INSTITUTUL
" DE
MATEMATICA

INSTITUTUL NATIONAL
PENTRU CREATIE
STIINTIFICA SI TEHNICA

ISSN 0250 3638

T —_r Py % :
o A AR et v

THE WEAK FATOU PROPERTY AND THE EGOROFF

PROPERTY
by
Dan VUZA

PREPRINT SERIES IN MATHEMATICS
' No.39/1983 ¥

BUCURESTI

PRI SN TP o |



A Pt il s S P Ot



THE WEAK FATOU PROPERTY AND THE..EGOROFF

PROPERTY

by

Dan VUZA*)

Jane ;1988

5 ' / e I g el ~ o -~ 17 2 i R L L
Deparntment o4 Mathematics, Naftconal Instetute 40

ko P o 2 [ L
2 K 0 LA Baul ~Pagid 2= 79627 8







THE WEAK FATOU PROPERTY AND THE EGOROFF
' PROPERTY.

Dan VUZA

‘ The aim ofvthié paper is to prove that fdbt every if for every
extended Riesz namh‘p on an order complete Riesz space E the semi-
nerm g has the weak Fatou property then E has the Egoroff ﬁrJErty,

a result of this kind was already announced in [4] but the proof was
not correct. Results of similar nature, but considering the Fatou pro-
pérty'instead.of the weak Watou property were given in [l] and [21.

A Riesz spéce E hasvthe Egorgoff property if for anyrXeE and
any double “sequence (Xnk)n k>1CE+ such that xnk?x for every nyl there

k
is ¢:N— N end a sequence (xp) . ,CE such thet x €x o) and x 1x,

A extended Riesz seminorm on the Riesz space E is a function
©:E ——9&?_\_\)5\%} such that; |

'"i)‘§’(’>5+y)‘£g(’><)‘+§’(fy), Q(’aX)=ag(x) for x,y¢E and a€ R

ii)g(xkig(y) for x,yeE and {x\¢|y|.

An extended Riesz seminorm @ 1is a Riesz norm if x#£0 implies

€ (x)#0.

The extended Riesz' seminorm Q has the weak Fatcu property iE

there is ¢l such that from 04X, %zlt follows that @(x)4c sup g(x 5%
N>l :

~

For every extended Riesz: seminorm 0 the Lorentz seminorm @

- _is defined by o8 . = : =
(x)= inf § sup e(x_)| o¢x Tixt {.
S)L -\n?'. g) H’ : }

Theorem. Aséume that the contirmuum hypothesis holds. Then



ECEpline

for every order combleté Riesz space E the following are equivalent:
i) Tor every extended Riesz -norm § on E the seminorm gL has

the weak Fatowu  property.

ii) E has the Egoroff propertye.

The proof of the theorem needs some lemmas.

A weakly ¢’ -distributive Riesz space is a- g -order complete
Riesz space E such that for every order bounded double sequence
1€E, ipcreasing in k for every n we héve:

(Xnk)m,k)

inf sup X = Sup arfie

nyl kz1 ¢ lal 17l n,¢(n)

" A Riesz space is called order “separable if for every x¢E and

every Ae¢m sudh that-«x=sup A there is a countable subset BeA such that

X=sup Be.

lemma 1. ILet E be a weakly (j-distributive order,gepafable

Riesz space. Then E has the Egoroff property.

Proof. Let ogqu$x for every n2l. We want to show that there

: k s
~.are (ym)n;ZLCE‘ and sp— A such that yné Xn,\%’(n) and yé‘x.

As B is weskly ¢ ~distributive we have

x=inf sup x, i = sup inf x

nyl k71 grm-spl npl n,¢(n)

AS E is order Separéble thére’is a ‘sequence (‘p'm)m)1 of maps @_: N-—N

“‘suéh thaﬁb

X= sup inf %
mYl nyl

n, gn)

Let '&}/: IN—s N) P N— N be: p;'ivem by
h : ; :



Vin)=¥ (n).
Fut

Vo= dmb %
2 m 1 m,@h(m)

The sequence (ynjnyl is increasing. We haﬁe

X= suprinf csun inf o (n)ésup Viidxg
m>1l-n3zl *n Fh(n) meln>d ‘mzl i

Hence ynﬁxjon the other side

yﬂ:;‘fﬁ g, (m)$*n, g (n) T n P (n)°
The proof is complete.

A result of Pinsker and smemiya ((3], theerem 75.5) states®
that under the contiruum hypothesis, every order complete Riesz space
with the Egoroff property is order separable. It is also easy to pro-
ve that a ¢ -order complete Riesz space with the Egoroff property is
weakly o’«distributive. Hence, the preceeding lemma givés a converse
"to these statements.

We say that a Riesz space has property i)if it satisfies i)
from the statement of the theorem.

If B is a0 -order complete space we denote by Bg the projec-

o tlon on the band generated bv X._‘

Iemma.2. Let E be an Archimeadian Riesz space. Suprose. there
is a ¢ - order complete Riesz space F, a positive ¢ -orderscontinuous

linear map T:E—>F, an element xeE _, a sequence (x )n>lCE ,and a

double sequence (qu)n ‘%iE*

such thats



i) XJX.
il x k?x for every nzl
i12) P T3 TX for every nyl
Txp

) ant e =0 for every ¢: N — N,
a1 sOfr) P

Then E has not the property i).

Proof. We may assume that Xnk'is decreasing in n for every., -
k1 (Otherw1¢e PGDldC& Xor by inf Xnk)
lemen
1et K be the solid convex hull of {Xnkhxn i'; n,k;l}.

Define the extended Riesz seminorm € by

¢

o(y)= inf%a\ 80, yeaKT} ,

(it is understood that inf¢=w)e
If weK then Wl¢ e Hence 11 O4y)=0 then \yl¢ ax for every &>0.
As E 1s psrchimeadian, y=0. Thus 'g is an extended Riesz normovw;,

Suppose that E has the property i). Then ? has the weak TFatou

property. As xmkhxﬁgKflt follows that.

%fxnkAXm)gfcx Axn)ﬁl

for every n,k2l. Hemnce g (x J<e for ewery myls Lpplying once agawn

the weak Fatou property we get §>(x)¢c2; Put d= c2+1 There is

<ym>mglﬁm such that O«y'p > and O(ym)<d for mjyl, TF Z_ = éymAthen
%ﬁﬁ§x .and'%ﬁng H?néef there 1s_a trlple sequence <Ank)m,n,k;1 ~ such

- that:

A ‘ ¢ 2 s va. v'r-q T 2 i 1 m o 3 3

‘ 1) Hor evgry}m>1 the set {(H’K)rxnk#oj is finite,
i Lo m

1.7 522; z\ = mkAYm)‘

i) A _,=1 for every m)l
%m”k =

PSR



Definne'd‘! s N by
Q%m)zsupgkjkzl,i(ﬁnfkﬁk%og

Put

=

k1 Tl

As Xﬁk#o implies k4(m) we have

= }\nk('xmr\x'ﬂz A k("n,q;(m)’\xn)z‘z )\r“i(xm.xy(m)’\xn%

n,k21 nzl

(&)

Hence

€2 0" :
“n n%i ‘{n:‘%’(m)l\xﬂ»? :

PR

nzl

Now we prove the following:

(A) Por every ¢ 0 there is m3l such that for every mq?m there is
m

M52 g such that 2 )\;n? £g
MENLMy

4’

otherwise there would be ant> O such that for every mzl there

is my P such that m,7 My implies = A 2 2& . Letaskz2l be such that i
s ménmmI

-kﬁ7 1. Cheose I:mo<mi oo o<y inductively such that

S 2D ror agiticl and mm;,, . Letugmm el Hen

+& N e
el e

Z)\m R 7\?;>ks,

nyl o<1<k 1 m,l_ﬁn<mi+1

which is.a contradiction.



==

Now take & = 1 and get m with the property in the statement
2d

of (A). Choose 1nduct1vely an increasing sequence (m )p>l such that

m1=m+1 Gl e )\np<i£ for p22. Fix p22. We have for g p
i min<mp”1

- ,f " q X
i p = Q if\ F % »-‘qu)/\xn)&

But.
Z_,>\ T(x ~ AX )UZ'\ q)Tx
1¢n<m H’W(mq) n. 1¢n<m
Z A qT(A 4,( )I\X )‘( Z >\ q)TX(?—TX
m<n<mq 1 i m<n<mq_1 :
o '\ T (%, AX)ETX
mq lsm I \V(Iﬁ ) an &.1 \y<m )o
Hence
m
T < :Z:’X Arx .+ ]uTx + Tx
B im0 B2 q_l,W(mq)

App1v1nb T=P QTX we get,
(I-PTX )(sz>-'§%Tx)$Tx. %
i D C mq-l’ mq)
Define %):qu—a D¢ ,-by

an)=q%mp) for léngmp_l

?Mn):%(mQ+1)for mq_I(ngmq, ayp.

Then .



Tt fol llowis that
(I=P.. ) (Pz = %TX)QO.
e mp 2d

As =z Tlx we have Tz TlTx. Hence
m d mﬁa

, poda

which tbgether with P Tx#Tx gives a contradiction.

Ix
lemma %. Let E-be a:f-order’complete Riesz space. Let 0<a<l,
. - £ 0 for 20
X€E, and (Xn)n;JCE+ be such that Xnﬁxand (ax Xn)ﬁto for every n2l
] e e 3 B { g / 0
Then there 18 a sequence (yn)m/1 such that Q¢y 4% end Py x#x for every

n
m7l.

X. .Obviously yﬁk and P, X=¥_ - Suppose

Proof. Let yan(Xn V.

-ax)+

that Py X=%. Then N & we have
Jgi aeh

1

O¢xX+P , x=P X + P, AT
(ax—xn)+ (xm_--ax)+ (ax~xn)+ f
thus
0l ‘v X=0.
’ (ax~xn)+ o
Thefefore

0<P Lot Jioop e
(BX-Xn)+ n (ax—xn)+ n

o



which implies
2 X =0
(axmxn)+ i

Tt follows that

(,aX"‘ Xn) + _‘:P

(9X~Xn)_+ (aX“xn):%': (P ('ax-xn)+ (ﬂax-axn) )':\‘,:O

which is a contradiction.

A Riesz subspace F of ‘the Riesz space E is called relatively
¢ -order closed if from XEE, 5 X el and xnéxit follows that xe¢F

Lemma 4. Let E be a ¢’ -order complete Riesz space and let F
be a relatively g -order closed Riesz subspace of E. If E has property

i} them F also has property i}.

Proof. Let § be an extended Riesz norm on F. Define the

P

extended Riesz seminormn € on E by

e

§ () =inf 9(y) |yer, Ix1< v

(infg@:mﬁ. As F is relatively ¢’-order closed, for.ewvery x¢E such that
§kx)<oo there is yeF, such that Ix\<y  ‘and yty)%?(x). In‘partipular
it follows that E; is an extended Riesz rmorm. It will thep suffice to
prove that g (x) g’(x) for every xeF

.~ Let xeF and let x; cV‘ be such that ka in F. Then XTk il

We have_v'

pO(x )gsu (X)
19 n>¥§



hence

© (X)£0 (x).
SL(X)""QL_(X)

To prove the converse inequality, let x eE, be such that

x7k. We want to prove that supQ(x ).;g(x). We may assume that
nol A
g(x }soce o mol. There is I eP such that X ST and f(y )= 9(X ). Put

Zr a9l Y AXe
myn

Then z eF and x <z ¢x, hence z Tx. We have

§znIs ey = 0xy)

hence

(x,¢sup@(z )_gsup“:m(x )
8 xy< supla, e sun B,

nz 2

Procaof of the theorem.
ii)=»i) This is known. In fact, ii) implies that EL has the

. Patou: preperty ([21).
1)Yy=>ii) We:r prove first that E is weakly ¢ ~distributive o If

this 18 not the case, there is by L4] an extended Riesz norm § on E

such that (’ is not a norm. Hence there is XeB \{O:}such thet g>(x) o).

This 1mplLes the ex1stence ol (xnk n, k31 B such that XnkaX and

sup (x )tm for every.nzl. lLet and let. y=imfx oL e
k21 nk . SO N—T)N n)l ’q)(n)

have
it ga ‘ 1

hence 9 (y)=C which implies that y=0.

-
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< . 1 :
There is a Qequence (2 ) nyl such that OSZAFX and (§X-ZR)J50
for n2l. Otherwise for every nyl there would be a ¢ (n)z1 such that
]E.r . L 3 . 5 & i3
Xn,@<n>?5k* which is a contradiction. Therefore by lemma 3 there is
ny1 Such that o¢x Fx and Pxnxﬁx fer .
By lemma 1 applied to F=E snd Tzlp we obtain that E has not

8 seguence (x )

property 1), whieh is a controdiction S Henece B is weakly;f-distributive
. Second we prove that E is order separable. If not, there is -~

an uncountable order bounded set VCE, consisting of di@joint elemenngb

Let B(M) be the . Riesz space of all bounded functions f:M--»R « Define

H:B(M) —»E by

‘ H(f)Y = sup ZZ: f{x)x
FCM XeF
F fimite

for every feB(M)+ and then extend H by linearity. Then H is & Riesz

isomorphism of B(M) onto H(B(M)) and H(B(M)) is a relatively g’ -crder
closed Riesz subspace of E. By lemme 4, B(}) has propverty=i). As M is
uncountable and we assume the continuum-hypothesis holds, a result of
Banach and Xuratowsky e ch.10) 'states that there ic a double se-

quenee (M dn %51
every n}l and - (M) Pﬂ

nyl ,%(n) :
There is also a sequence (M )n>1 of subsets of MY¥such that Mﬁ:M

of subsnts of M such that Mn n a1 L,Jh ~ﬂ o
= k>]

i1s at most countable for every @ N — N

atd !

\~)M =M and M\N is not countable. This can be obtained as follows:
n7l
there is an one-to-one map g:R—>M. Then put M =MNg ((npo)) .

Let G be the order ideal of all bounded maps f:M-—> & such
tnat§§ f(y)#og 10 ‘at most countable ahd let F be the quotient Riesz
" ' space B(N).'Let T B(M)~a~ be the quotient map; T is ¢ -order continirous

let
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Xnk =xﬁnk

x, =%
Il ’Im

> =7ZM

(XA being the characteristic function of a set AtM). Then xnkﬁx fon

nol, mex, inf'TXn,?<n)=o for every N =3 0 and

X

P Tsgie b aekile,
TI‘IL Xn

An application of Lemma 2 shows that B(M) has not property i), which
is 'a contradiction. Hence E is order separable.

By lemma 1, E has the Egoroff property.
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