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EQUATIONS AND VARIATIONAL INEQUALITTIES
IN DOMAINS WITH GRANULAR STRUCTURE
by

Bogdan M.VERNESCU

Abstract. The present paper is concerned with some
variational problems defined on a sequence of non-empty, weakly
closed subsets of g Hilbert space, that satisfy certain properties.
The.solutions of these problems form a sequence that is weakly
convergent to the solution of a similar problem, ‘but with a supple-
mertary term. These results are transposed in the particular cases
of equations and variational inequalities. Some corrector results

are proved.

INTRODUCTION

The *first paragraph of the paper deals with the con-

vergence of the variational problems:

F(u,)= %n‘i Filaz)

R (v)%a(v,v) -(f.v >

where K., ‘are subsets of a Hilbert space, weakly closed that satis-

fy some hypotheses. It is proved that if u is weakly convergent

&
o

to uek, then U, satisfies:



G(u)=inf G )

vek
G(V)=F (v) +3(v)
where ¢ is a fgnctional that depends on K, and K.

Tnthe particilar case when K. and K are subspaces
these resultslwere éroved by D.Cicranescu {131. The remarks 1.3 and
1.5 intend to_stress the link between the hypotheses used in this
paper and the hypotheses used in the case of the subspaces.

The hypotheses (1.)-(4) and (1:)—(4:) are in ‘fact
direct consequences of the properties of K. and K. The uniqueness
of Pc and ¢ ’that satisfy ‘thcse hypotheses, for given K, and
%, are the resﬁlts of the theorems 1.2 and 1l.4.

The corollaries 1.1 and l.2:give some corrector results

that improve the convergence of he.

The second paragraph is concerned with the study of

the convergence of the generalized (Sobolev) solutions @of the

problems:

where A:D(A.) c H— H, AEZAHNAE)

positive definite operator. It is proved ‘that the-solutions of the

-

where A is a linear, symmetric and

above problems are weakly convergent toO the generalized solution of:

Au+ G iBy=f
i.e. a sinilar equation, but with a supplementary term.
In this paragraph we make use of the variational
caracterization of the generalized solution by means of the energes
tic spaces and of the Friedrichs' extension of a linear and positive

definite operator.



The examples make use of the functions W, and Jr
that are, for various domains, constructed in D.Ciordnescu, F.Mura:
181,041, The first exémple is concerned with the Dirichlet’s pro-
blem for p and the second one with the Stokes’ problem. The first
example was studied also in D.Cior&nescu {23 and, by means of the
energy method, in D.Ciordnescu, F.Murat £31141. In the second exam-
pPle the Brinkman’s law is obtained for the flow in a porous medium
with é_critical size bf particles; we obtain by this method the sa-
me condition for the diameters of the particles as the one in
E.Sanchez-Palencia €73 and Th.Levy Ce] .

In the first part of the third paragraph we study the

general result for variational inequalities of the type:

U, € K

al(ug,Vv=u) 3<f,v-y,>, for all v ek,

where Ke are non-empty closed convex sets and a bilinear, conti-
nuous, coercive, symmetric  functional; then U is weakly convergen

to v the solution of:

: Uek

a(u,v-u)+¢@'(u),v-uUd3¢E,v-ud , for all vekK

The first example studied is the one for the variation:
inequalities with strongly oscillating constraints.We obtain the
same results as those obtained by means of_the energy method in
D.Ciordnescu, F.Murat(3],{4].

The second example studies £he variational inequalitie:

with bilateral constraints.



1. FUNCTIONALS

Throughout this paragraph we 'will denocte by: Via Hil-
bert space, K,K ¢V non-empty subsets, closed in the weak topology

of V, a:VxV—*'R a Pilinear, symmetric, coeteiyve, bounded functional

and F VW — 1R the functional defined by:
) - .
F (v)—z-a(v,’v)—<f,v> (1)

where fe V'.

Remark . l.l. It is easily verified that F is weakly

lower semicontinuous and that:

lim F(v)= oo (12)
LIRVA TR )

Then:F- is bounded below and achieves its infimum on every K,. We

will denote by u, one of the solutions of the problem:

u, € K
S 9

A

F(ue)=in£F(v)
Ve
Ke

Theorem 1.1. If for every g there exists [3, 1K —R

and ¢: K—>R, such that the following conditions are satisfied:

(l) (l—pg)KCKC -
(2,) for each vekK, pev_x 0 in V weakly
(8% for each vk and for each - {w ]}, ¥ € R — Vv in ¥V

weakly, we have: o



Lim a(fv, v ) L-F (V)

(4.) for each veR lim a {f5v, Bvled(v)
E->0

and if-there;exists wekK such that:

‘-'.

—— )

in V. weakly (1.4)

then u is a solution of the following problem:

Ue K
{1.:5)
G (u)=inf G (V)
Ve K
where:
G (V) =1a (v,v) +5 (v) =<,V > 41 .6)
2 . iy e ; ;
Proof
Let o, be an element of V given by:
Ue =(1“P£)U+ Lg ‘ (1%7)
.Hénce, by (L. 5 ) end (1)
deg — 0 in V weakly (¥.8)
Using: (1.1) we get:
a(‘UE,\JE):a(U,U)"i'a(v(é, Ai)—-Za(ﬁ:U, UE)_ o
. (1a9)

—a(peo, peo)+2al £ ,0)

o
The functional a being positive and by using (3.), (4.) and=(l.8)

we obtain:



lim a(u,, v )sa(u,0)+4(0)
£-0

For all weK we define the elements:
We=(1-f.)w
Thus we deduclgz, &ak of (1. and {2.) -, Ehage
Wy == W in V weakly
1 we pass to the Iimitiins:
a (w‘E ,wz,.):a (w,w)+a(f5£w, péw)-2a (W, Bw)
we obtain:

lim a(w
=0

(W, ) ga (w,w)+ $(w)

Because w.eK_from (1.4) we-~get:
i, Je B {wet)

and by using (1.10) and {1.14) we obtain:

-]'.'a(u,())+}-¢(u)—(f,u)élim Bl eu)eldm = i Gy e
2 2 Frer: € £-0 €

1k
2

for all weK. Hence we have proved that:

Clo)=EnE Gw)
weK

£ = a(w,w)+—%¢(w)—<f,w> Vi

o

(1.10)

(Lo1)

(1:12)

(el 3)

(1.14)

sy



REMARK 1.2, If the hypotheses (1.)-(4.) areusatisfied

then for all veK:

lim a(p,.v, ('sgv):J_.?n a(p.yv, {zav)zgf?(v) (i.16)

€ >0 E£->0

Proof

For all vieK:

Ve BveK, , V=3V — ¥ in/y weakly

Then=by (3 :):

Hence':

lim  a(p.v, v-p,v)¢=-B(v)

lim  a(p.v,3,v)3¢(v)

and using hypothesis (4.) we obtain (1.16).

Next we shall improve the convergence of v,

Corollary 1.1 Trithe hypotheses of -Theorem 1.1:

U, —(1—ﬁt)u 0 in V strongly

Proof

+ e e s

If in (1.15) we make w=U we prove that there

exists  lim Filu. ) and:

£
E£=3Q
o

T b tus) = —%« abw, uy +;;_¢(U) kU )18 )

E~0



Hence there exists also:

lim a(v,, u,)=a (u,u)+@U) (1.19)
&0

Erom (1.9) and “(1.16) wesxget:

Q0 a (v, Jldm Al <=2 #R5) (152107
Pc & & &

E£~>0 E-x0

From (3.) and the positivity of a we have:

0glim a(xg,«.)sizﬁ a(ag,« )<0 (1 2.05)
£ E EHQ € ;

and hence 4 is strongly convergent to® zero in AV
In thHe following theorem we study the ﬁniqueness of
the functionals ¢ and the gquasi-uniqueness of the operatcrs (3

that satisfy the hypotheses of Theorem 1l.1:

Theorem“l.Z. If there exist alsc>5} :K—>V and

Y :K— R that satisfy (2 Jeclhia)s thens

~a) ¢-_—-q’r

) - Lim Y (ps—g;)vn =0, for all wvekK
E=50

Proof

Let veK. We have:

(l—‘6'£)‘v'€K€, (1= {E);/...:-v in V weakly.
Thus:
lim  a(pv,v=-§v)§{-g(v) (1:22)

and by using (2. ):



- lm a(pv, £v)¢-g(v) L2
&0

In the same way we prove that:

=-Liin a(iﬁy&%vﬁg—wﬂv) (1224

From the last two inequalities we deduce that:

%iIg a(ﬁev—gvl P£V~5;:V)£O

and thus we obtain both statements of the theoremn.
The following remark intends to stress the link bet-~
ween the hypothesis (3.) of Theorem 1.1 and the one of D.Ciordnescu

EAEN

Remark 1.3. If.RKsand K, are subspaces of Vv, then the

hypothesis (3.) of Theorem 1.1 is equivalent to the following:

~ for €ach veK and for.each {m@], Wwee Koy Wwes 0 in V weakly, we

have:
lim a(f3v,w.)<0 ’ L1259
E£-0 ({é 2
Proof
For provihg the necessity we define Ve s by:
Ve = (1= )v+w, _ (1.26)
Thus vy —> Vv in V weakly. By writting that:
lim a (v, % )&-¢&(v) (12T
£-=0 ¥ ‘

o«

and using (1.26) we obtain (1.25)%

The sufficiency can be proved in a similar way.



S =

The next theorem is an alternative to Theorem 1.1.

Theorem 1.4. Let W c K be a dense subset. If for every

£ there exists a continuous operator [, :K -V and a continuous
functional ¢ :K =R, such that the following conditions are satis-
fieds |

(LY ISGT-EUTEER;
 (25) for each veX, Py —>0 in V weakly

(37) for each weK, and for each tywkcyd Yy =V inN . strongly;

for ‘each |V, pekK NV ie= N in V weakly, we have:

1im lim  a (@, ., V. )<~ ()
Q‘")O &0 (g_w" Ve ?{

(47) for each veK, lim a(p.v,(v)<@(v)

E-20

- and if there exists ue K such that:

Ueg = U in V weakly (1289

then U is a solution of the problem (1.5).

Proof

There exists | gﬁqgcmi so that:

Yoy —> O in ¥V strongly (1.29)

Let <i£ﬁ be an element of V given by:
U, =(1-[3£),gy‘+ Ley ' (1.:30)
Hence:

alu,og)=aluy,ey)+al,, 457)—2a((5£ Ly V)

-a (53;8‘], (3[ _\_)_11)+2a(!’(£@i,‘;‘~\]) (1- 31)

P

We deduce that:



- 11 =

oy 2l e palugyp,)=2 10 alpyoy vg)-
=P (uy)+2a(

and hence, when v tends to zero, we get:
1im a(v,,u.)za(v,0)+¢ ) (l.33)
E-0
If weK, there exists {yg,]} ¢ '} - so that:
Wy — W in N strongly (1.34)
We define:
w5.1?=(l—[3£)\_r17jz {1.35)
and we observe, by (1[) -and (2%{) that:
We, —> wf,i inV weakly, ww € K. ' (1.36)
Thus:
%irr; a (v, Ve, )sa(yﬂ,w\?‘H;ﬁ(w.‘) (1.37)
Because of (1.36) and (1.3) we deduce that:
F ((ag) <F (v, ) (1.38)

and by using (1.33) and (1.37) we obtain:

et~ Zeeld iy e

_—Z‘a(U’U)Jr?%(U)‘(f’U)sl;fg F(UE)S%%F}, Fug) £
o = e ~ 1.39)
< ga g W) odla,) <f,v_v,]> ( )

&

By passing with "1 to the limit we prove that:



= 12 =

Glu)= inf G(w)
wek

The proof of the following remark is similar withisthe

one of Remark 1.2, if in (31) we take 31= v for 2llL vk

Remark 1.4. If the hypotheses (L:)=-(4%) are satisfied,

then for all el

1im  a(p.v, (v )=lim &z ({3, v,(v)=pv) 1.40)
e = T pov) =Pl g

Corollary 1.2. In the hypotheses of Theorem 1.3:

lim 1im { o, - (1=p. )y =lim "Limlu~(1-pIu, 0 =0 (Tl )
=0 £ =0 & . 1 -1]->o £~ 0 ¢ ?’E 1 (i
where i;ynﬁcfk Yy > U in \[ strongly.

If ye'K then:

Wis -(1—-p@ L =% 0 nV sStzenglys

€

Proof

If in (1.39) we make W.= Yy, by passing with i tothe
)

limit we get:

llm Fluy ):}‘}_{1} F(UE):%a(U,u)'i-—%(f(a_;)““(f,U} (1.42)
£€->0 €0
and hence:
Lim  a(u, v,)=a(o,0)+du) U f.43)

£-50

Next we deduce from (1.31) and from the hypothesis (312

that:



- 13 -

P——

lim lim a(acﬁ.w,aab)éo ; (1.44)

4~0 £-0 | ;

Thus, using the positivity of a, we obtain (1.41).

We shall state next the equivalents of Theorem 1.2 and

of.R_emark 1.3 in the hypotheses (17)=(47F. The proofs are similar,

Thaoren ¥.4. 1f there exist alse ¥, :K —V and W :k R,

that satisfy (17)-(4!) then:

) g = Ty - (1.45)

b) dim. W@~ 3l =0 for all v.&H ‘ (1.46)
€0

Remark 1.5. If K and K, are subspaces of "W ; “then~the

hypothesis (3!) of Theorem 1.3 is equivalent to the following;

- for each ve K and for each {Y‘T} K 4V v
in. & Streongly; for each fw,}, . & K, , W, =0 in N weakly,
we have:
lim lim vy W, )g0 1.47

Remark 1.6. If K is a closed subspace of V ,

B¢ € KL, ) reap. S_n(ﬁgil} bounded) and the hypothesis (4.)
(resp. (47)) is satisfied then: '

a)  there exists a bilinear, continuous, positive and simmetric

e

functional ¢ :KxK —>R so that:

j Lo 6F 4 .
lim a([}(v,(Bew):Q’J(v,w) (1.48)
E->0 : '

b) 4) is continuous

c) there exists Be¥(K,K) so that:

N

¢ (v,w)=(BV,w), for all v,weK ; (1.49)



Proof

Because:
al P L) =5 (8 (pelomw), P (r=w) )+
+a ( B (v4w) 4 By (v+w) )

and because there exists (in both cases) the limit:

lim a((%wy[%v), for all vek
£0 )

we observe that there exists the limit:

1im a(fgv,ppd), for all veK,wekK
E-0

Therefore we define’

i .
lim a(»pév,ﬁ{w)-——gz{(v,w) (e50)

o =
Tt is easy to prove that ¢ is bilinear and symmetric. For proving

the continuity we observe that if ¢tand M are the positive constants

given by:

-

balrw st et dw i, WP Viges € 1V el

then:

o~ 2 )
Vo (Wl eMc” WV i (1:52)

Observing that in order to deduce (1.10) and (1.33)

we have used only the hypotheses that e and that u, 1is

weakly convergent we can state:

Remark 1.7. If the hypotheses (l.)—(4.)'(resp. (11)-(4%))

are satisfied then, for every [ka that. satisfies:

@



MoK, v = n N ekl (1053

we have:

lim a(v,, v )2a(u,u)+¢(v) (1.54)
£->0

2. EQUATIONS

2.1. General framework

Throughout this paragraph we will denote by: H a
Hilbert space; © (A)c¢H a dense subspace; Eﬁ:H closed subspaces;
Q(Ag)cﬂ)(A),Q)(AE)c:H€ dense subspaces of Ha; A:2XA) — H a linear,
symmetric and positive definite operator; AE:ZXAZ)->H£,

AE=A/®(A€5; foan element of "H; f the projection of f on H,

3

(i.e. (fE’U)Hz(f'U)H for “rallwel ).

We will consider the energetic spaces:

Hy the completion of D (A) with respect to | .

Hy

H, the completion of (A ) with respect to il
€ Ae

where we have denoted by:

a;v) =(Av,Vv) for all v nved (B) - (2.:1)
Hy i
(u,'\i')}_TA =(A£U,V)H farall U,Vé@(AS_) (2:.2)
€

It can be easely seen that:

(U,V')HA =(uﬂﬂ¥t for all u, veD(A.) (2.3)
&

< ; (2.4)

“U"‘HM:"U”HA‘){“U“H

= R
(where # is the constant from: (Au,v)H 2 Bt il )
We define ¢ :H, —H in the following way: if
ve H, there exists a sequence { v ) ¢ D(A) convergent &0 u; hence

{uhl ksEawCauchy sequence in . i JI\HA : fromr(2.4) we deduce that
iUniiS a Cauchy sequence in ]l.iH{ and hence there exists u,€ H

thelimitelinal - of. L vl ;i we define W(wl= Y.

4
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Tt can be proved (Dinc&[5]1) that ¢ is a linear, con-.
tinous, injective and dense imbedding of HAAinto H:,
In an analogous manner we define $, ! H, - H,
; £ .
the linear, continuous, injective and dense imbeddings of the ‘ener-
o 5 :
getic spaces hA into Hi'

€
Using (2.4) we prove that:

B By and f{= flii )
& gy €

We denote by G:H —>HA a‘linear, bounded and injective

operator defined by:

Gi—u; LoEer all  fell (2.6)

where "y, #is given by the Riesz Theorem:

(plu) , £)g= (v, 05) g , for all QEZT{A (2.7
A

and in a similar way Gg:HEonAa.

. We consider the problems:
Apl=ttee (2.8)

Bach of these problems has a unique generalized (Sobolev) solution:

U, € M B . 4

It can be prdved (Dinca 151} «thateu, L& theschassical solution of the
equation:

—~
A.u=f

2 (299

o

£

whiere A, is the Friedrichst“extension of Ae and is giyven by:



-

g = : onto
A, el ) e (G ) gl s i (2.10)

Theorem 2.1. If for every & there exists @gelf(}%.fi

and ¢;!{A-QXR# that satisfy "the hypotheses (1.)=(4.) (resp.

(Li)=-(41)) (with v=K=H L andar

A’ ¢

R(B) & R(G) (i 11L)

(B given by (1.49)) then the generalized (Sobolev) solutions of the

problems (2.8) satisfy:

;, in H weakly (2:1.2)

where y 1is the generalized (Sobolev) solution of:

1

Au+G ~Bu=f 2 3)

Proof

Wercongider the “functiomal Erly, =R

e e e L
Fe (v)=5 NVI;HA (P (), £, )
£
=1 o
5 “v-“Hu (L{’(‘v),f)H (2.14)
: €

By the fundamental variational theorem and the inter-

pretation of the generalized solution, if .UEO is the unique solu-

tion of the problem:

Uio € l-l'f\ﬁ .

Fs(U£o3= min E} (v) : (2159
Ve i N
A
then Q;={(u£0).From (2.15) we deduce that: : %
0 Gy AN
Mowal 1972 AM



g

A
11ugoltﬁjx £ " lLE“R

(2415
Consequently there exists a subsequence Sl UEO} (denoted. by
iL&)o} weakly convergent to an element of Hyt

(8]

gy o e , in H, weakly (2oLY)

By Theorem 1.1 (resp.l.3) u, is the unique solution

of the problem:

L H?\.
G(u,)= min G(¥v) (2.18)
VeH
A
where:
6 (v)=5a (v,v) +3$(v) = ($(v) , £) g 2ag

The weak convergence oOf {k@og results by the uniqueness of U, .
If we denote by u=¢(u,) then by the linearity of ¥

and by (2.7) we get:

(?(Uio)-$(uo),W)H=(Lko—uo,Gw)HA (2:20)

or all wel, and herce:
U, —> U , in H weakly (2:21)

We shall prove next that u is the generalized solution

of the eguation (2.13).
From (2.18) we deduce that:

P

(uu+BUu"Gf/V)H =0, for all vell, (2.22)
A



Therefore v i1s the classical solution of:

G‘l(I+Byf'ﬁj

Il

E t2x 23]

We shall prove that Cfl(J‘HrB)xf?"1

1

is the Friedrichs’

extension of A+G “B. We define on D(A) the following scalar product:

(v, W)y AVQW)H+(G~leyw) (2.24)

A+G-1p7 ( H

Hence:

(.er) =(V-IW)H +(BV'W)HA - (2.25)

HA+G—lB A A.

Then if we denote by H the completion of 2(A) in-‘the norm

A+G~1B

given by (2.24) because:

i v qu LWV HZH é(MC2+l)‘\V né 2 (2526 -«
A A+G-1B A

we obtain:

HAEHA+G_1B (2 .27

If we apply Riesz Theorem, there exists G:H— H, so that:

A
(gGv), £) . =(v,CE) =
. Hrgerls
—(wGr). By, CEl =lv; (I4B)GE) (2.28)
A A A
‘Usiﬁg (2.7) we get:
Gf=(I+B)Gf , for all feH . (2.29)

and hence the Friedrichs’ extension O A+G_lB o



P s

A+GE 1

B (§08) "t=G™L (T4B)p ™" (2.30)
Therefore u is the generalized solution oI A 25 158) %

The following corollaries are direct consequence of

the linearity and continuity of ¢ and of Corellary 1.1l and 1.2.

@érollary 2.1. If the hypotheses (1.)-(4.) are satis-

fied (with V=K=HA, KEL:HAE) then:
e (1- B¢)vs = O , in H, strongly

UE‘\)*(TO(3£°‘f4)U —> 0 Hin Hiasbreongly (2,31)

Corollary 2.2. IEf the hypotheses (12)=-(4%) are satisﬁied

(with V=K=HA, K£=HAE) then:

Lt - damEl -(1- =1im 1i T o Wi
e Teme R R

s = s =l =
el e alieds T L e

= 1lim lim “UE—E1+(¢of%c?—l)gv‘“H:O
4‘]-?0 £-0 :

Remark 2.l. Hypothesis (2,11} is in faelk equivalent

withithere: exists a lihear operator C:HA~+ H. “so that:

$ (v, v)=(Cu,9(v)) , ‘for all w,veH, (2.529

where c=¢"1s.

2.2. Bxamples
: 3
Let g be a bounded subset of R and, for ‘every & , 13
closed subsets ofs, leieN{e). We define:
A Nlgy

L = =) TRy (2.34)
131



We suppose that SI£ is chosen in such a way that

there exists wg and I that satisfy:

(HO) Osw« 1 aties it
(H1) wee H ()
P -
(H2) w€‘=0 en T, , leieN (&)
(H3) - W], 0 1t () weakly
X

(H4) - e Wy

foreach v and Vv that satisfy:

€
V, —>V, in H'(a) weakly

(H5) £
U on 1<i<N (&)

and for every ¥€2(n)
== L s P> st I-Ig(n)

< —aw NS
e St iy

(the existence of such w, and = is proved for various Toratiic

D.Cieoranescy, F.Muratl3l,141)..

Example 2.1.

The first application of the previous theorem will be
for the-Dirichlet problem:
e | =
o H (0]

=A =f in pe (2.25)

wheré féLz(ﬁ). This problem‘was also studied by ;P.Cior&nescu {2 ]
and, by means of the energy nethed, in D.Cioranescu and F. Murat
{3),0{4). In the latter it is proved a corrector result which will

be found again as a consequence of Corollary 2.2,

Theorem 2.2. If v, are the unique solutions of (2.35)

then:

of

b = in JE aieakly (2.36)



=

where v is the unique solution of:

U e H(a) (257

—Au+ﬁu:f Qe s

Moreover:

W SR e o=l Wi’l(n) strongly (273 8)

Proof

We shall prove that the conditions of Theorem o
are satisfied with:

H=1.% (n) , Q (&)= {uec? ()/v, =0}, a=-a

H,=L” (25),9. (8, )={vec? (58) /Y, e =0} (2.39)
g =(1-wg )¢ for all 9eX=D(n)cH! (@)

It is obviocus that:

f‘HA=H% (@ H, =H3; @)y, =ia. (2.40)

The first two hypotheses (1!) and (2%) are obviously satisfied and:

e E o iom (@E }Z,‘ SV =G pbe Ay (2.41)

- e ro
M=30 €0 Hln) T, H,y W)

for every {'yn} D) , =77 Hin Hl () strongly and
v. € Hi(af v —vV 1e HE (=) weakly, and also:
lim B, | SRR LSt i e (R

We observe that:

¢ (uv)=(uov) (2:43)
L )

hence G 'B=j and this yields (2.36).



i e

EE {Q.n} e 9 (g - so-thar w5

: 1 ; :
in H, () strongly, by (2.32) and by passing to the limit in:
o, - = g < U, o + =
o) e =1 Ay £ 1 "‘13'1(&.>
wesgeki(2, 37 ).

By Remark 1.7 we can prove the following lemma:

: ety
Tomlias 2. k. EF {‘v_} cH,(a®) so that

— 1 2 g .
N v in HZ () weakly, then:

e T ;
<F\'\'! > S 11(2-44)

— 7
imyv, B i’ :
s N2 ;WO'(ﬂ_)

£4s . e
E90 ]"-0 ()7—) .Ha(-n')

Example 2.2.

We shall study next the Stokes problem:

& i
v, e (m:(a9))", p.eL? (o
=Av-=F - grad p_. in .0° (2.45)
dilivev. =0 Lnoat

where fe(Lz(ﬂﬁ)fq. By passing to the limit we shall obtain a Brinkman’s

law.

" Theorem 2.3. If v, ,p, are the unique solutions of

(2.45) then:

Vo o= 7 b (H%uﬂ)n weakly (2.46)

0'

Where v . p-are the solutions of:



- 04 -~

[ vetulian  pett@)
~av+pv=f-grad p in Su (2.47)
divv=0 1R

Proof
=G 1); Vi o = }
We denote by h={we(Hc(n)) / div w=0§.

The equivalent variational formulation of (2.45)5is:

(‘@’W)Hﬁ(ﬂ)z(f’w) , for all weE (2.48)

Consequently if P:(H}(Q))“—éE is the projection opera-

tor of (Hl(a)f1'onto E, then ng\g, where U, are the solutions of

(2535
We denote V=Pu. Therefore by Theorem 2.2:
V, =V in (Hi(@))" weakly (2.49)

Because U is the unique solution of (2.37) then:

whpu,wa=(£,w) © ; for all we(HJ;(Q.))V1

(u,w
(v, %quu) (L2 (2) )"

and hence v 1is the unique solution of:

- (v,w) y\+<pu,w>=(f,w) S for-all weB

(! (a)) (L2 ()"

Therefore there exists pG(LZ(a)f‘ sueh-—that™

-av+pv=£f - grad p . ' (2.50)

Remark 2.2. We obtain, by this method, the discussion
S =

concerning the critical size of the particles for: which Brinkman’s

‘law occurs (see also E.Sanchez-Palenciai73 and T.Léwy{61). For instan-



ce if n=3 and if we denote by a, the diameter of the particles,

in order to obtain Brinkman’s law, we must impose:
3 :
do e g (.55

3 VARIATIONAL INEQUALITIES

3.1. General framework

Let Tk, Kgc V be nonmempty, closed, convex subsetd of
the Hilbert space V.
We denote by U, the unique solutions of the following

variational inequalities:

Ve G.KSL | : (3.1

Bl ol v Uy, or ala R a

We want to study the convérgence of {%d} when & tends

torzore, i f e satisfy the hvpotheses of the first paragraph.

Iheeorem -3 1. If for every & there exists a continuous

operator (3.:K =WV and if there exists ¢ :SpK — R, a continuous,
Gateaux differentiable functional on K, that satisfy the hypotheses
=N reep (L) =64l ) and it

(5.) every weakly convergent subsequence of [‘k} hes its Yimit in

K, ‘then:
Pe = in V weakly (3.2)

where y is the unique solution of ithe variational inequality:

o

[UesK , (253

a(u;v_u)+<¢'“g,V-L02<f;v—u>, for all veK



S

Proof

We shall prove first that {u,/} is bounded. Let veK

(Fesp., vel ) and:
Ve =(1-f)V : (3.4)
Then, by ‘the hypotheses cf the theorem:
W R e in V weakly (3.5j
By writting the variational inequality (2 L) for W—~_ we get:
W R e G e | (360
and hence, from the coercivity and boundedﬁess O et

FEhu ih € Moty W Vedy 0B (o iy e rg) (3u7)

Using that {Wv,} is bounded we conclude that™ F o |
is bounded too. .

Then there exists a subsequence of iu{kweakly conver-
gent to an element ueV. By the hypothesis (5.) wer get uekK.

Beecause u . is “the unigue selution of (1 3] oy

o

Pheorem 1.1, (resp.l.3), we obtain that uiis a soluticen ‘of:

e o
(3.8)
Gluy=3inf c@&)
veK

wheie G is given by (1.6). By Remark 1.6, we deduce that u 1s the
unique solution of (3.8). Consequently we get (3.2) and also (853

by equivalence with the problem BB



LiaY

The follewing corollaries adre obviousiconsedquences

of Corolilary A1 and Corollary 1.2

Gorollary 3.1, If the hypothescs (L=, ) are sabic=

fied then:

U, =(1=03)uv=0, in ¥ strongly (B9

Corollary 3.2. If the- hypotheses: flL)=14%) care- satiis=

fied then:

T T vl S0 s Y R =B el B, =0 (3.10)
M=30 £ =0 . e TV Mo £~>; - Peieiy

e

(where {gwkcﬁ{ sy Y i N istrongly) -

3.2. Examples

Example 3.1,

The example that we shall study first will be the
example of the variational inequalities with strongly oscillating
unilateral constraints. This example was also studied by D.Ciorépescu
F.Murat31,(41, we will obtain the same results by using Theorem 3.1.

We define the following closed, convex sets:

g e M0} wew ace. ina) (Bl

Be b i Wl ) ey eees inand (3.12)

where 0 is a bounded subset of Rﬁ and. ¢ is @& measurable function

defined on. 2 and:

o«

W fani i b
Ve = 6 , St . » (3.‘13)
5 X



=g

{ oS and Ti are defined in the paragraph 2.2). We suppose that K is

non-empty and that

K = rn D40 (8.04)

is a dense subset of K. We take V=H1(n).

: ThHeorem 3.2. If feH-l(ﬂ) end v, are the unique solu-

tions of the variational inequalities:

'UE [ ‘KE
(313)
} ( rad rad (v—-u,) 2¢<f,Vv—- U, > ; for all vekK
)g Ué-g Sl v 3 1‘{.{}{:{9.,.) e
o
then:
U, > U , in HY (a) weakly (3.16)
where U 1s the unique solution of:
U _
sk (3217
j grad\J.grad(v—u)—<pu—,v—lJ>2<f;v—\)>
4l :
forall ek
Moreover:
+ 4 : ;
Ve —> U in H} () strongly B8

senily A =g Wl’l(ﬂj strongity - (3.19)

Uf; =

Proof

We shall prove that if we defime the operators (3, in

such a way that:



ny=(—l+wg)f— » for every ve X (3.20)

and extend them over K by continuity then the hypotheses (1%)=(47)
aressatisfied.,

The first two hypotheses are easilyswerified,

In order to prove the third one we observe that fomw
every [yﬁ} c K » ¥y >V  strofigly and for every iv.}eck, M =%
weakly;vwe get:

5 grad {3 Yo gradd v, = - S grad ¥o cgradv, + <8 W, N B
. S

= LT ST e . & s o PIT b Xis
T S Ve JTad W, -qfad Vy '+ S B Ariadiry sgnad o
SL

and hence:

. L 2 -~ i ¢ iy
dbabimpasilat g S Q‘)"fac‘l s"ai_ \_1'1] . 3\1’;“( Ve m KO LNV S e S S \ﬂrc\c( VT ¢
~!—>D E0 g ol

g € pm WL R (3.22)

it gt ey

In a similar way we prove that for every P e XK

: B % = = >
sl:&l:g él_ bgrad B, 08" = << 9T, e 1wl ul n) (3.23)

Hence the functional <¢ is defined by:
U] =— € WNINS  por a1 ek (3.24)

¢ is Géteaux differentiable and (D.Cioridnescu, F.Murat131, {41 lem-

mawds2) %

&

We prove the hypothesis (5.) by observing that:



T gt Ly a.e. tn AN (@t26)

and by passing to the limit.
Thems- from- (352) -y <is weakly convergent to u , where
U is the unigue solution of (3.17),

Bypassing to the limit inm the inequality:

3 % v - J : 5 :
e -0 - e 3 U ”n&&gn)é i Ug =By AW unl aa ) 7
BT G howr (U7 - 24)
Yy wgl‘l(_ﬂ_)* “ \NE: (\U L_)‘"}) “'\a&'("vl‘:l(il) (3-27)

and by rvittue of Corollary:3i2.wWe get:

Ue =0 + (-1+w ) U —>0 ,in Wi'*(a)Istrongly . (3.28)

We observe that because o c¢¥X, we get Og €K,

- 95
) GI{o(fﬁ). Thus, by Remark 1.7 and by Lemma 2.1, we obtain:

Nl ) o .
Lim W, ”th) 2SR (3.29)
€-e

il e | -2 ] )
Ei}ﬂo U i i H-Z. ) = KU i H}uv.) e OFSy (3% 30

Telking lnto account that it v, are the solutions of

thle varciatienal*finequalities (3.15) we get (1.43), then it results

#hat in (3.29) and (3.30) the limits exist and the ineguality trans=

forms into equality. Hence:

W == 9 ', EI0 H%(ﬂ) stfongly (35:318)

and frem. (3.28) and (3.31) we-get (3.19).

¢

Example 3.2.

We shall study next the convergence of the solutions

3
e RSy R s (R



of some variational inequalities with bilateral gonstraints

We define the following closed, convex sets:

K :{veH% ()0 cvegwa.e, in _ﬂ_'} (3.32)

Refvenmtane )/ ogue v imep ah S (3.33)

where L ke e measurable function defined on the bounded set fic Rn.

We suppose that K is non-empty and that:

K = Knd@) (Gaa)
is a dense subset of K. We take V=H? (q)
i

) and 4, are the unique: solu-

Theofem 3.3 If feH .

tions of the variational inequalities:

("

e K.
: = (3%.35)
53&\& Ué*'jiac:fﬁvf-‘é) B Proe R e ald-SNae s
£ i
<
then:
U, == » in H ' (g) weakly  (3.36)
where o is the unique solution of:
uek
- - L : (35 3%
j JEadin 3R BV s Ul =g M vdv s e e nnaugs
S

for “all —vekK.

Moreover:
o

Ug =W, L — 0 i ohliel Wi’l(-ﬂ—) strongly (3.38)



Egoof

We define (¢ in the following way:
o= (1ol o ifor il @ e (339

The first two hypotheses are obviously satisfied.
In order to prove the hypotheses (3!} and (47) we obtain
the same results as in Example 2.1; hypothesis (5) -is -also satisfied.

We define:

g(ur) = <pu,us ,for allueSpK (3.40)

sl s
Ko 0sD

and hence:

i
TaE v s O R R SRS S
b e ity

Th~ conclusions of the theorem are thus immediate.

Acknolegements. 1 am deeply grategul to Dr.Honia 1.Ene
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