INSTITUTUL
DE
MATEMATICA

PENTRU CREATIE
STIINTIFICA SI TEHNICA

ISSN 0250 3633

STABILIZATION OF LINEAR DIFFERENTIAL CONTROL SYSTEMS WITH MARKOV PERTURBATIONS

by

T. MOROZAN

PREPRINT SERIES IN MATHEMATICS

No.54/1983

Med 1963 BUCURESTI

APPARENT DE TOUTEN : APPARENT DE TOUTE CORTO : LES ARRESTS PRENTS

HUNGTERN HO ACHTANETAN

1825 - 235 W N.Z. I

TOTAL CALL TO THE TO STATE THE STATE OF STATE OF

FASTERS TO A CONTRACT OF

STABILIZATION OF LINEAR DIFFERENTIAL CONTROL SYSTEMS WITH MARKOV PERTURBATIONS

by

T. MOROZAN*)

October 1983

*)The National Institute for Scientific and Technical Creation, Vepartment of Mathematics, Bd. Pacii 220, 79622 Bucharest, Romania TO STATE OF THE ST

Proceeding.

EFF - COLUMN

TO THE STATE OF TH

STABILIZATION OF LINEAR DIFFERENTIAL CONTROL SYSTEMS WITH MARKOV PERTURBATIONS

by

T. MOROZAN

Department of Mathematics, INCREST, Bdul Păcii 220, 79622 Bucharest, Romania

Abstract

. In this paper the problem of stabilization of linear differential control systems with Markov perturbations and the linear-quadratic control problem for such systems are discussed.

1. Notations and Preliminaries

 R^n is the real n-dimensional space. If A is a matrix (or a vector) A^* means the transpose. H> 0 (H> 0) means that H is positive (semi) definite matrix.

 $\{\mathcal{N},\mathcal{F},\mathcal{P}\}$ is a given probability field. If x is a random variable by Ex we denote the mean value of x; $\mathbb{E}[x|w(t)=j]$ means mean value of x conditional on the event w(t)=i.

Throughout this paper w(t), t>0 is a right continuous homogeneous Markov chain with state space the set D= $\{1,2,\ldots,s\}$ and transition matrix $p(t) = [p_{ij}(t)] = e^{Qt}$. Here $Q = [q_{ij}]$ with $q_{ij} > 0$, $j \neq i$ and $\sum_{j=1}^{s} q_{ij} = 0$.

Consider the system

(1)
$$\frac{dx(t)}{dt} = f(t, x(t), w(t))$$

where f, x are vectors in Rⁿ.

The solution x(.) of (1) is defined in an obvious way, joining solution arcs of (1) at jump points of w(t) (see [1]). The solution x(t) is a continuous process with probability 1. For the system (1) we define the operator U as follows:

(Uv)
$$(t,x,i) = \frac{\partial v}{\partial t}(t,x,i) + f^*(t,x,i) \frac{\partial v}{\partial x}(t,x,i) + \sum_{j=1}^{s} v(t,x,j)q_{ij}$$
, $x \in \mathbb{R}^n$, $i \in D$

where v(t,x,i) are real functions of class C^1 in (t,x) for each $i \in D$.

It is known [1] -[3] that the following relation holds:

(2)
$$E[v(t,x(t,t_{0},x),w(t))]w(t_{0})=i]-v(t_{0},x,i)=$$

$$=E[\int_{t_{0}}^{t}(Uv)(u,x(u,t_{0},x),w(u))du|w(t_{0})=i], t>t_{0}>0, i\in D, x\in \mathbb{R}^{n}$$

where $x(t,t_0,x)$, $t > t_0 > 0$, $x \in \mathbb{R}^n$ is the solution of (1) with $x(t_0,t_0,x)=x$.

2. Main results

Let us consider the control system

(3)
$$\frac{dx(t)}{dt} = A(w(t))x(t) + B(w(t))u(t)$$

where A(i) are $n_X n$ matrices, B(i) are $n_X m$ -matrices, ie D and u(t) is the control vector.

Let $\mathcal L$ be the space of all L=(L(l),...,L(s)) where L(i) are mxn matrices.

If Led and $x \in \mathbb{R}^n$ by $x_L(t,x)$ we denote the solution of the system (3) corresponding to u(t)=L(w(t))x(t) and $x_L(0,x)=x$.

For Let, $x \in \mathbb{R}^n$, if D and Ofter we define

(4) $V_{T}(x,L,i)=E\left[\int_{0}^{T} x_{L}^{*}(t,x) \left(M(w(t))+L^{*}(w(t))N(w(t))L(w(t))\right)x_{L}(t,x)dt\right]w(0)=i\right]$

where $M(i) \geqslant 0$ and N(i) > 0, if D are given matrices.

Definition 1. Let is admissible (with respect to the control problem (3)-(4)) if V_{\bullet} (x,L,i) $< \infty$ for all xe Rⁿ and ie D.

Definition 2. The system (3) is stabilizable if there exists LeX such that the trivial solution of (3) for u(t) = L(w(t))x(t) is exponentially stable in mean square.

If the above property holds we shall say that L stabilizes the system (3).

Now, let $\mathcal H$ be the space of all $H=(H(1),\ldots,H(s))$ where H(i), if D are symmetric nxn matrices.

If $H \in \mathbb{R}$ we say that H is positive definite (H > 0) if H(i) > 0 for all $i \in D$. We shall say that the pair (A, H) is controllable if for every $i \in D$, (A(i), H(i)) is controllable.

We define the operators $F: \mathcal{I} \times \mathcal{H} \to \mathcal{H}$, $G: \mathcal{H} \to \mathcal{L}$ as follows:

$$F(L,H)(i) = (A(i)+B(i)L(i))^{*}H(i)+H(i)(A(i)+B(i)L(i))+$$

$$+\sum_{j=1}^{s}H(j)q_{j}+M(i)+L^{*}(i)N(i)L(i), \quad i \in D,$$

$$G(H)(i) = -N^{-1}(i)B^{*}(i)H(i)$$
, is D

Theorem 1

- (i) If LeX is admissible then F(L,H)=0 where H is defined by $x^*H(i)x=V_{\infty}$ (x,L,i), $x\in R^n$, ie D.
- (ii) If L is admissible and if $V_{\infty}(x,L,i) > 0$ for all $x \neq 0$, if D then L stabilizes the system (3) and the equation F(L,K)=0 has a unique solution in the class of positive semidefinite elements of \mathcal{H} .
- (iii) If (A^*, M) is controllable then every admissible system LeX has the property V_{\bullet} (x, L, i) > 0 for all $x \neq 0$, if D.
 - (iv) If L and K > 0 verify F(L,K) = 0 then L is admissible. Theorem 1 is proved in [4] (see Lemmas 5 and 3). From (ii) and (iii) of Theorem 1 it follows

Corollary 1. If (A^*, M) is controllable then every admissible system LeV stabilizes the system (3).

Let us consider the following Riccati system

(5)
$$\frac{dK_{i}(t)}{dt} = A^{*}(i)K_{i}(t) + K_{i}(t)A(i) + \sum_{j=1}^{s} K_{j}(t)q_{ij} - K_{i}(t)A(t) + \sum_{j=1}^{s} K_{j}(t)A(t) +$$

$$-K_{i}(t)B(i)N^{-1}(i)B^{*}(i)K_{i}(t)+M(i), K_{i}(0)=0, i \in D$$

From the synamic programming approach (see [1 p.192]) it follows that

(6) $0 \le K_i(t_1) \le K_i(t_2)$, $V_T(x,L,i) \ge x^* K_i(T) x$ for all $t_2 > t_1 \ge 0$ and all $L \in \mathbb{Z}$, $x \in \mathbb{R}^n$, $i \in D$.

Obviously, if $K(t) = (K_1(t), \dots, K_s(t))$ defined by (5) is bounded then it is convergent (as $t \rightarrow \infty$) and its limit $K = (K(1), \dots, K(s))$ verifies the Riccati system

(7)
$$A^{*}(i)K(i)+K(i)A(i)+\sum_{j}K(j)q_{ij}+M(i)-K(i)B(i)N^{-1}(i)B^{*}(i)K(i)=0$$
, if D

The system (7) can be written in the form

(8)
$$F(G(K), K) = 0$$

From Theorem 1 (Assertion (iv)) it follows directly that the following Corollary holds

Corollary 2. If K > 0 is a solution of (8) then G(K) is admissible.

The next proposition follows directly from the inequalities (6).

<u>proposition 1.</u> If there exists an admissible system $L=(L(1), \dots, L(s))$ then:

- (i) $K(t) = (K_1(t), \dots, K_s(t))$ defined by (5) is convergent (as $t \rightarrow \infty$).
- (ii) The Riccati equation (3) has a positive semidefinite solution.

Theorem 2. If $K(t) = (K_1(t), ..., K_s(t))$ defined by (5) is convergent (as $t \rightarrow \infty$) then G(K) is admissible and

min V_{∞} $(x,L,i)=V_{\infty}$ $(x,G(\tilde{K}),i)=x^{*K}\tilde{K}(i)x$ for all $x\in R^{n}$, is Let

where $K(i) = \lim_{t \to \infty} K_i(t)$.

proof

From Corollary 2 it follows that $G(\widetilde{K})$ is admissible. Let $\widetilde{L}=G(\widetilde{K})$.

since F(L,K)=0, using the relation (2) for the system (3) with u(t)=Lx(t) and for $v(t,x,i)=x^*K(i)x$ we get

But by (6) $V_T(x,L,i) \geqslant x^*K_i(T)x \geqslant 0$.
Hence

$$x^{*}K_{i}(T)x \leqslant V_{T}(x,\tilde{L},i) \leqslant x^{*}\tilde{K}(i)x$$

Thus

$$V_{\infty}(x,\tilde{L},i)=x^{*}\tilde{K}(i)x$$

Now, let Let. By (6) we conclude that V_{∞} (x,L,i) $\gtrsim x^*\tilde{K}(i)x$. Thus, Theorem 2 is proved.

From Corollary 2, Theorem 2 and Theorem 1 (Assertion (ii)) it follows that the next corollary holds.

Corollary 3. If $K(t) = (K_1(t), \dots, K_s(t))$ defined by (5) is convergent (as $t \rightarrow \infty$) and if its limit \widetilde{K} is positive definite then $G(\widetilde{K})$ stabilizes the system (3).

The next result follows easily from Theorem 2 and Theorem 1 (Assertions (iii) and (ii)).

Proposition 2. If (A^*, M) is controllable and if $K(t) = (K_1(t), \dots, K_s(t))$ defined by (5) is convergent (as $t \gg \infty$) then its limit K is positive definite and G(K) stabilizes the system (3).

Theorem 3. The following two assertions are equivalent:

- (i) $K(t) = (K_1(t), ..., K_s(t))$ defined by (5) is convergent (as $t \rightarrow -$) and its limit K is positive definite.
- (ii) The equation (3) has a positive definite solution and this solution is unique in the class of positive semidefinite elements of \mathcal{H} .

proof

Suppose that (i) holds. Hence K > 0 is a solution of (8). Let $K_1 > 0$; $K_2 > 0$ be two solutions of (8). We shall prove that $K_1 = K_2$.

We denote $L_1 = G(K_1)$, $L_2 = G(K_2)$. By Theorem 2, V_{∞} $(x, L_1, i) > x^*K(i)x > 0$, $x \neq 0$, $i \in D$. Hence from Corollary 2 and Theorem 1

(Assertion (ii)) it follows that L_1 stabilizes the system (3). Similarly, L_2 stabilizes the system (3).

As in the proof of Theorem 2 we can prove that

$$E[x_{L_1}^*(T,x)K_1(W(T))x_{L_1}(T,x)|W(0)=i]-x_{K_1(i)}^*x=-V_{T_1(x,L_1,i)}$$

Using the above equality, the relations $F(L_1, K_1) = 0$, $F(L_2, K_2) = 0$, and the relation (2) for the system (3) with $u(t) = L_1(w(t)) \times (t)$ and for $v(t,x,i) = x^* K_2(i) x$, by direct computations we get

$$\begin{split} & \mathbb{E} \left[\mathbf{x}_{L_{1}}^{*} \left(\mathbf{T}, \mathbf{x} \right) \mathbf{K}_{1} \left(\mathbf{w} \left(\mathbf{T} \right) \right) \mathbf{x}_{L_{1}} \left(\mathbf{T}, \mathbf{x} \right) \right] \mathbf{w} \left(\mathbf{0} \right) = \mathbf{i} \right] - \mathbf{x}^{*} \mathbf{K}_{1} \left(\mathbf{i} \right) \mathbf{x} - \\ & - \left(\mathbb{E} \left[\mathbf{x}_{L_{1}}^{*} \left(\mathbf{T}, \mathbf{x} \right) \mathbf{K}_{2} \left(\mathbf{w} \left(\mathbf{T} \right) \right) \mathbf{x}_{L_{1}} \left(\mathbf{T}, \mathbf{x} \right) \right] \mathbf{w} \left(\mathbf{0} \right) = \mathbf{i} \right] - \mathbf{x}^{*} \mathbf{K}_{2} \left(\mathbf{i} \right) \mathbf{x} \right) = \\ & = - \mathbb{E} \left[\int_{0}^{T} \mathbf{x}_{L_{1}}^{*} \left(\mathbf{s} \cdot \mathbf{x} \right) \left(\mathbf{K}_{1} (\mathbf{w} (\mathbf{s})) - \mathbf{K}_{2} (\mathbf{w} (\mathbf{s})) \right) \mathbf{B} \left(\mathbf{w} (\mathbf{s}) \right) \mathbf{N}^{-1} \left(\mathbf{w} (\mathbf{s}) \right) \mathbf{B}^{*} \left(\mathbf{w} (\mathbf{s}) \right) \cdot \mathbf{K}_{1} \left(\mathbf{s} \cdot \mathbf{x} \right) \left(\mathbf{K}_{1} (\mathbf{w} (\mathbf{s})) - \mathbf{K}_{2} \left(\mathbf{w} \left(\mathbf{s} \right) \right) \right) \mathbf{K}_{1} \left(\mathbf{s} \cdot \mathbf{x} \right) \mathbf{d} \mathbf{s} \right] \mathbf{w} \left(\mathbf{0} \right) = \mathbf{i} \right] \end{split}$$

Hence

$$\mathbf{x}^{*}(\mathbf{K}_{2}(\mathtt{i})-\mathbf{K}_{1}(\mathtt{i}))\mathbf{x} \leqslant \mathbf{F}[\mathbf{x}_{\mathbf{L}_{1}}^{*}(\mathtt{t},\mathtt{x})(\mathbf{K}_{2}(\mathtt{w}(\mathtt{t}))-\mathbf{K}_{1}(\mathtt{w}(\mathtt{t})))\mathbf{x}_{\mathbf{L}_{1}}(\mathtt{t},\mathtt{x})]\mathbf{w}(\mathtt{0})=\mathbf{i}],\;\mathbf{t}\geqslant 0$$

But L_1 stabilizes the system (3). Hence $\lim_{T\to L_1} |x_{L_1}(T,x)|^2 = 0$. Therefore

$$x^{*}(K_{2}(i)-K_{1}(i)) < 0$$
, $x \in \mathbb{R}^{n}$, $i \in \mathbb{D}$.

Thus $K_2 \leqslant K_1$. Similarly, we can prove that $K_1 \leqslant K_2$. Hence (i) \implies (ii).

The assertion (ii) \Rightarrow (i) follows directly from Corollary 2, and Proposition 1. Thus Theorem 3 is proved.

Theorem 4. The system (3) is stabilizable if and only if the following Riccati system

(9)
$$A^{x}(i) S(i) + S(i) A(i) + \sum_{j=1}^{s} S(j) q_{ij} + I_{n} - S(i) B(i) B^{x}(i) S(i) = 0, i \in D$$

has a solution $S(i) \ge 0$, if D. (In is the identity matrix in R^n).

proof

Using Proposition 1 corresponding to the case M=I $_{\rm n}$, N=I $_{\rm m}$ we can conclude that if the system (3) is stabilizable then the system (9) has a positive semidefinite solution.

Applying Corollary 3 and Corollary 1 in the case $M=I_n$, we obtain easily that if the system (9) has a solution $S(i) \geqslant 0$, if D then the system (3) is stabilizable.

Theorem 5

Suppose that $K(t) = (K_1(t), \dots, K_s(t))$ defined by (5) is convergent (as $t \to \infty$) and its limit K is positive definite.

Let $L_0 = (L_0(1), \dots, L_0(s))$ be an admissible system. Then the relations

(10)
$$F(L_p, K_p) = 0, L_{p+1} = G(K_p), p \ge 0$$

define uniquely the sequences L_p and $K_p > 0$, p > 0.

Lp and Kp defined by (10) have the following properties:

- (i) L_{p} stabilizes the system (3) for each p > 0
- (ii) $K_p \ge K_{p+1} > 0$, $p \ge 0$.
- (iii) $V_{\infty}(x,L_p,i)=x^*K_p(i)x, p \geqslant 0. x \in R^n, i \in D.$
- (iv) $\lim_{p\to\infty} K(i) = K(i)$.

proof

By (6) we have $V_{\bullet\bullet}$ $(x,L_{O},i)\geqslant \tilde{K}(i)>0$, $x\neq 0$, if D. Hence, from the assertion (ii) of Theorem 1 it follows that L_{O} stabilizes the system (3) and the relation $F(L_{O},K_{O})=0$ defines uniquely the element $K_{O}\in\mathcal{H}$ with $K_{O}\geqslant 0$. Using again Theorem 1 (Assertion (i)) we conclude that $x^{*}K_{O}(i)x=V_{\bullet\bullet}$ (x,L_{O},i) . Hence $K_{O}\geqslant 0$. Consider now $L_{1}=C(K_{O})$. We shall prove that L_{1} stabilizes the system (3).

Indeed, it is easy to prove

$$\min_{u} \left\{ x^{*}M(i)x + u^{*}N(i)u + 2x^{*}A^{*}(i)K_{O}(i)x + 2u^{*}B^{*}(i)K_{O}(i)x \right\} = 0$$

$$=x^*F(L_1,K)(i)x-x^*\sum_{j=1}^sK_0(j)\alpha_{ij}x, \quad x\in R^n, i\in D.$$

From the above equality, for $u=L_0(i)x$ we get

$$x^{*}F(L_{o},K_{o})(i)x-x^{*}\sum_{j=1}^{s}K_{o}(j)q_{ij}x \ge x^{*}F(L_{1},K_{o})(i)x-x^{*}\sum_{j=1}^{s}K_{o}(j)q_{ij}x$$

Hence

 $F(L_1,K_0) \leq 0$

Using this inequality and the relation (2) for the system (3)

with $u(t)=L_1(w(t))x(t)$ and for $v(t,x,i)=x^*K_0(i)x$ we obtain

$$(11) \qquad V_{T}(x,L_{1},i) \leq x^{*}K_{O}(i)x$$

Then L_1 is admissible. Using the same reasoning as in the case of L_0 we obtain that L_1 stabilizes the system (3), the relation $F(L_1,K_1)=0$ defines uniquely $K_1>0$, and x^*K_1 (i) $x=V_{cov}$ (x, L_1 ,i); hence, by (11) $K_1 \leq K_0$. Repeat the above reasoning to conclude

that (i)-(iii) hold. Now, let $K=\lim_{p\to\infty} K_p$. From (10) we get F(G(K),K)=0 By Theorem 3, we get K=K. The theorem is proved.

The results in this paper extend Theorem 6.1 in [1].

References

- W.M.Wonham, Random differential equations in control theory.
 probabilistic methods in Applied Math., vol.2, Acad.
 press, 1970.
- 2. I.Katz and N.N.Krosovskii, On stability of systems with random parameters (in russian), P.M.M., 24, 1960, pp.809-823.
- 3. T.Morozan, Stabilitatea sistemelor cu parametri aléatori, Edit.Acad. RSR, 1969.
- 4. T.Morozan, Optimal stationary control for dynamic systems with Markov perturbations, Preprint Series in Mathematics, INCREST, no.33/1983; Stochastic Analysis and Appl.3, 1983.