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APPLICATIONS TO THE RELATIVE
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by
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Universitatea Bucuresti : =
Facultatea de Matematica
Str. Academiei 14
R 70109-Bucharest ‘1, Romania

The classical Hopkins-Levitzki Theorem states that any right
Artinian ring with identity element is right Noetherian. Usually
this Theorem is proved by the methbdlof factoring through the nil-
“““potent Jacobson radical of the ring. A proof which avoids the con-
cept of the Jacobson radical was first performed by Shock -{1] ; he
obtaine also necessary and sufficient conditions for-an Artinian

module over a ring not necessarily unitary to be Noetherian.

The relativization of the classical Hopkins-Levitzki Theorem
with respect to a Gabriel tépology was first . proved im the commu-
tative case and conjectured in the noncommutative case by - Albu and
Nastasescu [1 ; Théor?me 4.7, Proﬁléme 4.8]. The noncommutative .case
~of dhe velalive Hépkihs~Levitzki Theorem was first proved by Miller
“gnd Teply [1] . However, their proof is long and complicated; another
module-theoretical prdof of this Theorem, also hard, is available
in Faith [1]. A different way tovapproach this Theorem is to frans—
léte the module—ﬁheofetical relative ehain conditions ocquring in
fits statémept in absolﬁte chain éénditions'in a suitable Grothen-
‘dieék category, and to prove thus a general Hopkins-Levitzki ‘Theo-
rem in sﬁch a category; this was done by Nastasescu [1]. Anpther
short proof of this general Hopkins-Levitzki Theorem in a Gyxothen-

dieck category is also due to Nastasescu [2], and is somewhat simi-
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lar to the one given by Shock [1] for modules over Artinian-riﬁgs
not necessarily with identity elémente :

A discussion on the various forms of the Hopkins-Levitzki
Theorem énd the connection between them may be found in Albu and

Nastidsescu [2].

A short noncategorical proof of the relative Hopkins-Levitzki
Theorem does not yet exists. The aim of this paper is to giveisuch
a proof by placing the Hopkins-Iavitzki Theorem in a latticisl set
ting; moreover,we shall obtain even two different proofs of this
1attice~theofetical form of the Hopkins-Levitzki Theorem. Our proofs
are inspired by some ideas of Shock [1] and Nistdsescu [4], 2], @na
are based on the concepts of length and Loewy length of an upper

continuous and modular lattice of finite dength.
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0. PRELIMINARIES

Throughout this pape“ L. will denote an upper continuous
and modular lattice. The least (resp. greatest) element of L
will be denoted by 0 (resp. 1). The notation énd terminology
will follow Stenstrom [1].

Recall that a non-zero element g of L. dis an atom if
whenever b el and b<a, them b = 0. The lattice I is cal-

led semi-atomic if A .- is a jein of atoms; L is called semi-Arti-
- M

nian if for every Xx€L, x # 1 the sublattice 1l of 0 vons
tains an atom. As in the case of modules, it can be shown (see
e.g. Nastisescu ) et e seml—atomlc lattice then

by ds complemented, and for every X, YEL with x<y the inter-
vl .y of T dis alcoin semi-atomic lattice

The ascending Loewy series of 1I:

s (Dl )iz S5(1,) (B) | (%)

. 1s defined inductively: 5 (L) = .0, 54(L) = So(L) where So(L) is

the socle of T, (i.e. the Join of all atoms of L), and if the ele-
ments SB(L) of I have been defined for all ordinals B<w ,

then we set s (L) = Mg 6B P etiiaa Eimit ordinal, and

Sd(L) = So([sf(L),1]) if «= ¥+ 1; A(L) is the least ordinal A

such that SA(L) = sa+1(L): fhie oRdinab s (L) is the“Loewy length
of L, and it exists always because .L is a set; The intervals
[sd(L)9%*+1(L)], which are for.each_cx<i(L) semi-atomic lattices,
are called the factors of the series (%). As in the case of modules

it-is easy to show that‘ Li idsaa sem1~Art1n1an 1attlce if and only

i SA(L)(L) = moreover, for such a5 lattlce So(L) is an essen-

tial element of T, (see e.g. Nastisescu (3]
Reeadl that in the sequel L will always be assumed upper

continuous and modular,
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0.1. LEMMA Let x,7 €L be such that x<y. Then
- = -
s ([0,x]) = s (LO,¥y])Ax

for each ordinal <« .

Proof. The lemma holds trivially if «= 0, so assume it

holds for each ordinal <« and proceed by induction. For the

ake of brevity denote sﬁ([o,x]) = X, and sB([O,y]) =y, for
each ordinal Bgd.
If o« is a limit oxrdinal, then
B = \/ Xp = \/(y/\*( ) = (V3 B)/\X-—-y‘x/\x.

B<L 3¢ BLk
If o« = Btl, then ‘

Er x] = [ygax , 34 x]= [yB . va(y‘x/\x)] =
Since [yB,, yo(] is a semi-atomic lattice,..so is [XB Ty x], and
consequently YN EEX On the other hand .

[3g » ygvxdalx Ay, » 21c oo
because X<V by the induction hypothesis. It.follows that
[y‘B » YgV xo(] is a semi-atomic lattice,hencé IpgY X <Z. and

50 X =y rx. B
I~ =S

-0.2. -PROPOSIZION - Let

(zi")iéI _be a family of elements of

L. Thens [0V :;.l] is a semi-Artinian lattice if and only if
lel : '

[0,2,] is a semi-Artinian lattice for each ie€I, and in this case

Alfo, Mz ]) = sup A([o,,, s

1€l el
Proof. Suppose that [0, Z. ] are all seml—Artlnlan lattlces,

and denote - 4 = sup X (]0,z. ]) By Lemma above one has for each jeI
1EI : '

'j"'_~ s {2, ] <5 ([O \/z ])

and s6 \/z, (Q \/.z.)). Hence V z; 'xs (o, V 2z;] ), and conse-
— ‘3613 “-[ léli ier * 0‘[’1' e

quently [O V Z . ] is a semi-Artinian lattice and > ([O, V z. ])<o<
€l iel

Conversely, suppose that [O V oz ] is semi-Artinian, and
iel
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denote A([o ]) = 4 . Then

iel L
0,22 = z A O o =Nz ShE P

ﬂ’([ ]) 0[5([ ’ieI l]) (1eI l)AZJ ZJ
for each jeI, by 0.1. Hence [O,zjj is semi-Artinian for each

del and %([O,zj])élz. It follows that sup A([O z; 1)€p, and
iel

the proposition is proved. s

Recall that a lattice with 0O and 1 is of finite length

if there exists a (Jordan-Holder) composition series between O
and 1. It is well-known that a modular lattiée‘with 0. sand.. 4
is of finite length if and only if it is both Artinian and Noethe-
rian; the length of such a lattice X will be denoted in the sequel
by Z(x)

>

The next Lemma is a lattice-theoretical Tormulation of the
Propositicn 2 of Shock [1]. Por the convenience of the reader we

include a proof here.

O.3. LEMMA If A is an Artinian ané modular lattice with

1, then there exists an element a™ e which is the least element

of A sueh that the sublattice [2", 1] of A is of finite length.

Proof. lLet N = {xe&Al [x,1] is a lattice of finite.length}.
Since 1¢eN, N-#¢. If Xy ,» X, €N, then [x1/\x2 : x{]z[xz ; X1§/x2]g
g_[xz , 1], hence [z, A%, x1] is of finite length, and conse-
quently [X1A:ﬁ2 , 1] is also of finite length because [x, , 1]
is of finite length. It follows that x,AX,€N. Let a* be a mi-

nimal element of Ngidf xe N then - a*wNxel,cand s a*Ax = a’

by the minimality of  a*, i.e. a*sgxﬁ Hence a* is the least

element of N. e

If A 1is a lattice as in the above Lemma, then L([a*.43)
will be called the reduced length of A, and will be dencted in

the sequel by Z£%a).



As an easy consequence of 0.3 we obtain the following known

result which will be used frequently in this paper:

0.4. COROLLARY TLet C be a eomplément@d and modular lat-

tice >(e.g. C may be any upper continuous, modular and semi-ato-

mic lattice). Then ¢ is Artinian if and omly if C is Noetherian.

Proof. GSuppose that € is Artinian, and consider the ele-
menss -~ etet( dedirned by*@e3iaEL ¢ fisa conplement of "TeY, T ulien
[@,e] = Te*A c;c} e e ve i ier, 1] helce e sublattice {0,¢c]
L ofvC " is~or Findte dength. “Suppose that "¢ # 1; since "¢ 15 Arii~
nian there exists aeC such that a 1is an atom of the ipterval.
leyal. T4 follows that 10,2} isiof fimite dengthn. If b disa
complement of a, then [0,a]«({b,1], hence (b,1] 1is of finite
length, and cqnsequently c* £b. Then c*Aaagtw«abz 0, and so

a==aA1zaA(CV&W::CV(aACﬂv:CVO==m
gicontradiction. Hence ¢ = 1, and thus - C is Noetherian.

If* ¢+ is Noetheriah, then the opposite lattice @22 o 10
is modular, complemented and Artinian, and then, by the proof

above, c°? must beJNoetherian, i.e. C -dis -Artinian. g

0:.5.:PROPOSITION The following properties of.an upper con-

tinuous and modular lattice I, are egquivalent:
(1) 5L “dsva latbtiece of finite length.
(2) 5, is¥an drtinten Yattice with A(L) finmite.

(3) L is a Noetherian and semi-Artinian lattice.

Proof (1) =>i(2) 1 clear.
(2)=>(3):. Lét n = »(L); then the ascending Loewy series
of I is ‘
0 = sO(L)< s1(L)< SNn <sn(L) —
Por each i =0, ... ,n-1 (s,(L),s;,,(L)] is Artinian and semi-ato-

mic, hence Noetherian by w0.4. Consequently L = [0,1] gt off Timive



length.

(3)=(1): 's)(L)(L) = 1 since L is semi-Artinian, and
;A(L) is a finite ordinal,‘say ne, .since I is Noetherian.
Féf each e = O o o o] [si(L),si+1(L)] is Noetherian and semi-
atomic, hesice Afbinian by 0.4. Hence L = [0,1] i o2 Sindite

length. @

" 0.6. REMARK TFrom the proof of the above Proposition it fol-

lows that if the lattice L is of finite length, then (L) g 4(1);
elearly = (1) = L(1) if and paly 1Lf For eagh' di=0, i 5l
each s, .(L) 1is an atom in the sublattice [si(L),si+1(L)] oL BT

1. MAIN RESULTS

1.1. THEOREM ILet L be au Artinian; upper continuous and

modulay Aattics, and let '
v (%) b PP SR §Xn$ e ‘

be an ascending chain in I such that the sublattices [O,xi] o
hiisare Noetheriah for.all i >1. Then, the following two conditions
are equivalent: :

(1)  The.ehain (%) is stationary.

(2) For each natural’numﬁer i»1 and each yeIL with

; xi ’ Leme a4 o :
yf:xl there exists an element ayl €L such ﬁha ay1‘5X1 and

ayifﬁy; furtiermore, there exists a natural number +t such that

A([O,ayi]),<t for.all L 329 and all y<xy

- " Proof. . (1)=>(2): Suppose that X, =X = X

—
- e e.e 0

g : ; : k] n+2
and denote k = X([O,xn]); then fX([O,xi])<:k+1;;for 1L d s
If y <%y , then clearly (2) holds by choosing Supg By

(2)==(1): Suppose that the chain (x) is strictly ascen-

ding. Then the sequence ()\([O’Xi])),j),i is unbounded, for other-
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wise, there exists a natural number m such that (L0, %, 1) < m

(=<} 5
forcalise 121y dhen A([o, vV xi])sm“ by G:2, and thus, by 0.5
i=1 -

[09521}:1] is a Nostherian lattice, a contradiction. Let Kk >1

be such that A([O,xk]) >t. Since [0,%] is Noetherian, there

" exists an element Yy <X maximal with the property 2 0,yl=¢.
By hypothesis, there exists a = agx such that ag<x,  and agy.
According to 0.2, x([0,avyl) = sup (A([O,a]),)(‘[o,y]))ét. But
J<avy<x since ady and /\([O,xk])>‘t; this conflnrédicts the .
maximality of y, and consequently, the chain (%) must be statio- -

nary. &

.41.2. COROLLARY ILet L be an upper continuous and modular
lattice satisfying the following condition:
(») For each y<x in I ‘there exists an element a _€L

5
such that 8yg €% : ayx¢y and [O,ayX] is semi-Artiniany; further-
more, there exists a natural number t such ‘chat,_?\([o,avx]) <
forall yex dh L.

If 0, 4is Artinian, then % is Noetherian.

Procf. . Consider the ascending Loewy series of Ti:
QZSO(L)<S1(IJ>< ¢ 00 ¢ &

. For each 13> 0, {Si(L)’SiM (L)} is semi-atomic and Artinian, hence

Noetherian by 0.4; it follows that [O,si(L)] is Noetherian for

a0 il Y Ryed o, T there Texists g natural number n  such that

sn(L') = 8.1 (}L)e Hence 1 = sn(L) because L 1is Artinian, and

consequently L = [0,1] = (O,sn(L)] is Noetherian. g

" '1,%. REMARK™ The condition (2X) about. _ an-Artinian, upper

continuous and modular lattice I 1is necessary for L to be Noe-
therian. Indeed, in ‘this case, for each y<Xx in L choose a =

yX
= x; then 2 ([0,a,, 1) & £([0,a,, 1)< (D). n

~7
P
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In order to show that the Artinian condition on a lattice
L as in 1.2 is actually necéssary for I to be Noetherian, we

need the following simple

1.4. LEMMA Let L Dbe an upper continuous and modular lat-

tice and y<x elements in L for which there exists ael
such that agx, a¢y and the sublattice fo5] 88 & i
- semi-Artinian. Then, the interval [y;,x] of I contains an

°

atom.

Froof.  Since I, .is  a modular lattiée, it follows that
there exists a canonical isomorphism of lattices
[aAyya]c{y,aVy].
" But 'aggy,;hence any<a, and so, the interval [a/\y,a] contains
an atom, because [O,a] ‘is semi-Artinian; if -b .ds an-atom of
[a/\y,a]; then the corresponding element 2z of b by the above
isomorphism is clearly an atom of the.interval f[y,a\/y],

and hence an atom of [y,x]. s
We are now in a position to give the following

1.5. THEOREM Tet L be an upper continuous and modularilat-

tice satisfying the condition- (A ) from 1.2. Then I is Arti-

nian if and only if 1L 4is Noetherian.

.- Proof. Tf L is Artimian, then T is Noetliewian by 4.0
Conversely, if I  is Noetherian, then L is Artinian by 0.5,
since L is semi-Artinian. by 1.4.w

Recall that if A is an Artinian and modular lattice with 1,

we have denoted in the Section O by KYA) the: iso calle@@reduced

length of A; more precisely, {£¥4a) = £([a*,1]), where "a* is the
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least element of A such that the sublattice [a*,4] "of & is of
finite length (see 0.3); if in addition A is upper continuous we

Y

can define the reduced Loewy length A(a) of A wespeing A(fafn]).

Clearly A*(A)é@”{[x). Note that a* is also the least element of A

such that the sublattice ([a",1] of A is of finite Loewy length.

- We shall consider now to other conditions on a lattice L
(upper continuous and modular as always in this paper):
* » . :
() TFor each y<x in L there exisis an element ayXeL

yx =
there exists a natural number t such that %*([O,ayX]) LHrtar

guch that a. <X, ayx¢y and [O,ayX] is- Artinian: yn' addition,

gl yex in L..

* o .
(K ) For each y<x in L there exists an element avvéL

such that ayxé %, ayx$y and [O’"ayx] is‘Artinian; in =ddition,
there exists a natural number t such that Z*( [O,ayxl') <t for

sl i dm - I

Clearly, if 1 satisfies the condition ([%), then I satis-
fies the condition (X*) too. We ignore the other connections bet-
ween the conditioms (A), (X*) and ([*) on L. However, vwe have

the following result:

1.6. TIFOREM If the upper continuous and modular lattice L.

19}

atisfies the condition (X®), then L is Artinian if and only if-

L. is Noetherian.

Proof. The proof may be reduced to the proof 1.5 Eoyiusing
the following obvious fact: Mo,a))-= 2({0,a]) Ltdfvamy aed -

such that [0,a] is of finite length.®

Ve shall investigate now the conditien: (Z*) oni .
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1.7. THEOREM Let L be an upper continuous and modular lat-

tice satisfying the condition "y above. Then T is semi-Arti-

nian and has finite Loewy length.

Proof. TFirst of all, I is semiartinian by 1.4. TFor each
natural number n denote by sﬁ the term sn(L) of the ascending

Loewy series of L, and suppose that S) # s for all natural

n+1
numbers n.

Let x€elL be such that xg Sy for some. ' natural numter k-

and [0,x] is ‘Artinian. Then sk([o,x]) = sk([o,ﬂ)/\x =85 AX = X
by 0.1, bence. 2(10,x]) <k, and then, by 0.5,  [0.x] isief finite
length.

If “new n>,1' is a natural number and x is an element of
L such that xgs_ , x4s 4 .and [0,x] is Artinian, then'we v
shall prove inductively that Z([O,X])zn. If n =1, “thent = # O
and so A([0,x])%1. Iet xeL bYe such that xg8, .4 » ¥4s, and

[O,X] is Artinian. Denote z = XAS and y =2z2vs Then

n-1

8 qSy<s, and y= (xAas Jvs = (xvs _4)As, . But xg B at,

n-1

. 3 : £
hence 8.9<8 v X, and consequently (xvV Sy A 8o F Sn because

n-1
the socle s of the semi-Artinian lattice [s, 4 , 1] is an es-
sentiasl element of the lattice e 1] - Thuc o # sﬁ—1 and
therefore z¢s__, ; it follows that zAs_ <%, By condition
(%), there.exigts acl such that [0,a] is Artinian, '.a<z and

adznas Then agzgs, , ags, 4 and a<z<x,,hence

n-1
[([O,a]) = [0,x]). On the other hand, by the induction hypothe-
.sis f([o,a])>n, and consequently £([0,x])3 n+1.

Since he have assumed that s_ #

5 for all natural num-

8 . ap
nk* :
bers n, it follows that for each n3»1 there exists a €l such
that. a €8, 5 a, 48, 4 [O,'an] is;{krtinian-and (*(‘[O,an])< t. Then
[O,ar] is of finite length and ‘-’lg(f[o,an])>n. On the other hand,
n< [([O,an]) = 2*([O,an]) <t for-83l n >1, a contradiction. This

completes the proof.®
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1.8. COROLLARY If the upper continuous and modular lattice

I satisfies the condition (%), then L is Artinian if and only

if I, is Noetherian.

Proof. Apply 1.7 and 0.5.8

1.9. REMARKS (1) An other proof of 1.8 can be obtained from
46 sincé 1 satisfies clearly the comdition () ‘too.
‘ (2) The'cqndiﬁion (L*) .about an Artinian, upper continuous
and modular lattice L is necessary for L to be Noeéherian: see

1.5. 8

2. APPLICATIONS

Let ¢ be a Grothendieck category, i.e. an abelian category
with exact direct limits and with.a generator, an@\let X bean
object of € . L(X) will denote the lattice of all subobjects
of X. It is well-known that Z(¥X) is a modular and upper conti-
nuous lattice (see e.g. Stenstrom (1]). If U and M are objects
of € +then M is said to be ﬁ—genefated if there exists an epi-
‘ morphism U(I)-;M for some set I, or equivalently, if whenever
M' is a subobject of M, M' # M, there exists féiﬂomf(U,M) such
that Im(f)#;M’» M is said to be strongly U-generated if each sub-

object of M is U-generated.

5.1. THEOREM (Nastisescu [11,[2]) TLet € be a Grothendieck

category and U an Artinian object of %o, o TE - W e ranviAnt iniioin

objécf”of (5_ which is strongly U-generated, then M is Noetherian.

Proof. By 1.8 it will suffice to check that the lattice L
- & (M) satisfies the condition (£¥). Let X,Y €L be such that

Y<X. Since X is U-generated there exists i?éHomf(U,X) such
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that A = Im(£)4 Y, But A~TU/Ker(f), hence the lattice £ (4) =

= [0,A] 1is isomorphic to the interval [Ker(f),U] of (V). Note
also that A<X and [0,A] dis Artinian because U is an Artini-
nian object‘of €, Thus Lfo,a]) = L ([renle), ) < Lo, ul) - |
6 L¥( L)), and so L = X(M) satisfies the condition (/£%). Let
us mention that according to 1.7, any strongly U-generated object

ofiC is o Loewy object having finite Loewy length. R

'pdr next aim is to apply 1.8 to get a simple noncategorical
proof of the relative Hopkins-Levitzki Theorem. For this, we shall
recall briefly some basic definitions, notations and properties

concerning the lattice of F-saturated submodules of a module.

Let R‘ be an associative, uvnitary and nonZero ring,..vand
Mod-R the category of unitary right R-module. If M is a right
R-module, then X(M) will denote the lattice of all submodules
of M. Let F be a right Gabriel topolugy on R, (£, %) the
Tcorrespdndiﬁg hereditary torsion theory on Mod-R, and t the
torsion rajical associated. to (9, % ). If MeMod-R, we shall use
the following notation '

' Cp(i) = {we L) | w/weF},
If Pe (M), then ’f’ will denote the PF-saturation of P din°‘ I,
i.e. B/P = t(M/P); note that PeEC,(M) if and only if P =P,
i.es P 18 P-saturatedss If (Ni)iei is a family of elements of
_\/ N, = i:/Nl and /\ N, = nNi are elements
dei 1€l diel i1€T
: of_ CF(M). Moreover, CF(M) is an upper continuous and modular

Co(M), then

lattice"witb_respect:to the pértial brdering given. by b "
((inclusioﬁ)‘ and with respect to the opérations "\/",‘and -"/\";
GF(M) - called the lattice of all F-saturated submodules of M
and is sometimes denoted also byv;SatF(M).‘

Let us mention the following properties of the lattice CF(M);
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() L e £(M) and Ne 7, then the lattices CF(M) and
CF(M/N) are canonical isomorphic; in partj.~011iar . CF(M)f::. CF(M/’C(M)).

(2) If Ne (M) and M/NET, then the lattices Cp(it) and
CF(N) are canonical isomorphic;«in particular CF(E)C:CF(ﬁﬁ.

(3) If ME% and Ne Cp(M), then Cp(N) = [0,N] and
CF(M/N)z [N,M], where the intervals are considered in ‘the latfice
CF(M). - _

(4). 1. M and -N' are isomorphic R-modules, then the lat-

tices CF(M) and CF(M') are isomorphic. @

For all these summarized facts on the lattices CF(M) the

reader is referred to Stenstrom [1] or Albu and Nastasescu [2].

‘Recall that M¢Mod-R is said to be F-Noetherian (resp.

F-irtinion) if CF(M) is a Noetherian (resp. Artinian) lat-

tice. R is said to be F-Noetherian -(resp. P-Artinian) - if ghe

R-module Rp i’ F-Noetherian <{(resp. F-Artinian).

5.2, THEOREM (Miller and Teply [1]) Let F be a right Gab-

riel topology on the ring R such that R is F-Artinian. Then,
5 right R-module M is F-Artinian if and only if M is F-Noe-

therian.

Proof. By the property (1) above, Cp(M)erCp(M/s(1)),
hence we can suppose that Me 7 . Accordingitor HE8 1t wald suffiée
to check that the lattice Cp(M) satisfies the condition L")
et Y¥<X Dbe elements in CF(M)‘ Then, tﬁere exists xe X\Y,
and desiote B = xR, T = Anng(x), Ayy = & = B. Cleazly AgCylM),
A<X, and Aﬂﬁ Y. Since R/I~BgM, it follcws that ":,.‘.;;R/Ié?'., and -

SO ]IeCE&R). By the properties (2), (%), 464) above one gets:
[I/R] = Cu(R/T) = 0p(B) = Cpla)= [0,4],
where the interval [I,R] is considered in “CF(R) and the inter-

(R) is anArtinian lattice, it

val ([0,A] in Cyp(M). Since €



e

follows that [O,A] is an Artinian lattice, and then
£(10,41) = L*([1,R]) < £(cy(R)),
Thus CF(R) satisfies the condition (J/4%).m

2. D“MARK When the proofs of 1.6 and 1.8 are carried out

on the particular lattice CF(M), F.being a right Gabriel topology
on R such that R is P-Artinian, one gets two different short
module~theoretical proofs of the relative Hopkins-Levitzki Thegrem,

quoted in Faith [1] as the Teply-Miller Theoren. B

The next result has been proved by Nastisescu and Raianu [1]
by using the notion of quotient category. We shall present below
a much shorter latticial proof. The terminclogy involved in all

that follows can be found in Nastigsescu and Van Oystaeyen [1].

2.4. THEOREM (Nastasescu and Raianu [1]). Let G be.a group,

= (DR, a graded ring of type G, and F a graded right Gabriel
OEGR

topology on R such that R is gr F-Artinian. Then, argraded
right R-module M is gr. P-Artinian 3f .and only-if M is\gr P

Noetherian.

Proof. By definition, M is gr F-Artinian (resp. gr P-Noethe-
rian) if the lattice C%(M) {PIG (m)\ M/NeF}is Artinian (resp.
Noetherian), where $fg(M) is the lattice of all graded submodules
bl and’ . ( FiF ) ds. the hereditary rigid torsion theory defined
by P. Let us preservé the notations from the proof of 2udsy this
proof can be adapted to:the graded case és follows. The element
x€X~NY can be choosed homogeneous, say of degree v, Then there
;exists aﬁ'isomorphiém of graded R»modules' R(o)/I =B, where 't"1 =
= and R(o) is the o-suspension of R. On the other hand,
since the torsion theory (7 ,%) is rigid, the correspondence
Jr—J(c) .yields an isomorphism of lattices Cg(R)tz‘Cé(R(GI).

Consequently £%([0,4]) = £*([1,R(c ])<.£7C5(R(6))) = £*(c %(1)).ﬁ”



0.5, REMARK Applying 2.4 %o the particular case F = {RR}

one gets another proof, which avoids the concept of the Jacobson
graded radical,of the graded version of the Hopkins-Levitzki Theo-
rem (see Nastdsescu and Van Oystaeyen [1]): any right gr-Artinian

ring is right gr-Noetherian.®
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