the R-simnple functions defined on
an isolated hypersurface singularity X with dim x zluwhich'wére
classified in ([1], §3),

In all these case

w

XO is an isolated hypersurface singulari-

tyofitype Ay for somne k and we can chose a distinguished Lasis

. Cad
of vanishing cycles {.Si}' for R 1(Xo) corresponding teo a



Dynkin diagram of type A, ([ﬁ], SV R

Moreover, using the stabilization of singularities :(i,.,e,
addition of a sum of sguares to the given eguation of XO as des-
cribed in.[é] (2,3)), we can aésume n=1 when we compute atﬂi o

The results are given below, without these tedious computa=-

tions,

Proposition 2,7

For the simple function of type B (m> 2) given by

i 2 Qe e = 3 : : b
A.hl+X2+;.°+Xn+l—O and f—xl there is a basis of thimbles le,g.,lxm
of Hn(i,ig) and«a vanishing cycle $ which generates Hn—l(g;) such

that-aéx = 5 BOY. ANV K= o aacde oI o
k N7 ¢ v

Proposition 2.8

For the simple function of type C (m-3 L¥. given by X:

m+1l

i s e o . . ; e ¥
Xlk2+x3+"‘+xn+1 0 anuhf—xlv+x2 there is a basis of thimbles
Z&o"'°’1lm of Hn(X,XO) and a hasis of vanishing cycles gl""’érn
= 1y g e = w PR
of hn—l (YO) such that 0 A s 51 Broe o b Jm and 04 " Jk for any

) o

k:l,,,,,me (Note that C2§§B2

Proposition 2.9

- P e3my s : + : . 3 _,"2 -,2 =
For the simple function of type F4 given by X.Xl+h2+u,,vkn+l

=0 and f=x2 there is a basis of thimbles zﬁl,,,.,ll4 of nn(Z,EO)

and a basis of vanishing cycles $ 62 ol Hn

17 (XO) such that

=i

/aAlzg '3A3=Jq

<

1 ; 3A2=2A4= dl+<{2 -

Remark 2.10

It will follow from the resulits in the next section, that
for n=3 (nod 4) the monodromy group Go(f) (defined in the intro=-

duction) is a symmetric group fer any R-simple function f, More



precisely

Go(Bm):SZ 7 Go(cm):Sm L GO(F4):83

On the other hand, in these cases the monodromy groups G(f) are
all® infinite (see 3.7 1i).

Therefore one cannot establish a simple connection between
these monodromy groups and the Weyl grouﬁsassociated o Bhe root

systems of'type B, s C, and F,

m

3. THE MONODROMY GROUPS Go(f) AND G (f)

Let (XO,O) & 0, 9 —quy(B,O) be aiirersal deformation of the

complete intersection X  , with a smooth base space B and let us
denote by 4 < B the discriminant hypersurface of F [3].
For a base point beB ~ 4 , the fundamental group

By

ﬁfl(B\Z},b) acts on the homology of the smooth fiber F pdb) m/gg

and we obtain in this way the monodromy group of XO

C (X )=im {fp(l (B\A,b) —> Aut H__, (io)}

This group is independent of the choice 6f the versal defor-
mation F .and of the.base point b (prcvided we take B to be a
small enough open ball in some @N).

Suppose we fix a morsifiéation fq:Xr~“~?€ of the given func=
tion f.as in (1.4). Then there is a versal deformation ¥ of Xo
‘48 above and a line € ‘in the base space B such that after a na-

tural- identification € o € we have a commutative diagran



-1
f D ~
,q<5) F (D&)
(31 i ;
q F
%

To obtain such a versal deformation F it is enouah to take

a system of generators of the C-vector space (‘JD+1/ iﬁ—'(‘] Pl
X o X X
o 1 o)
Yo S R 1) 99 2
—3—“5{—“_—'0')( (where (}; = Xl,..., 2 . £ yaeudneluding
ntp ‘o gy g 0% 0y '
the‘consfﬁant vectors e, .- ’ep+l and the vector (0,...,0,9) .

The set C of c¢ritical values of fq corresponds via (3.1)
to the intersection € N A and since f_ is a Morse function it
follows that all the points cke;f,f\[l are simple points on DAY
and that the intersection 6 L 1 18 transverse (situation deﬁoted
in the secquel by “{;fTIA o ([3], Po3ds : |
The number s of intersection points in @ f) By aiie e@pal
to the intersection multiplicity ([3,-@0)0 , where '£O is the

line through 0 &B with the same direction as "@ [lO].

Example 3.2

For the simple function of type B introduced in (2.7) one
2

can take F:(¢n+l,0) —s (C7,0)
m 2 2
F(K)=(X1+X2+...+Kn+l,xl)

Then the discriminant,-él is given#by the equation yl=y2 and the

morsification fole:Xr =yl corrgsponds to the line { 7y, Tr-



Hence in this case s=m , though /A is smooth at 0. It follows

that the direction {O:yl=0 is not generic with respect to the

discriminant, as mentioned in the introduction. U

The main result of this section is the following.

Propositioen 3.3

G, (£)=G (X,)

Proof

.Suppose that B is an open neighbourhood of 0 in CN ftor

some N> 2 and let h=0 be:the equation of the diseriminant hyvper-

surtace 4\ i B,

We denote  here byl3§ the closed ball of radius y centered

at nlf i @N and by da the lije determined by.a dircetion de P(@N)

and a point a€ B.

“The results of Hamm-L& [6] prove the existence of a Zariski
open set UC:P(@N) such that  for any,d € UAthere 1s.a f)o: ?(d)> 0
with the property that for any p with 0< §6jé tliere o 2 E%tao
3 §

o

such that the homomorphism

(3.4) T (BN B )Na,,B) = TO (BN A D)

induced by the inclusion is an epimorphism for any poimt ‘& with

0<{a‘\<@SJ amg T (B \A)ﬁda

L

We cannot apply this result to the line Z i fourRconsStE ruc=

tion above;  since 6 is nqtdin,generalﬁposition with respect to
the discriminant ‘& (3.2).

That is why we need the following.



Lemma 3.5

Suppose that the direction dEP(GZN) is chosén such that
doczf:A. Then there is SD ; 5} 0 such that (3.4) 1is an epimorphism

for any point & with  [al g 5 and da (T\A
Proof

Let ? » 0 be chosen such that

(1) BoN a_na ={o}. .

(id)e Ingide the ball BS)we have a conical topological struc-

tire. for A ;. d.e.

By By 2 T8 6. K
§ pl=CiSe

where S Tl K=0-08 ag. il b (210 ).
¢ =2l ¢ e

There is a connected open neighbourhood V of d in P((EN)
such that d’e V implies d’ NK=@.

We choose §> 0 small enough, such that déﬂ K= for -any
d’e V and any point a with |alg & .

Take now a point a with [a]( § and d_ (hA. Using a 1li-
near parametrization X’ s2(€ 70 »—»’r(da,a))we define the function
L]O =h z)-' =

Then xf is defined on a neighbourhood of 0€ ¢ which contains
the disc D:daﬂ BS) E1F g and 8 are chosen small enough) and
‘f —'1(0): {Xl””’xs} where the roots x; are all in D and have
multiplicity one. |

We choose now'a direction d’€ V(\U such that
(dO,A )O=m(A)

where m 68y is the multiplicity of the discriminant A at the
origin. Am-explicit formula for m(A) can-be-found: in {3], [lOJ

and it follows that m(_ﬂ) > (XO) with eciuality JEE XO is a

h o A \ 'u‘t ‘\ \ {,



hypersurface singularity.

Note that a path connecting & with 3% within V gives rice
to a homotopy ft:D-mu%m, 0gtgl of ¢ =P, With A the function
defined as above with respect to dé

Since the direction d"is figiat U, there is a §’> 0 and a

4'> 0 such that,for any a’ with 0 < [a’f¢ @', the corresponding ho-
momorphism (3.4) is an epimorphism.

Choose = . path: a(t) 18ts2in BJ such that ' a(l)=a, al2)=a’
with 0 < Ja'[¢0’ and dé(t)q\[l for any t. This gives rise as above
to a homotopy Tgt:D-m?ﬁ 18t<2. Sinece jall the functicns ‘ft have
only simple roots xk(t)'in Int D, we obtain in this way s paths
X (t),...,xs(t) for 0gtg2.

We choose the order on the paths such that xl(Z),...,xm(Z)
are precisely the end points within the disé Bs),ﬂ dé,c D;: where
m=m ({ ) (Note the identification Dc:dé(t)(\B ¢ for famyretit.

Consider the following commutative diagram.

i,‘n.‘
4

T, ( (Bf\ AN d D) -
7 b o
T

MTCI (BoaNalN D)
|

g

Wl((BQ\A\)ndér rb’) m(BS)\lf\lb’)

A
4 | |
L

Ty (BN B)NE, B ——=T (Bor\AbT)

The isomorphism Cy

s indliced~by a path in BS\A freomib i to
b* amd ?5 is obtain via the homotopy P

If'we denote by w%(resp.wé) the elementary nath in
D‘\{ki(£)(...,xc(t)} encircling the point x, (t) for t=0 (resp.

e X

t=2), then the left hand side of the diagram corresponds to

i., o 7
F(w’,...,w’)ﬁmm_ﬁ;~F(w’ SR .wwﬂw » I (W w )
1 m % AER Ty S L g

where F(al,...,ap) denotes the free group generated by al,...,a

b



This ends the proof of (3.5) and hence of (3.3). [

Corallary. 3.6

Suppose X is a hypersurface singulerity and let mzm(A):fMXO).
Then in the monodromy exact sequence (2.3) of the functien
(hp . to*a change of indexes) the vanishing cycl es 8k=aZ$k A R
form a basis of Hn—l(go) and the Picard-Lefschetz transformations

associated to the elementary paths Wy (k=1,...,m) generate.the

group Go(f).
Proof:

The proof of (3. 5) implies that (up to a change of indexes)
the images of Wy W generate the group Goff)=G(Xo).
The monodromy group G(XO) acts transitively on the set of

[ d

vanisiingicyelesidin Hn_l(’o) [41, (25 8y
Hence for any such cycle é‘ there is an element ge&GO(f)
such that 8 = 61 i

Since g is.:a product of Picard-Lefschetz transformations

associated to wl,...,wm . 1t follows that
S Z”<£l""’<(m>

~F
ite. é]f"" 6rn form a basis of Hn_l(XO). U
Finally we give some information about the other monodromy

group of £, namely G(£f).

Propositiom 3.7

(1)" There is an exact sequence of groups

0 ey QLR

vGo(f) e |

for some (€ Mwith O < ol £ k%) (X ).
S it



(ii) Suppose that XO is a hypersurface sinqularity and
o~/
the intersection form on Hn—l(xo) is nondeaenerate.

Then o« >’/J“(X) 3

If moreover the action of Go(f) on Hn—l(go) @0 is dpredu-

cible, then & Z/"‘*(X)‘/“(Xo);

groof

i e ¥ e T Ty 14

Put m—#(XO), m —/A,(X) and s=m+m’.
Using the exact sequence (2.3), we can assume (up to a
change of indexes)-that 5k= fe Ak (k=1,m)wformya *basis for

Hn~l(Xo)'

Then for any k$m there is a combination

m
Vk= Ak+i~glaki£\i such that /a vk=0

TR A .,,A the action of
s m

In the basis Vol 17
Wy on Hn(X, xo) is given by a matrix

We define an epimorphism S) :G(f) =—> Go(f) by associating
to an &xs matrix as above the mxm matrix in the lower right corner.

We 'geksthus ‘an exaect sequence

1 — kerp —> G1E) > G (f) — 1

where_KerSs is a subgroup in the (abelian!) multiplicative group

1 A\

of 'all the matrices



It follows that ker9C: Zm-m’ augl-ishia gdvesdis (L) oo
prove (ii) we assume the ba;b 6k chosen 2s in (3.6). Note that
the matrix Ak defined above is zero for kg¢m and has a single non-
zero row {that cerresponding ﬁo the wector vk) for-mckgs 1f-the
intersection form is nondegenerate. This proves the first part of
gy

Moreover, note that if

b

|

ve o 0o

Q'8 O

|
!
l
l“'“-— & kerg'

o | 1
\ | y

for some row vector u#0, then the same is true for the vector u-B
for.any]3eGo(f).
If the action of Go(f) on the homology group Hn_l(gé;C) is

irreducible, then it follows that
dun@l(u-B ;IBEGO(f)> =

Hence ker @ contains in this case m-m’ C-linearlv. indepen-
J
dent vectors and this implies the result in the second part of

(Gakai)e. B

Remarks 3.8

a. The condition about the intersection form in (3.7.11i)

s necessanyi.+ Bor.-astance,- I, £ .48 a simple function cf' type Bk

On the other hand, note that both assumptions in (3. 7 54
“ hold when X is one of Arnold simple hypersurface singularitdes

and nz3 (mod 4) ([12],¢8).
' 4s not the whodle

ISt s o R O

n - g ox K

7 8
mm
b. . In general the subgroup ker? oz

group, even when they have the same rank.

For instance, for a function of type By and n odd,

ker © =2“Zk~%:'ﬁk_l.
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