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Abstgact

. In this paper the problem of stabilization of linear
differenciai control systems with Markov perturbations and the

¥ linear-quadratic control problem for such systems are discussed.

1. Notations and preliminaries

Rn is the real n-dimensional space. Tfip is a matr i
(or & Yecror) A}E means the transpose. H» 0 (H;,O)_means that H

is positive (semi) definite matrix.

{ft,gi ﬂ°} is a given probability fieid. If x disa

random variable by_Ex we denote the mean valkge of = E[x}w(t)=ﬂ

means mean Vieilue of x conditional on the event w!t)—l.
hruughuat this paper w(L), 20 USRI a rlght contlnaous

rarkov chain with state space the set D-{; 2,...,53

homogeneousb
—e?t, gere Q:[qij] with

and transition matrix P(t):[pij(tﬂ
S

q.:» 0, J#i and D

l:] 3:__1 lj



consider the system

(1) i el

where £, X are vectors in Rn.
phe. solution x(.) of (1) is defined in an obvious way,
" 90ining soldtion arcs of (1) &t jump points of w(t) (see L

“mhe solution x(t) is a continuous process with probability 1.

' For the system (1) we define the operator U as follows:

i e R N . <
(O (T e X(t,x,l)+f (t,x,l).—'g-%(t,x,l)+j§lV(t,x,J)qij oy

n 4
t20, X&R, 1ieD

whewe v (t,x71) are real fﬁnctions of class Cl in (t,x) for each
ieD.
Tt*#s known [1] —[3] that the following relation holds:

»

(@) Efvlois s x) v enleie e dev e, il

=E[ § (o) (u,x(u,to,x)‘,w‘(u))du‘{w-(to)=i] , Bzt 20, ieD, x¢R"

T
O

whete x (L& x), Lt 20, XeR is the solution of (1) with

Xx(t ,t. r/X)=X.

ol =0

>

2. Main results

Let us consider the controd- system



(3) EE{(t)

It =A(w(t))x (t)+B(w(t))u (t}

where A (i) are nxn matrices, B(l) are nxm-matrices, ie D and
Wi(t] s the Ccontrol Vvector.,
Let;f be the space of ail L=(L(l},«se,L(S)) where L (i)

are mxn matrices.

TH LéQf and xe i by xL(t,x) we denote the soiution
of the syscem (3) corresponding to wlk)y=Lilwlt) = (t) and

x (0,x)=x%X-.

Fox L&Z? oo Rn, ie D and 0¢T¢o» we define

T : >
(4) Vgt Tyd)=E] Sox*;i () (4 (0 (£) )+ ((€) ) N (w (£) ) L (w (£) ) )2 (£, ) i (0) =]

where M(i)2 0 and N(i)» 0, ig D are given matrices.

pefinition 1. LéZ is admissible (with respect to the con-

crol peeblem (3)~(4))-EE.V§9(X,L,i)Aaa for all=xe Rn and ie b

Definition 2. The system (3) is stabilizable -1 theie

exists Led ‘such that the trivial solution of (3) for u(k)=

=1, (w(t))x (t) is exponentially stable in mean square.

If the above property holds we shall say that 1, stabilizes

EE? system (3).

’zNow,‘LetQ% be ﬁhe épéee of all H=(H(L),..«pH(S)) where
~H(i), i€ D are Symmetllc nxn matrices. A . ‘
i H(?f we say that H is positive definite (H 2 O) if
H(i}> Gfbr all i€ D; HYy O-df (i) 0 for all i€ D. We”shall
say that’ the palr =tA, 1) 15 controlliable if for every i€Db, -

(ati) B is conctroilables



We define the operators F:J”XJ@+J$ L, GiHRL as

follows:

'Y

F(L,H)(i)=(A(i)+B(ijL(i))*H(i)+H(i)(A(i)+B(i)L(i))+

S
4 T H()qy )L (NELE), ie D,

J=1

B
W)

G(H) (1)=-N " (1)8F (1)HE) . ie-

Theorem 1

(1) If LeX is admissible then F(L,H)=0 where H is defined

by x'H(1)x=V,.. @&L,1), xe R", i€ D.

eLd ) If L is admissibleand #& Voo (¥,5L,1) > 0 for adkl x#0,:

i& D then L-stabilizes the system (3) and the equation F (L, R) =0

has a unigue-solutiem®in the class of positive semidefinite ele-
que - p

ments of F¥ . =

(id) T (A*,M) is controllable then every adm.issible system

Lalf hasthe-property V., (x,L,i)> 0 for all x#0, i€ D.

(iv) If L and K 0 verify F(L,Ky=0 then L is admissible.

Theorem 1 is'proved in [4] (see rLemmas 5 and 3%

From (ii) -and (iii) of Theorem 1 it follows

Ccorollary 1. If (AX,M) is contredlable then every admis-

sible system Lelﬂ stabilizes the system (3)§

Let us consider the following Riccati system

SERL g
(5) — 32 (1)Ki(t)+Ki(t)A(})+jéin(t)qij‘

=l et

-K; (B)B(1)N ~ (1)B" (1)K, (t)+M(1), K, (0)=0, 1€ D



From the aynamic programming approach (see fa pl192]) it follows

that

3

(6) 05}%}t1)5 K'(tz’ = VT(X,L,i)a X Ki(T)x fot - all t2>t1;0

anl qutcned o oxeR’ | i¢ Ba

@bviously; /if K(t):(Kl(t);Q..,KS(t)) defined by (5) is

bounded then it is convergent (as t=*e= ) and its limit

Bt .., kle)) ver fies the Riccati system
(7)  AT(DKE)+R(DAE) + L K() gy ML) -
' J

The system (7) can be written in the form

(8) B (05K =0

“From Theorem 1 (Assertion (iv)) it follows directly that

the following Corollary holds

Coroltary 2. EE E2 0 dca solution of @) then G (K) EE

admissible.

The next proposition follows directly from the inequali-

tieci (6]

Proposition 1. If there exiists an admissible system

B (all) - o Lits e hon:



1) K(t)=(Kl(t),...,KS(t)) defined by (5) is convergent
(as t=2%).,

(ii) The Riccatl equation (3) has a positive semiderinite

o

solution,

Theorem 2. EﬁaK(t)=(Kl(t),...,Ks(t)) defined by (5) is

convergent (as t=e= ) then G(E) is admissible and

. : . v o :
min Vo (X, L, 1) =V (x,G(K),1)=xxK(1)x Feral i xeRn, LS

Lel

where K (i)=lim K, (t).
e oo

Proot

From Corollary Z it follows that G(E)wiswadmissibie. Let
T=G (X) -
Since F(L,i)=0, nsing the relation: (2] for the ssystem (3]
: = ; 3 xe
with u(t)=Lx (t) and for v (tyx,i)=x"K(i)X we get

Bl x%(T,X)%(w(T))xL(T,X)Iw(O):ﬂ —xxﬁ(i)x:-VT(x,i,i), T;d, xéRn, iéD‘“

But by (6) vT<x,E,i)>, X*Ki(T)x,‘; 0.

Hence
}& ¢ : V~ z }%N %
XKy (T)x & Vo (%, L,1) ¢ X K(1)X
Thus

e 0 Gol iR KX




Now, let Le&f & Byas(6)iawe cchLude Ehat V. (XLl X*E(i)x.
Thils, Theorem 2 issproved:

FrumsCorellary 2, Theorem 2 and Theorem 1. (Assertion (id))
it follows that the next corollary holds. .

Ccorollary 3 EE K(t):(Kl(t),...,KS(t)) defined by (5} "is

e

o4
convergeiEa(as e »re ) cand i f its Limit K s positive definite

ot
then G/K) stabilizes the system (3).

The next resgult follows easily from Theorem 2 and Theorem

= (Assertions (11¥) and (ii)).

Proposition 2. If (Ax,M),is controllable and if K(t)=

=(Kl(t),.l.,KS(t)) defined. by (5) is .convergent (as tg*e );Ehgﬁ'

Lt lad
its limitv K is positive definite and G(X) stabilizes the system

(3).

Theorem 3. The following two assertions are equivalent:

(i) K(t)ﬁ(Kl(t),ﬂfa,Kg(t)j defined by (5) is comvergent

(as twes ) and its limit K is positive definite.

(i) The .equation  (é) - has a pesitive definite soLg}ion'and

elements ofJ%.

proof

Suppose that (i) holds. Hence'§> 0 is a solution of (8).

» 0; K,» 0 be two solutions of (8). We shall prove that

we denote L =G (K,), LZ=G(K2). By Theorem Z,an(eripi)z

;xxg(i)x > 0, x#0, ieD. Hence from corolilary 2 and Theorem l-omn



(Assertion (ii)) it foliows that L. stabilizes the system (3).

1

Similarly, L., stabilizes the system (3J.

2
Ns infthe proof:of Theorem 2 we can prove that

el x)ﬁl (T, x) 5y (9(2))3y, (Tx) hw(0)=8] 1™k (1)x=-vy (6,1, 4)

Using the above equaiity)the relations F(Ll'Kl):O’ F(L,rKy)=0,
and the relation (2) for the system (3) ~with u(t)=Ll(w(t))x(t)

and for v(t,x,i)=xxK2(i)x, by direct computations we get

/s o e s s
l(T,X)Kl(w\r))xLl(1,x)\w(0)—1] x.Kl(l)x

'E[xi

~(E[x (T K, o (0)x, (0] w(0)=1] xR, (1)) =

It 1

It e "
=“E[ (x> (s.x) (Ky(w(s)) =K, (w(s)))B(w(s)IN l(W(S))Bx-(W(S)) s
1

O
ok

. (s,x)ds|w(0)=1]

" (Ky (w(=) ) -Ky (w(s))) -x :

. Hence

(K, (1) -K) (1)x & E[xT (£,%) (Ky (w(£)) =Ky (w(£) )%, (£,x) [ w(0)=1, £ 0
1 "

Ly

ey

But Ll“stabiLizes the: systlem (3) . Hence dim Elx (T57%)

= Ll

Therefcre

-“X}E(Kz"(i)—Kl'(i)) << 0, e th Y

Thus Ky, <K Similarly, we can prove that Kls K,. Hence

(1) = (ii).



mhesa ssertion: (Li) = . (1 p follows.divectly from @erollary

2, and proposition 1. Thus Theorem 3 is proved,

Theorem 4. The system (3) is stabilizable ir and; only if

the following Riccati system

: S
(9)  AF(1)S(1)+S(1)A(1)+ T §(J)q, <+I_~S(d)B(1)B” (1)8(1)=0, i€D

j‘.‘:l l]

hassassolution S(E92 0, i€ D, (In is the identity matrix in Rn).

PEOO L

Usirig Proposition 1 corresponding to the case Mrin v N=Im-
‘we can conclude that if the system (3) is stabilizable then the
system (9) has a positive semidefinite solution,

Bpplying corollary 3 and corollary 1 in the cas.etM:]:,n ’
Nl - We obtain easily that 4if the system (9) has a solution

S(i)» 0, i€ D then the system (3) is stabilizable.

Theor em 5

et it

) e i K 401 ) defined by (5) is

Suppose that K(t)=(K

“convergent (as t-—»¢® ) and its.limit K ig positive derinite.

Let Lo:(Lo(l),...,LO(s)) be an admissible system. Then

the relations

=G (K,) « P?/O

p+l 12

@0y z F(Lp,Kp)zo, I

define uniquely the sequences L and sz 07 D2 0

P




Lp'and Kp defined by (10) have the following properties:

(1) Lp stabilizes the system (3) for each p2 0

Gty ki

- >0, p>U:

Ko
iy v (x,Lp,i)=x*Kp(i)x, ps 0, wer:, deb.
(iv) lim K_(i)=K(1). '
p-Doe

'proof

By (6) we have Vo (x,I_,1)> K(1)> 0, x#0, i€ D. Hence,
‘from the assertion (ii) of Theorem 1 it follows that L stabi-
lizes ﬁhe system (3) and the relation F(LO,KO)=0 defipes uniquely
the element Koéz? with KO) Oesising again Theorem 1 (Assertion {dh))
wesconclude what x*KO(i)x:VP,(x,LO,i). Hence Ko) 0. Consider now

L,=CG(K

1

O)a we shall prove that Llstabilizes the system (3).

Trdeed ik 15 easy Lo ‘prave

min{ XM (1) x+0"N (1) ur2D® (1) K (Dx+205BF (1)K (1)x] =

S
=X le,lg) (l)wxxz K, (119, 4% xeRn, i€ D.
j=1 o

From‘the above equality, for u=LO(i)x we get

S ; s
3% e ; b3 ; * S 3 :
X F(LO,AO)(l)x-x; ZTKO(J)qijxgzx F(Ll,KO)(l/X—X fElKO(J)qin

Hence

F(Ly1Ky)& O

Using this inequality and the relation (2) for the system (3)



with u(t)=L, (w(t))x (£) and for v (t,x,1)=x"K_(i)x we obtain

LLE ¥R iyx

el VT(x,Ll < -

Then L, is admissible, Using the same reasoning as in the case

of L, we obtain that I, stabilizes the system (3), the relation

1
F(Ll,Kl):O defines uniquely Kl> 0, -and X%Kl(i)xsz,(x,ngi);

henece, by (11) Klé Ko‘ Repeat the above reasoning to conclude

that (i1=(111] hold. Now, let K=lim K ., -From (10} we - get F(G(%),%)zb

; s p-»oe
By. Theorem 3, we get K=K.:The #heotem is proved.

The results in this paper,extend Theorem 6.1 in C1].
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