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Are the Isolated Singularities of Complete
Intersections Determined by Their Singular

Subspaces?

by

Alexandru Dimca

Let A denote the € -algebra of>qerms of z2nalytic func-
tions defidned at the origin of €™ and m be the maximai: ideal of A.
We-can think of a germ-.of an analytic space X at the ord-
gin of C" defined by.an ideal Ixz(gl,...,gp_,)cm2 as the fiber oF
the corresponding map germ g:(CP,O)——a%(p,O). It is well-known [8],
that, in the case nyp, the map germ g is,finitely'J{-determined if

and only if X is -an isolated singuldarity of a complete intersection

: (Phis wild® be abreviated in the sequel to ISCI),
wIn other words, the ISCI X is determined ‘by the artinian

d:—algebra Qk(X:).=A/IX+mk+l

where k is the ordar of J{—determinaty
of the map gexrm ‘g

The purpose of this éaper is to - suggest that a differeﬁt
artinian CFalgebra, more qeometricaliy associated to X,‘can play a

similar role. More precisely, if X is an ISCI defined by*an ideal

IX as above, then one can consider' the singular subspace of X;. whic

‘is the analytic sbace germ SX defined by the ideal SIXSm generated
e by the-g‘i and all the pxp minors in the Jacobian matrix gg%)
e e e s ] _ ' -

| we hobe the - following to. be trues .

“Cconjecture., Two- ISCI X and "X’ are isomorphic if and only

ifgtheif éinquiar subspaces sX and SX' aré isomorphic. ; ‘ o3
v .»—ﬁere "isomorphic™" means.isomorphic as éerms of anmalytic
spaces, Notation: X~X'. Moreover, we shall c0mpare throughout this

paper only germs X.and X' having the same dimension and_émgedding

dimension, In fact, when X is not a hypersurface, the embedding-ehi-



E i . ; 2

ménsion ¢f X is the same as that Of . SXe tﬁﬁ

In Ehe ﬁyberédrface case our,Conjecture is jusﬁ a refor-
- mulation of the main result of Mather and Yau[6]
We prove this Conjecture for 0O-dimensional ISCI (Prop.3.4)
: for homogeneous ISCIT (Pro§.5.4) and alsc for thosg ISCT whose K-de-
'términacy order is not too high (Prop;4.2).
This last case contains in @articular most of the l-dimen-
»sioQéL ISCI “(Cor,.4.4) ., The proofs in section 4 are indeﬁendent“of
the rest of the.éaber, : \ -

‘ The first two cases are based on the following‘féléﬁi&e

version of the conjecturé.*“

Let (¥,X) be a pair of qefms of analvtic sbaces i.e. their
h,aéfining ideéls satisfy IYJ:I sz. Je say that cwo such palrs (Y%
and (Y’ X ) are isomorphic if there ex:sts a (:—alqebra isomorphism

). Caiieas
Our main result is the Folhow1ng

"u:A—» A such that u(I )=IY«, and LG Fp

Thcorem. Suppose that v,X,X"+#are ISCIT:at the origin of‘Cn
such that dim X=dim X’=dim Y- =1 and IX—I +(f) and I —f F(f') for so-
me f,f’em. | ‘

Then (Y,X)~(Y,X’) if and only if (Y,SX)~(Y,SX’).

In the first section we reduce.this Theorem to a prOblem
in some jet space using the finite "M - determlnacy of functions Ge-
fined on an TSET; an obvious extension of our work in [l].

This problem is solved in the next section uéinq.a sliqht—
.ly‘extended version of a wellknown result of Mather on Lie groups
acting on manifolds'[S, Lemma 3.1].

e .‘ Fihally‘let us mention just one nice conseaquence of a_po-

2

 sitive answer to the conjecture,

SuPPOSe-Xc:Y-—§+ B 1is a semi-uhiversal deformation of =is

=1

theAISCI X=F ~(0}. Let C denote the'critical subspace of F, A thes

discriminant subspace of F and G the restriction F/C:C— A. Then Giu.

is a normalization map [7] and a simple computation shows that

Notation: (Y,X)"J(\Y,!‘;‘}(’)v.

i

o IR
e <Ux



gL (0)~sX,

In this way, the discrimimant A determines the singulér
subspace SX. Thus whenever phe ponjecture is tfue we get a much mo-
re direct . and il luminatineg proof of the result of.Wirthmﬁller[91

which says that the discriminant /A determines the singularity X,

§l. Contact equivalence of function germs

Let ‘X be an ISCI defined by an ideal IX=(gl,;..,gb)cm2.

the local ring A/I, and by mycA, the maximal ideal,
X ‘

We denote by AX

Definition 1.1

‘ Two functions f,f@gmx are called Kcquivalent if kX,Xojfv
~(X¢X6), where the analytic space germ %5 (resb.xé) is defined by.
the ideal I +(f) (resio.IX+ (£7)) &% .

~Notation: f~f’, Here and in the sequel we identify-a func‘
tion fe‘mX with some of its representativesin A.

In order to study this equivalence relation it is useful

to introduce the language of group actions, jébwspaces, finite de-
terminacy and so on from standard singularity theory (ccmpare to
the first section in [l})¢f~'

Let L be the group of germs of analvtic is0m¢rphisms
h:(Cn,O)—qxcn,O) and T the group of invertible (p+l)x(p¢1) matri-

ces M=(mij) over A such that the elements of the last column satis-

o e

fym =0 fOI‘ i:l,Z'qoo,ps

i,p+l
We define a group G=LxT and an action of G on the space

p+1l

of map germs B=m.A by the formula

e ’ (h,M) .F=M (Feh) - ol
where we>think of an element F¢B as a column vector with.emtries

in m,

T€ %, F and £’ are as in (l.l)-then it is obvious ‘that
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f~f' if and. onliyw&f the cblumn{véctors F=(gl,...,gp,f) and
F'=(gl""’gr'f') are in the same G-orbit, '

Tn analogy with the K -tangent space of a map germ, we
define the following G-tangent space for a map germ FeB associated

to X and f as abové

&

= : e c
TGF=1m.J (F)+Ixel+a 0 ‘+Ii§ep Ixo.ep:l B
& 3 3 ¥ 7 g £ * ®
where J(F) is the A-submodule in B generdted by the:’a'F 2 ej are -
j : 3
the elements of the standard basis ford:p+l and the ideal IX is
: o

precisely IX+(f).

%

Tn this situation we also define

%

‘COdim f = dim B/TGE . e

By passing to k-jets, the actionof G on B induces actions
kaJk(n,p+l)——»Jk(n,p+l) and we haweg the following relation bet-

ween tangent spaces

T (63 m=1 e

Definition 1,2,
The pair (X,f) is cal led k-determined if the correséon—

~ding map germ F is k-G-determined (i.e. if for any other similér

koK

map germ F' with jF=J"F! one has F'eC.F).

The pair- (X,£f) is called finitely determined if it is k-determined
for some K. i
d L §

: We have the following result,

\

Proposition 1.3,

Let X be an ISCI with dim X1 and fem,\{0] . Then the

- following are equivalent:



i, The pair (X,f) is finitely determined
il .codim £ < =0

1ii.The ideal T =IX+(fj defines an ISCI X,
(@]

Tt dsiclear that i.¢$ii; (see for instance Theorem 1.2
in[8]).-If iii., does not hold theh there exists a curve germ
c: (€, 0)—>(€", 0) such that: |
a, foc=0, g;ec=0 for i=l,..,,p where (gl,,,.,gp)=lx.
b.c (10 for tfo :

Bf

0

_—~oc for some Laurent series 1 (t) and any

i
= l,.,.,n. It follows that an%belement

alel+...+a?+leP+l Ay

TGF has the property a oc=§z:21(aioc), in éarticular
i=1 :

p+1
al=.,,=ap=0 ;mplles ap+loc=0 and; this contradicts ii.
To prove iii.,=»ii, we note first that it is enough to

show that TGF:mN.e for some N, This follows from the fact that

p+1
K- codim g < 0,
Next, for each subset Iz{il<...<ip+iyc{l,..,,ﬁ} let

M_ be the following (p+l)x(p+l) matrix

T
( 26, gy~
Ty B e ggzp+1
S 3¥p+1
 7;’k 3Xil Se o Bxp+1J

» o | ‘ =
Let us denote by ar i the complement of the element —é— in the
14 % -
: i
15 : }{

above matrix. Then we have
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= 0 fOI‘ anyiwj':l g e ooy p 5

o .

k

E = det (M )
k : 1y s

These relatio.ns show that TGF gx(SIX )'ep+ll and by iii, the idea..

o

X

SI is m-primary,
o 0

+ Bemarx 124,

Tk s éerhaﬁ)s interestinq to note that (using the"nota—f L
" tions of the Theorem in the introduction)X M.X( does not ini}_.b'l_y_ (Y X)
~ (Y,X") even in very simple cases,

Take for examplé the plane curve sindularity ',i:x5+y2='0
and f=vxy, F’=xy+x4.Then'it is trivial to see that X&x' ' If one
w0uld have f~f’, then, f~xy+tx44 for any t € € and this gives x4.e2 (€.
ETGF -where F=ix +y2, XV Explicn: computatlons with TGF show that

this is not the case.

§2, proof of the Theorem

L]

«First we state a more general version of Mather’s Lemma
3,1 in [5).
<« Py ; : ©0
Let K :GxU—U be a C~-.action of a ILie group G on a C~- ma=
nifold U. For each ueU let X :G—2U Vbe_ defined: by O(u(g)=0((g‘,u) .
We denote by T X the tangent space to a manifold X at the point x.

Then we have the followinq result,

: i,emma 2.9 .

With the abox,e notations, a suff1C1ent condltlon for a
o0
connected C—qubmanifold V of U to be contalned insa 51nqle orblt
of X 1is the existence of a vector subspace EchG such that
1 T, 2 T,V for any vevV, where T oI (E),

14, °dim Tv is independent of vev,



- Procf,
Mether's Lemma. 3,1 correséonds to the case E=TlG,
The proof given in [5] applies ales 6 eur case just by
replacing everywhere TlG by E. D
Now we come to the broof of our Theorem, The im?lication
(Y, X)~ (Y, X") =(Y,8X)~(Y,SX") 1s obvious. TO prove the converse we

can assume that SIX=SIX, : Indeed h (GI Ji= q(h T ) for any hel.

Supbose that IY is generated by gl""'qpﬁmz and let
. B= (ql,...,g +E£) and F —(ql,...,gp £} be the map germ constructedaine:

as in the first section,

Using Prop.l.3 it is enough to show that ij and ij'

“are Gk—equivalent for-any ks,

Note that Tle=TlLk erT Tk, where TlLk=Jk(n,n) %nd

TlTk'lS the vector space of (p+1)efp+1) matrices M—\m ) over

de . P : _
el o such that m. e for i= l,...,p[4]
Let Elc_TlLk be the vector subspace generdted by all the

elements‘aIeJ (n,n), where the r—c0mponent of . asiis jk(a ) ek

it I,9
r=i, and 0 if r¢I in the notations from the proof of (1.3).
Let EZchTk be the vector subsbace'defined by the equa=
tions my ;=0 if ifp+l, |
If.we take <« to be the action kaJk(n,p+l)——?JkCn??+l)

defined above, v=ij and E=BE, e)Echle then an easy-computation

‘'shows that

5 Sl :
—me(E)—J (SIX)-ep+l

- Consider now the line W in J%(n,p+l) which joins the
points v and v'=ij’ (if v=v'’ there is nothing to provel!).
aAn argument similar to that in (f6] §5) shows that there

is a zariski open dense subset VeW such that

V={w€W7 TW=TV}'
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-

: : 'k FoF by o . *'.
Since va is spanned by :j (£ f")fep+15Tv’ one sees thati.ws
all the requirements of the Lemma 2.1 are fulfilled and hence V is
contained in a single Gk—orbit..

Tn particular. v and v' .are G¥:~ equivalent, D

§3. 7Zero-dimensionai ISCI

In this section we shall use the Theorem to prove the

o . : - 8 - 4
conjecture in case of O-dimensional ‘ISCI..

. : ' 2
Let'.X be an ISCT, dl;gx=o and IX=(91""’9n)cm ._Then
' SIX=IX+(j(g)), where j(g)=det(5§i) is the jacobian of the map germ
j 5 2 =
g (i,3=1,2,...,n; n%2j. ;
It is known by Grothendieck Duality Theory that j (g)¢I,

and.a.j(g)€l for any aem, "

X
$o -More precisely, one has the following. S w0l

£y

" Lemma 3.1,

“a.j(g)Em.lx for any a€m.

= ProdgE, .
Note first that if gi,.;.,gﬁ is a different set of gene--

‘rators for IX' then:s j(g’)=u,3dg) mod mI for some unit uéA. Hence-

X
the statement of (3.1) does not'dgpehd on the choice of qenerators
for Iy.. ek : |

On the other hand,_if Ica'ls any ideal -and p is a positi-

've integer ,such that I can be generated by p elements, then we in-

troduce the following,

Definition 3.2.

We say-that a systems of generators 91""'9p gf-"f d s,

in normal form if the following holds:

pé‘wuw oy



o=

Zsk =Ora g =...=0rd q.‘<k —ord qq s . e
it 1 . : 2 o 5 =
= : i 1, l+,..+1s_l+l

¥y ...(kézord gy
= o= 0rd gp$°° and-for any-eq=l.5..,9 such that kq ¢ o0  the jets
k X

q-l+l ’_'!,’j

mod ] q((ql’..”gil+. y

erlon = q e ;
3 o9y 0 ) gi o i are linearly independent
I i gxl g :

) wikh 4 =0 and 4 —pd = =4
o (0] S 1

It is easy to see that for any ideal I and positive num-

s-1

ber p as above there exists a system of generators of I in normal
form. Mo-eover the bairs (kl,il),..;;(ks,is) de?end oilys on o and
p and not on.a specific choice of.a system«of gemerators ©f I in
normal form. (To see this just néte fhat two such systems of gene-
rators can be:related by an invertible pxp matrix over A and consi-
der the 0-jet of this matriX!)?“

Now we come back to the proof of Lemma (3.l1). Assume that
gl,;.,,gﬁ'is a system o0f generators in normai form for the ideal IX
relation

a.j(g)=zzg.gi with aem and ZieA.

If one takes the k.-jet of this relation, it followe that
1
Alr...,A €n. By taking next the k,-jet, it follows that
1 :
2 L

l+lv""’ l+i2G m and so on, D‘

Corbllary Sch

with the above notations
(1)_m.SIX=m.IX
(1i) SI, is the direct sum of the ideal m.I, with the vector space
{Gyreeardyr (@),

pProof

: The only thing still to be proved is that the above sum
iis- direct i.e. ‘that (gl,.;.,gn, j(gaﬂ)mIX=O. This followsfﬁppm thg

faet that j(g)¢IX and that Gyreeserdp is an A-reqgular seguence in Al



g e

The aim of 'this section is to prove the following.

proposition 3.4.

The Conjecture is true for O-dimensional ISCI.

proof.

As in the proof of the Theorem, one can assume that

%

ST4=STy, . Let gj,...,g, (resr.gj,...vg;) be a system of generatcrs

for T (resp.IX

X

)

It follows that

gi=%§aikgk+hi.j(g), where aikﬁAJ,lié C ‘for B k=1:2,.54,n Using

linear combinations of these equations one can take Xi=0 for

i=llaooln_l'

In the vector space SIy/m.I

the elem_entsgi

=SIX,/m.I the classes OI*

X X"

and j(g) form a*basis and the classes of the ele-

ments g} spall an n-dimensional subspace by (3.3).

It follows that e

rank

. OT

w
o
i
5

kanl (0) -2, (9) Al

where.B=(aij(O)) i=l,,.,;n—l; j=l;<+.,n, Then necessarily rk B=n-1

and there exist 1¢J,¢Jj, ...¢J,_1¢n such that the minor in B corres-

ponding to the

This

This

order to apply.

F e ® 7 - P . = - e 2 £ -

columns jl,...,j is non zero.

n=1
gives us the equality of ideals

¥ 4 e

’ ’ 2 3 L 3
(glr ..-,gn_l)—(gjl’ - ..’gjn;,l)
ideal defines a_germ of ami@malytic space v..and, in

our Theorem, we have to show that the generators g}
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can be taken such that Y is an ISCE.
Note that mIX=mIX,3mN for some poéitive integer N. This
implies that we can add to cur generators q; any homcgeneous poly-

nomials ?i of degree N and still have

ey ’ ’
Ix’_(ql+pl'""qn-l+pn—l’qn)

Ly z
IX_(gl+pl""'gﬁ—len—l' Qj)

where j#jy for k=l,...,n-1. If the polynomials p; are chosen gene-
ral encugh, it follows that qi+pl=...=g£_]+pn_l=0 are the equ ations

of an ISCI.D

§4. Relations with the order of K - determinacy of an
ISCI

The succes of the proof of the Conjecture in the 0-dimen-

sional case was based on the fact that:the ideal SI,, was not too

~%

big compared to the ideal IX'
In this section we present two new instances of this phe-

nomenon. The first one is the following.

-Proposition dals

Let X and X' be two ISCI. Assume that the defining map
g T q:((n,0)~—»((P,0) ofXis k -K- determined and that

k+1 %+l
(<o
SI,SIytm ~y STy, C Iy, 4m,

Then SX ~SX’ implies X~X'.

proof:
- gince SX~SX’, there exists a € -algebra isomorphism u:Ry

where R =A/SIX and R ’:A/SIX' . Let r(resp.r’) begthe maxi-

Q"’RXI 13 x

X



mal ideal in RX fresp,RX,). Then u(r):r’ and also u(‘rs)=(r_’)s for .n

any s. on the othsr hand, one obviously has

rk+l k+1 k+1

S o e
RX/ =~ A/SIX+m ~ A/IX m

and similarly for: X'. Hente one gets g

; k+1 k+1
*A/Ix+m o~ A/IX, +m

Since g is k{K}determine&, this gives X&X'. 0
To state the second result, we need some mqfe notations.
Assume that the defining map germ g of the ISCI X is put
in normal form as in (%.2) with p=n-dim X= the minimal number of
.generators for IX)Z.

.Thus we get the pairs (ky,iy),..., (k1 ) of positive s
integers, depending only'on X. We introduce the following two num-
bers

X (X) =1y (ky=1)+eooti (K =1) x)=..

P(X)=M(X)—ks+l,
The result we are looking for«is the following.

Propositicn 4.2,

Psing the ‘above notations, assume:that ol -
1. (ky,P)$(2,2).
ii. The order of ](LdeterminaCY of ggd(X)+ﬁ(X)--2.‘Then

SX~SX’ implies X~X", for any ISCI X°’.
‘ |

v

- proof: o ; : T

N

Assume that $I,=SI,, and take’qf,...,gé a system of gene-
rators for IX' in normal form. Hence we get some pairs

(kj,80)s«-0s (kg,10) . Using i.we get easily (k;7p)#(2,2). Let M de-
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“note the matrix e
99

3—;(——'- izl,-..,p,’ j=1'¢neyn o
J

Note tnat k <of(X) min.ord. (pxp)-minors in M and simi-
larly for X'. Using: this and c0m§uting the bairs (k,i) corresponding

to the ideal SI_=ST

X X!

and to a number of generators equalswith
af. : S
p+(p}, one obtains that s=t and kr=k£ 5 lr=l£ fotr=l ;. .o'i 5:Sks
Moreover we have an equality g’=N.g+a , where N is a
“pxp matrix over A and the components ai(i=l,...,p)-of the.. column #z:3
vector a belong to the ideal generated by the pxp minors of M in Bk
A simple investigation based on the normal €orm of g and
. g’ shows that N(0) is a matrix over € of the following‘type
, A 2

N- ¥

wher e “*the irxir matrix N.. is nondegenerate for r=l,...,s. In parti-

cular, the matrix N is invertible and hence g'~ G , where J=g+a
with 3=N"".a.
To finish the proof we have to show that g~g.
For this note that °
18 j°<°l§=j°(—lg , where X =(X)
Lo ' i
20 aém_ .J(q)c;'I'Kg o wherep—[ﬁ(x) 2 :
: e , - T Sleon .«+p—2_
_We derive from these as in ([ZJ, Lemma  (l.3)) that 3 g ~

§*+p'2g,'whiCh is precisely what we need by ii. 0

~N
We end this section with two examples which throw some light on
the question of how often is the condition ii, fulfilled.

‘lwe shall consider first the case of l-dimensional ISCI



i.e, p=n-1.

Let Hd(n,n—l) be the kernel of the natural @rojection
d-
J(n,n-1)—J l(n,nel)ﬁ
ZOur aim is toﬁbrove the follbwing.

» geﬁma 4.3 ' . : 8
For (n,d)¢(3,2) there is a Zzariski opEn and dense subset
UchQn,n—l) such that jdgeU imﬁliesithe mép germ g satisfies the

condition 4,2 ii.

Proof;

Take U to be the set ofci—jets ngeHJKn,n—l) such, thatary

A e T A CTEE R CTES

where@Nin(d—l}nl, Ig=(gl,...,gn_l) and 9<q) is the free A-module

o

It is clear that this subset U is open and since

diod d
it follows that U is nonempty. and hence dense.
We get by ([é], Corollary (1,4)) that a map germ g
with jdgeu is (N—l)ﬁk?determined.
= 'Qn ;heyétﬁer hand in‘the case Ixz(gl""fgn—l)'it
: fqllows_o( (X)3 (n-1 ) (d-1), ﬁ.a{‘w)"; (n-2) (d-1) and hence the condition

43 31 is fareiinea. 0
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Corollary 4.4. o : ' e ek ‘¢5§53

The Conjecture is true for l-dimensional ISCI having
Ygenerdec dnitial sparts",

More precisely, for each n»3 and d22 there is a Zariski
open and dense subset UCHd(n n-1) such that jdgeu for a deflnlnq

' map germ g for X and SX~SX’ give XaX' €Or any ESCT X,

proot |

When (n,d)#(3,2) the proof follows from (4.2) and (4. 3)
In the case (n,d)=(3,2), it is known that a generic penCLL of conlcs
is equivalent to (X Xg,xf ~X3) and it is 2~}fdeterm1red 0

The follow1ng example prevents us of becoming too.opti-
.mistic,

e
=

Example 4;5,

A map germ g:(Cn,O)-—+(¢2,O) whose components are homo-
geneous polynomials of degree 3 cannot 'satisfy the condition 40857

i1, for ni3.

Proof:
In this cased =4, (5 =2 and hence if g satisfies the condi-
tion 4,2 ii.,_one would obtain TKq:mS.Q(q) where 9(g)=A2. Lef us k
denote by (TKg)- the hOqueheOus éart of degree 5 in @Rg and by Pd
the vector space of homogeneous: polvnOmlals of degree d in Xl,..,x
It 1s obvious that

_dim(TKg)S\(n.dim P3+4' dim P

Using.thie;and the equality dim Pd;(n+g—l) one gets dim (TKg)g{

{2dim P; for n)3, a contradiction.ﬂ

§ 5, Hocmogeneous ISCIT

JIn this section we prove the Conjecture for ISCI which
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are homogeneous in the fbllowinq (usual) sense. 2@
Using a fixed coordinate system at the origin in Cn, we
Iidentify the € -algebra A with the (:—alqebra(f{xl,,..,xn} ofccn=
vergent power series, AD jdeal TcA is homogeneous if it is generated

by homogeneous polynomials Pl""'Pb ofideqgree

‘24d1$...$dp.

~_ We assume moreover as in (3.2) that Pk+f¥(Pl""’Pk) for
“/ﬁﬂk=i,...,p-l. The multidegree d(I)=(d1,...,dp) is called the‘type

,of the ideal. We let 19 genote the ideal generated by all the poly-

a®

4

‘nomials PeI with deg P¢Qg.

Y o e Definiti§n¢5.l. e +
TwO homogeneous ideals I,JcA aré equivalent (resp.linearly
eguivaient) if there-exists an analytic isomorphism hé€L (resp,h Li=
near with respect tc the fixed coordinate system) such that
h (EVET. ,

It is casy to establish the following basic result.

- Lewuma 5.2,

Two Lomogeneous ideals I,JcA are equivalent if and only

if 19 and g% are linearly equivalent for any q. D

pefinition 5.3.

S BRTSCT X is called hoquenedus.ifAits ideal IX is homo-

geneous in some coordinatgwsystem (which can and will be taken as

S & 5 =

ouf fixed coordinaté systﬁ&). s G i ;
we shall assume in the sequel nypj2.

The main result of this section is the following.

proposition 5.4.

Let X,X' be two homogeneous ISCI. Then SX~SX’ implies



X"

The proof will follow from a sequence of Lemmas, only
one.of them (5.6) using Ouf Theorem. A part from this, the difficul
situation is when X is defined by a éencil of quaarics and then a
careful investigation is needed, |

In one spécial case (n=4)" we describe an explicit way of

getting the ISCI X from the artinian algebra RX=A/SIX

" Lemma 5.5
The type of the ideal SIX aetermines the type of thé ideal

XC.

Proof ;

,»Assume d (I )—(dl,...,d ). Then d(SI )—(dl,...,d 1 Xy een X)
where K= (4 —l)+...+(d -l)z and equality holds ifand-only if
(ptdl)~(2,2),:In this last‘case d(SIX)_is just (2,d2,.1.,dz). 0

In éarticular, usinq (5.2) we find out thétuI and T, s
: Ly

: X
have the same type (dl,,;.,dp).

=k

When X yd | we have I =(SI, )~ and similarly for x’.

Using again (5.2) this ends the proof of Prop.(5.4)-in this case.

Lemma 5.6.

SX~SX' implies XQX’ when p_dl_2(d2.

Proof:

.Aésumg that SIX=SIX; is a homogeneous ideal of.tybe
Jv(z,dz,,;.,dz). There exist homogeneous polynomials 91+99 and gé %Q@
Qf degféé'fespectively.2, az and d2 such that Ixﬁ(gl,gz)-aﬂa.
Tyr=lgyng3) . -

: Thére are then two possibilities, : pein

Gase 1. F 9, is a nondeqenerate quadratic Form, we can
: ;,/JA, A A /1_) /
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apply directly the Theorem,

“Case 2, If 93 is degenerate, then corank qlil'and we

2 2

can take g;=Xy+...+X, - There exists & positive integer N such that

m.SIx:mN.'We define two ISCI Y and'Y’ by the ideals
' : Nie=o N
IY= l.dl+Xn:92) ? IY".= (ql+xn‘g:2)

“‘Then by Nakayama’s Lemma we get SIY=SIX‘and SIye=STys - Using our
Theorem we obtain Y@Y'. But 'since any ISCI is Einjtely J{—determined,

it follows that for N big ‘enough one has X~y and X'~Y’. 0

Lémma‘5.7.

SX~SX’ implies X~X' when p=dl.—.d§,=2.

pProof:

'We can take the defining maé gérms of X and X' -in the fol=

lowing normal form ([31, ChabXIII):

o ) 2 2 3
g=(Xg+e oo tXp, A X+ AR LX)

2

" 2 2 ,
g (Xl+,.p+xn,ﬁlxl+...ﬁun.xn)

with Ai',/ujeC - ~and )-i#ij,/*i%fij for il

There are several cases to discuss.

ogame 1 n=2,3

For  these values:of n there is a single class of nonde-

generate peﬁcilsiof guadratics and hence there is nothing to prove,

Case 2. n=4

The algebra RX=A/SIX_has a natural grading



S dgig s

2 = 5 '
Ro=d:,Rl=¢Xkl,...,xn), R2=¢¥Xi>/(gr?q2>' In the equatioangﬁgz we
can take 2,=0, A,=1, R3=-l, A4=A. consider an element a€Rr; such
that a?=0. '

If azafﬁju..+a4x4, then this condition is equivelent to

gi:af(l—l)+aa§—a2=0

e 2o
qz—'al(l+k)+Aa3+a4—O

Hence the set of elements a as above is a combLete intersection in..
cﬂ:Rl determined by the pencil (ql‘qZ)' We show thdt'the pencil
(ql‘qZ) thus obtained is equivalent to the béncil (gl,gz).

For this, note the following obvious facts:

<xgl+pg2 is deqenerate¢=>(«:p)e{;ozl),(1:1),(-1~1),(—2-1)}£§1

The projective transformation<&=—[+5,[3::{7+J sends one
ser of 4 podints in Pl onto the other and hence the pencils (91'92)

and (ql,qz) are equivalent ([3]).

Case 3. n25

Take any hé€Gl(n) such that h*(SIX,)=SIX and assume that

h is given by a matrix (a4j)=M, Then we have

»* ! 2 - ] ' & £
h (xix')::%;aikajk'xk +SOmeth1nq 1n<<x Xy s#t> . Let us denotc
by g;4 the initial sum above ‘and note that g e(&l,gz> the vector
bpace spanned by gl,gz, “
If each column in M has precisely one nonzero element,

" then h x =a, X - for some aie<£ and some permutation se€s . In

s (1)
*
this case,it is obvious that h (IX,)=IX.
ngssume now there iS a- column (Say the k"th One) haVinq
at least 2 nonzero elements (say aik and ajk)‘ Then gij%o and since

gijé<§1,§é> one has rkgijzn—l. Hence on the row i there are at
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least (n-1) nonzero elements. Consider the:linear maﬁ)
n n % , :
L-¢‘ “-_7{ 7 L(u)_(ulail'oparunain)n

i Now rkL)/n—l and hence dim L(V)),n—-2;;3, where V is the
vector subspace in C€" spanned by the rows of M different from the
i-th one. Siace L(V)C((’l‘, e e )iy (Xl"""’,kh)> by our hypothesis,

¥

this 1s a ceontradiction., U
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