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AN THE GEOMETRY OF THE FINSLERIAN G-STRUCTURES
ON DIFFERENTIABLE MAMIFOLDS

by
Sorin Dragomir

It is known that every first erder geometric structure can -
be regarded as a reduction of the bundle of all linear frames on
the given differentiable manifold. See /2/, /29/.

Let M be a n-dimensional ¢ - differentiable manifolid.

Then a O(n)-structure on M is exactly a Riemannian structure,on M ;

e 1f G is the Lie subgroup of GL{n, R) consisting of all .linear itrans= o
formétions“OfA*anwhich-leave Rk invariant, kis n,- thenra G"strucw
ture on M s a k~differential system on M ; if n is even,-n = 2m,
“#fén a GL(m, C) - structure on M is exactly an almost complex
structure on M, etc.

On the other hand, in the framework. of Finsler geometry.,
there have been introduced and studied several geometric structures

: depending on directional arguments, as the metrical Finsler struc-
tures, /26/, the symplectic and hamiltonian finslerian structures;.
120/ ; /27/, the conformal Finsler structures, /19/, /28/, the
finslerian almost complex structurés,l/IS/, /23/, the finslerian
distributions, /7 /. A natural Guestibn arises here : does it exist
an unltary treatmeut of the finslerian geomctrlc structures,; in
the manner of the claissital theory of G - structures 2

For ‘“the present paper, a finslerian G-structure on M is a
G—principaiféubbundle of the GL{n;+R)-principal Finsler bundle

=L o) : s -



 Several examples of geometric structures given by finslerian
tensor fields on'M are shown to obey'this definition. If M cafries
a regular connection in the induced Finsler vector bundle, two
R?-valued differentiable l-forms eh and ‘O%.are defined, each
giving a generalization cf ‘the canonical<lﬁform of a G-structure,

none of which having trivizl kernels. This obstruction is avoided
h

by taking the fibred‘proﬁuct of ©' and o7 ; the résulting lifting
technics leads to the coﬁstruct;on of the first-order structure
function df the finslerian G-structure. The dependence on the choice
of the‘régular coﬁnectién is factéred out as a result of the fact
that given a horizontal distrihutiorn- in the. principa! FEinsler bundle,
the remaining horizontal distributions are “Farametrised b? elements
‘of Hom( R®, L(@)).

:« The first-order-structure function of the finsleriafiG-struc=
-ture is--naturally related to- the two torsions of the given regular cog

connection.

1. INTRODUCTION

We need -a,survey of the basic congtrﬁctions concerning: the
Finsler bundles and the reguliar connections. For all these we in--
dicate /1/“as main reference.

Let M be a n-dimensional C -differentiable manifold &s

before. Let then :

My T(M)——s "M

dencte the tangent bundle over M and :

o

"
- M. '}
it’s subbundle_¢onsisting of all non-zero tangent vectors on M. Let s -

=1

ny
S P il ™ M




be the reciprocal image of T (M) by w. That is, the following

diagram is commutative :

. P n
BB e W
|
T ﬂ
v “/
™ > M
T1
where : ;
_ ;- -
P Mx T(M) M
- n
T Mo T(M) T (M)

' N
stand for the natural projections of the product manifold M 'x T(M).

A #iclearly "l 7™M is a differentiable real vector bundle over
= :

M , having GL(n, 'R) as structure group ard R as standard fibre.
Throughout the paper GL (g;»R) denotes the general linear group of

ey | -
order n. Then m * TM is called the Finsler vector bundle.

: ‘ v
<. .“A non-zero tangent vector =x on M is called a tangent
0 e -
direction on M. The fibre over x 1in T 1 oM is denoted by ﬂ%l TM.

: X
Let F/M)-— M be the GL(n, R) - principal bundle of all linear

frames on M. Let then =

1

= N
m F (M) M

be the reciprocal image of F{M) by w. The restrictions to ﬂ_l F (M)
SN ;
of the ratural projections of the product manifold M X F(M) give

the commutative diagram bellow :



=2

T - F(M)

F(M) ——— M

‘The GL(n, R) = bundle “_1 F (M) over ﬁ isiwell known in the litera-

tﬁré as thé principal Finsler bundle. See also /25/.

In the sequel, we use a more Finsler - like definition of
the principal Finsler bundle, which i$ shown to be equivalent to

Matsumoto’s one.
Y N
“*  Tet x € M be a fixed tangent direction on M. Let P
X

be the space of all izomorphisms ::_ el
n -1

T ™

(7}

X

U R

= N oy
Let P ¥ the disjoint union of all the spaces P , for all x & M.
v X -—
Lot ¢ % oopiies  Mo-be tHé“natural pRojectionithgk ds n (u)= VR
2 . p
it-u-C P .
X N
It is well known that :
~n
PIM, v ., GL{(n, R)}
e

is a principal bundle over M.nBge /18/. There is a naturally induced

action of GL(my"R) on the product manifold P x R%. See /24/. Let

then :
W ="'Px R /GL(n, R)
‘be the factor space. We obtain the associated bundle :'

'L n
WEM,. - R, GL(n, R))



i "

of the principal bundle P. See also JA3

Let us denote by :

n
L « CL({n; R} ——= P X=R
(u,k£)
the fundamental map defined by the action of GL(n, R) on P % B
. = n -
here u € P &md & & R . Thén the image L _ (CL.(n, R)) oFf
: : £ ; (u, )
the fundamental map L _ ig exactly the GL(n, R) - orbit of the
: = fape) - '
7 pair (u, &). Suppose that u & P, . Then the map :
; : : :
W g
given by :
b enin, R)) a) € v o =
(u,8)

is well defined and gives an obvious bundle izomorphisﬁ of ‘W on—tdﬂ_,gg
w—l TM. Hence -the Finsler vector:bundle can be regérded as tiz
associated bundle of the GL(n, R) - principal bundle P , having Rn
as standard fibre. .

A cross-section ¢

iy
4

i ™™

= n
e M

in .the Finsler vector bundle is called a finslerian vector field

on M.

N n ; .
Let >4 Ei M be a fixed tangent direction on M, and

a & P, -« Then % can be regarded as the synthetic object :

X
- ,‘J = -
u =(X, { Xl ,o-c,X })
n
where :
ii_ ufe,) AR e



and {el,..., eﬁ} is the natural linear basis of Rn.

ll.n

i : =1 : = : -
basis of the fibre w4 TM of the Finsler vector bundle.
= X v
Then. _u .is called a‘'finslerior frame at the direction =x

'dbviously {.ﬁ = ﬁn} are independent and hence give a linear

on M.

It is easily seen that the GL(n,.R)-principal bundles

- " e
i F(M) and P &re actually izomorphic. Indeed, let (x, u)E = lF{M)
be fixed.
" Then :
u = (x, {Xll"‘l Xn} )
where :
'U -
X =‘g{x), Xi G‘TX(M), i, oo
Then the map : :
-1
T F (M) = P
defined by :
~ =
(2, u) u
wheres
= N o S
u = (x, D SRR B
Loos "
Xi = (x, Xi)’ 1 =12 ., -0

=1

gives an obvious izomorphism of F (M) Qn—to P. Hence no dis-

tinction will be made between the bundles n ' F(M)- dnd P from now on.

We define the bundle morphism :

s =1
Lt o n T TM

by :



N ’\; P
B o= (x, (o) X
X X

&J '\: v V) = 2
where x € M, X & T, M and dr denotes the differential of .
X >
Clearly L is an epimorphism.

Let X%+ "M T (M) be a tangent vector field on M.

It’s natural lift is the finslerian vector field -

- n o
oM sy : ™

defined by
X)) = o (x, Xlnis2))s X E M.
Thus L is exactly the natural lif& of dr.

V] ny ; 1
A tangent vector field X on M is said-topde vertieal if

a
(&) % =0 1

n ~n N B
Let TMV~W~» M denote the subbundle of T (M) —+ M consisting

,\' .
of all vertical tangent vectors on M. . Obviously ‘s

v

R
Ker (L) = MM,

The fundamental vector field is the finslerian vector field :

" n <

n ¢ M-— w~1 ™ =7 .
defined by :

i o ~ "

ni(x) = (x, x) , %0

vLet; (u- xl) be a local coordinate neighborhood on M. Let then -

(w—l( Ues)e: x}, ul) denote the naturally induced local coordinates
N ; S

on M ,"see-/22/. It is easily seen that locally n is exactly -

— —+¢the-natural lift of the intrinsic tangent vector fiecld ': g



on M.
T,et V bé a connection in the Finsler vector bundle n—l ™™
in the sense of /18/. A tangent vector field ¥ on M is said to

e horizontal with respect- to V if =

M '=consisting

Let T - M denote the subbundle of T (%)
of all horizontal tangent vectors on M.
T Tphe Gonnsction V is said to be regular if we have the fol-

lowing direct sum decomposition :

~

MY = s ) TH,

; 2 ; : : 1 ;
Let. V be a given reguiar connectlon 1h -1% >TM 5- hence
™ = : L
“IT@g is an izomorphism. Let :
'y

- l : ? & P
B oy TM T(M)h

denote it’s inverse. Then B is called the horizontal lift-with

respect to V.,

We define the bundle morphism :

1t "1™ T (M)
by ¢
=t agE
B = aget0) =
where :
X & o ™M, X =%, %), x€ M,

and :



e o [0, i] - M, ClE) = xh X
€ [o. 1] '
£ 0, 1)V . Here EE(O) denotes the tangent vector of C at C{0)

Clearly :

Consequently :

VoS n_l PMi==—s M
v

is a vector bundle izomorphism which is called the vertical 1ift.

It has been several times emphasized that any regular connection

"Vdn n—l TM defines locally a Finsler connection (Ng, F;k' C

on M. Also the five torsions: -: . po

i i i
Tope Tinbypet  Fax
i i
e =k .
g e st
= = 1 .
35 : 6xk ij
i 1
ij = a,k Nj = ij
3 & 1
g = Sk T %

are easily seen to be (lecally) fragments of the torsicn tensors

B, V)~ LY - Vb 2L XY
X e :

DX, e ¥ 6 - V.G X6 XY
: : X Y -

where :

G : T(M) it TM



is defined by :

G X = y'l X,

wnare _Xv denotes the vertical part of . X with respect te the

regular connection V. See. .[21/.

1

2. FINSLERIAN G-STRUCTURES

Let G be a Lie subgroup of €L(n, R). A G=principal sub=

bundle

M

B, (M)

of the“Principal Finsler bundle is said to-be a finslerian G-struc- .

ture on M. The following theorem gives sufficient conditjons for-.a
- submanifold of the total space of the principal Finsler bundle to

“'pbe a finslerian C-structure on M.

Theorem 2.1.

Liet G be a Lie subgroup of..GE(n, R)m
Let B be a submanifold of e F{M)._.
If the following conditions are satisfied :

i) The restriction of the projection : =

_l ~
Tp ot T F (M) M

maps B on-to M, that is :

~

2By =

ii)v et L& B and a & GL(n, R). Then u a& B if and only if

a & G.




~

iii) For every tangent direction =x on M there is a neighbourhood
U -of x 1.0 and ascross-section-:

S e 0
P gease U Fem T F(M)

in the principal Finsler bundle so that :

g0y C.. B,

then B 1is a finslerian . G-structure on M.

Proof

We follow the line of /2/. Let u €x & F(M), uy(d) = X. There is
a neighbourhood U of ; and a cross-section ¢ in the Fimsler
bundle:zsuch that ¢(U) < B. *"Hence a énd o (x) lie in the same

GL(p, R)-orbit. Let a € GL(n, R)be defined by :

The map :

defined by :

u —— (%, a)

is a diffeomorphism and it's restriction to B M n’l(ﬁ) maps

B ﬂ'ngl(a) one-to-one and on-to E X G. As G is"a Lie subgroup of
GLin, R)s =B n (U) admlts a coordlnate system so that the res-
trictiOn,of‘ b e iR (s n L@ 4s still a dlffeomorphlsm.

Theo B is-a G—pgincipal bundle. |

Q.EeD.

we'proceed by giving some examples. Suppose M is endowed

with a Finsler metric tensor, that is, a symmetric non-degenerate



(0,2) - tensor :

= < %
,géan*I4®n1T M

Here :

=] Gl o
= e M 2o eM

- < *
denotes the ‘reciprocal Imége of the.cotangent bundle: T (M).by =n.
The Finsler metric tensor g gives: naturally a finslerian O0O(n) -..
structure and M, where O(n) stands for the orthog&nal group.

Indeed, iet B (M) consist of all finslerian frames, :

0(n)
u =_(;, {ili--.,-in} ) on M which satisfy the condition :
2 S 5 S el e

It is easily seen_that Bo(n)(M)——» M is a O(n) - principal *Bundle

over M. A finslerian O(n)-structure is generally known as a metrical

‘.. Pinsler structure cn M. See 74/, /5/.

Suppose M is‘even dimensiontl; that is n'= 2m.”Let :then

2m 2m -
N R e - R

be the natural complex structure on szv. Let CL(m, C) be the iie

subgroup of GL(n, R) consisting of ail C - linear transformations

of R", that is
T2 6L fn, R)” with T3 = gr

It is easily seen that a finslerian GL (m;-€) - structure B

sz (M) —— M on M gives naturally a finslerian.almost complex
GL.(m, C) . ; =

structure on M, that is aibundle morphism :

B

-J : n_l ™ —— _n_l ™

with



e

where I denotes the identity morphism. Indeed, let ;'be a fixed

tangent direction on M and let u be a finslerian frame at the di:-

~

rection x; -adapted to the GL(m, C) = structure, that is

WEBR ).
GL (m, C)

We define a lineér.map -
Jaw3 %5 TM ~—— g5 TM
b X b4

as the commutative closer of the diagram bellow :

=1 . =
.- TM 2. TM
X

<

2m 2m

o

The definition of . J. does not depend upon the choice of the
B SoRnly O SR s * %0, ~X'- g Sl : ® . T .
adapted finslerian frame at the direction - x. Indeed, if

v QIB (M) is any other finslerian adapted frame at x
3 GL (m, C) 1 :

then u and Vv a&are GL(m, C) - equivalent. Hence there is'a

C - linear map T with :

Vo=

Hence : -

see also [I5/.



~

A mapping 0 which assigns to each tangent direction x on M

a real vector subspace - U of n:l T™M of constant dimension k,
; X X
that is :
dim D=k

R X

for. any -z £

M s is saidédo be a ggnsleriqg_k~distribution"on M.
Let 'G be the Lie group of GL(n, R) whach leaves Rk
invariant. Let BG(M) be the submanifold of nfl FHM) ccnsisting

of all finslerian frames u having the property =

-1 :
oy

X
it is easily seen that BG(M)———» ﬁ_ is.a finglerian G-structure
on M. e g
We have seen that the associated bupdle of n_l F(M) (or
equivalentl§ P) is : =
: -1 - -
T TMEM,- by, R ,GUhln;  R)i2)
We rema?k that given a finslerian G*structu%e BG(M)-u—» ﬁ on M,
. it’s associated bundle with standard fi@re Rn lsexaetly -

=3 b n -
T TM(M, p, R 7 G)

Indeed, let us denote by W the factor space :

Z G
: n
W = B M) xRSO
A bundle morphism :
gt Mo ——5 1t ST M

is defined by_:

e



gl = (€)= ulg)
(u,g)

for an arbitrary G-orbit "L ~(GM;WG.
(u,z)
above is an-izomorphism of WG on-to .m.z. TM with the following

The bundle morphism o defined

inverse :

9
e ']..M WG 7
S e iy
(- u - X))
for-any X & Tt ™, ‘x € M, and any finslerian frame u at *the
P, & §

direction  -x adapted to the finslerian G-structure. Obviously
the definition of ¥ does not depend upon the cheoice of such

u € Bg (M) .

3. THE CANONICAL 1-FOrRM OF A FINSLERIAN G-STRUCTURE

We define a R'-valued differentiable 1-form on “Bugiveni
finslerian G-structure BG(M} as follows

h : =
0 2 BB~ R,
u

h il 2

= o e e (d )

u X u P
far any & B (M}, = () =-~x . Here & = denotes the dif-

P 2 u P - »
at u. The following diagram is commutative :
ol n

Ta(E ) ) s L e

ferential of o

L



Let us put as usually

V. = RKer(d =1,]
u ue P
- :
Note that Ker (@ ) is not triwvials
u

; e = e e =1
Let V be a regular connection in =« lTM and- G : T(M) ~ g ‘TM
the corresponding bundle morphism. We define a R%-wvalued diffe-

rentiable 1-form ©0' on BG(M) by s =

8. T ) e
a g
v =1
B =4 oG o(d-on ]
u X u =P
for any U E,BG(M) ;oo f)r=s o x . -

P
Tiien the following diagram is commutative

v
e"‘ : n
T (B (M) - £
u ] ]
=1
ol u
u= P
2 \
= , ‘ -1
T M) . > T oM
X G X
X

Obviously Ker(6_) is not trivial. The 'R"

-valued differentiable

o

h : X y
l-forms 0 and @" give rise to a Rznwvalued differentiable 1--form

6 on B.(M), defined by

. 2n
8. = T (B .MJF—-"R
u u
h \% s
0. 2 =6 % ., 0 7
u u u

for any ZET. (BG(M)T, e BG(M) 4
u



=T .

o

Then 6 is said to be the canonical 1-form of BG(M).
Consider the direct sum decomposition :
2n n n
R = RER
2n n :

Let Pj : «R?.. —= R , j=1,2,"be the natural projections of
the direct sum decomposition._
There is a naturally induced action of the general linear group of

2n
order n (and consequently of G) in R ., defined by :

g gt= (gp, 8D (g P, &)
Zn

for.any .9 £ 6hin, R), E£ER :

Theorem 3.1.

Let © be the caronical 1l-form (with respect to the regular

. connection V) of the finslerian G—structure,BG(M). Then :

Proof
Let ~sigp €' T 4B L)) | u € B, ().
u !
Then :
(o R)e - 7= 8 L oeadr Rl =
El u R _(u) a 9
g :
h v
=g E Rg) e e Rg) 2)
R i R o(u)y u
g(u) u g( )
Note that :
_ -1 -1 _-1
1 R (1 = u
) (R (@) g
2) mnp 1is constant on the fibres in:B.(M).

Consequently :



where x = 15 (u) . Also

v : ' - =1
0 (d_.R) Z =

-

R (u u g u
g( ). :

1]

]
@
N

by similar computation. Finally :
-1 h -1 v

(6 Rg) ew- 7. = (g O i lnengre 0 S
S u u

o] =
=g B 0_ 2)EB(g P, 0. 1) = 9. 07 .
u SRl u P b

Let H be the connection - distribution in BG(M) which ig
naturally associcted to V, according to /8/. We recall it’s con-

struction. -

A tangeﬁt vector % G.T_(BG(M)) is said to be horizontal
= : .
is there is a differentiable curve -

C = (==, e)—~——> BG(M), £SO,

L) = (e B, G0 X_(C(8)ID ),

t€ (-e, ¢) , where :

Gtz v Gl ) |

so that :



= - dg ‘
1 = —_ =
) C(O)\. u dt(O) VA
2? VdC ii =i, i L e St i B oA U BT oY o
dt

The curve :

~

C : (-, g) =———> M .

"Let then H_ denote the space of all horizontal vectors Z which
' u
are tangent to BG(M) at u + As shown in /8/, the distribution :

Hiecnmaies—tes tops € im =B S (0))
u u

~on BG(M)’ gives a chnec&ionvin the-principal bundle BG(M), that is :

1) T (B M) = B DV
u u L5

N =B
U el Rg(u)

for any u € BG(M) , g€ G,  where :

Rg s BG(M) — BG(

M)

is the right translation with g & G.
We shall restriet 6 to H. in order tqg obtain an izo-
: u 5 5 :
morphism. Firstly, we show that :

Ker( o )= %"
u u

Let us denote the restriction of d_-w tito H_tbye:

cl
ol
w
o
|
g
a5



u € B (M) , nP(a)‘= % .

gives an izomorphism of H_ on=to - =M.

Clearly t
2 . : X

= (i i 9

Let us denote

h -1 =
o =‘Mt_ [C=urs M'V)“
e u wh
-1 7
2 = b=l
- u %y
u .
= For  C BG(Mj i we(n) » = %X .
P

@ As V . is reqular, we obtain easily the ‘direet sum decompo-:

sition: :

h v

B = 0 (o

u Mo u
forrany w € BG{M) :

Theorem 3.2.

h v
1) Ker(o ) = 0Q_ \
u u a
: v h E
2) EKer(o ) = Q_@ e
u u o
3) KEI(@_) =Ny
u u
for any a & BG(M).
Proof o
As’ s

Rer( o_ ) C. T ¥B7m)) = H D vi
u ) u u



- PR

_ h :
for any given Z & Ker( 0_ ) we obtain :
u
!l‘

e e R
where :
7 "
mc W, T ey
u u

It is enough to prowe that :.

; v
% O
u
we have :
h e
ce=somE o= u. 0+ L0 (d aui)ds
u > u=P
fo=] : ]
=1 o L. o (d )2 =1 oo L.
X u e
Hence :
?
oo -t -7 =0
X u

where from : -

: - r : ~
. p e Redn ) = T M :
u X K==V
Thus
: h v
Kert o ) =0 4V .
: u u u
Also :
v
Gy C Ha) V= (o)
u u u u

hence the sum is direct. Finally":

h v
Ker{ & ) = TKer(:o_ ) M Rer( o_ ) =
el u u

as



= N v
0 [} o ==
= oo u .
Q.BE.D.
Consequently the restriction
_ 2n
Bl - R
u e ; :
2n

6f ¥hRé canonical 1-form is an izomorphism of H_ ‘on-to R
- _ o .

4. THE FIRST STRUCTURE FUNCTION OF A FINSLEREAN G-STRUCTURE

> o - ¢ B L 4 3 __l
Suppose V and v' are two regular connections in 1w TM.

e
Let H_ , H_ be the corréspending horizontal subspaces of
: i L : ' ;
2n : ;
T_ (Bg(M)). Let ¢ &R be “fixed. There.is an unique pair :
u

’ ’
(Z_ ’ Z_) E H_ X+iH
u u

u u

14
gy = olm) t =
u u
Hence :

14
g o= N
% sl 5 " u = u " )

o |
3

Thus there is an unique linear map :

2n
T & Hom'!/ R ;L))

so that :

() =" 2 = R
e e u
Here L (G) denoted the Lie algebra of all left-invariant tangent
vector fields on @. Also if A £ L(G) is a given left invariant

tangent vector field on G, then :



*
2 B s (5 00

is the fundamental tangent vector field associated to A, that is :

A = 1 ) A
u eu e

where e € G is the identity matrix and :
L G e o BG(M)
is the fundamental map :

L (g = -® @),
u g

w B0, g £ G

We conclude that, as well as in the classical case, 12/

~ given a horizontal subspace H_ @k T (BG(M)) ,the remaining

' u U
horizontal subspaces H_ can be parametrized by elements of
2n u :
Hom ( R 7 L(G))'
et -V be a regular‘connectibn in n-l TM. Let Habe it's

2n
corresponding connection - distribution: in BG(M). Liet &, niE R

be fixed. Then there is an unigue pair :

B Wody Sl X H
u u u = -

u
sSe-Ehak:

GG = B e O ) e =
- u :

‘We define a function :

2n 2n o2
e BG(M) S i Homl R AR Pt )
H

by ¢



e (ueE A n) = dollsg )
H u
Zn
For any A g L(G), & &€ R ;-we put s

N ='(AP15)@(AP2;) :

We define also the operator

: 2n 2 2n 2n 2n
3 ¢ Hom R ., LGy ———> Hom{t- R A R R o)

ar) & A n) = (B - Tin)e
for any T € Hom( R , L(C)) and any ¢&,n el

We shall prove the following :

Theorem 4.1.

Let EG(M) 3 M befayfinslerian~G—struéture on M and

¥, V' two. regular connegtions in .the Finsler vector-bundle. If
17, H' “~are the corresponding connection-distributions i BG(M),
themn. 3
. == ekl o
e . ) Cluy) =-% 5 (o)~
H H :

for any finslerian frame u adapted to the finslerian G:stxucture;'

Proof

27 - :
Jet -t &R he fixed. Then there exist :

% tW & 0
u u u

and :

so that :



4

0(z)_ = o(z)_ =¢&
u ; u
o(W)_ = 'G(W")'_' = n

c u
Then

e s ooy
H' H

=80 (2" 4 W)_ ~ de(z, W)_ .=:
u u

= . , i T '. S z

= do (B =2 W) kode(g, WL - W) =
u u

s Geeme) Wy AR(m, T )
,. - -

I F 1 .
£ Semy (e(W')) = 5 Tin)_ (8(2))
u u

We need to prove the following

Liemma
2n

ot 2 C B sothat 6(%). =t , uk Bty 565 R
u u ; u :
For any l&ft - invariant tangent vector field A € L(G) we have :
* :
A (G(a) ) = R

u

Proof : [P

‘For anly g £ G we have

te@o L. )lgy = o@_ . =

u S uEy
= g B de— B Ll BT Yoow

B Mg 0g A -9 u



=1 =1
= esE e e a2y = g £
u u u
by the theorem 3.1.
Consider the function
e 2n -1
0 G =5 R ’ o- kgl = 9 ¢
e g
for any g€G. Then : :
® > .
A Comyy = A tolb o L) = A ((pg) g
: e

T e u

Let . (g ) be a system of local ccordinates on GL(n, R).

locally Aeéz T & i given by

m
s n
e am I
gk e
we obtain
% i a‘DE
B(eli)] = A
- - 59,
3
Let us put :
£ =P f oy ko= 20

Thus

IT==a ais Io=0 it
Sl - F e B A E s
< e T 12
T n = s "
=A(6 g€ 7 r6 (3 ; 6 £ 7oy O g
s 4] 1 S 3 2
5 55 i



n
where {el,..., en } is the natural linear basis of R ., . It is

also straightforward. that

which cbmpletes the proof.

©

The proof of the theorem 4.1 is now obtained as follows :

e AT e T S
B’ H

=L erie - T 3 = - > (3T) (EAN)

: 2n
- The image dHom( R , L(G)) of the operator 3 (which is the

coboundary operator in a certain-cohomology) -is a subspace of
2n 2n 20
Homl*R ¥ R+ , R: ). ket us denote by

2N 2n 2n
P A = Hom( R {} B g R )
o5 VA
‘dHom( R , L(G))

the factor space.
We define a function
(Ced] BG(M) ——> F; (L(G))
2n
as follows; for any u & By (M) we define C(u) to be the coset
of CH(E) modulo dHom( Rzn, L{(c)) for an arbitrafy regular con=
nection V in “,1 TM. According té¥the théorem 4.1, the definition
of C does not depend upon the choicesiof the regular connection,
simply because the dependence was~fagtored out. The function C ‘is

said to be the first-order structurg,ﬁpnction of the finslerian

G-structure BG(M).



~ Loyt

Let § :_ﬁ — T(M) be a tangent vector field on M.
We denote by :
e e
X 3 B-G(M) e e T(BG(M )

" j€ts ‘H-horizontal 1lift, that is

Ejl

1) X C ol SR E B
~l o~
2 e = X
v P u X

where n () =%, x wE W,

P
For every u € BG(M) recall the direct sum decomposition .i. .
h ey
H = o P o
i 5] u

- from paragraph %3. It gives

H =1 i H
. e e
h v
where
e HS = ot 2 NH = v
X)y e g, et
h v

On the other hand, as V is regular we have the decomposition :

% =0 =
h v
where
X coom X € ™
h =ehee v ¥
Clearly* :
seH e B
(X ) = (X))
h h

o5 e



=R o o
(5 = oy
v -

and hence we write simply :

H ;! H

X =0 X
h v

For any finslerian vector field :

O e RN e

>

on M we have a well known eguivalent formulation :

£ ¢ B.(M) —> R ,
X G

ey 0 (Xilrs (wid o
X P

for any u € BG(M).

Theorem 4.2

B e H
1) o (B X) =

v =M
2) ey X)

I
f-—h

for any finslerian vector field X on M.

Proof
Lecs s =l =1 _H
g B3 Jisal G M i (d. = J4B N ==
u B e x AL iR il
: == s =l =
s o L 4B X)N =1 A= _f_ (u)
X X X X



v = H — ot
g =y X)) = 0 0.6 O (d X)) =
u u X u P u
-1 > -1 12
=% o e =T X -
3 X X 4
-—”l —
= u X = £ (u) .
X X
(@it BES

We recall the following result, see /8/

Theorem 4.3

For any finslerian frame u (at the direction x) which

is adapted to the finslerian G-structure we have

- ~H
EV AR x] = ultd )W )
¥ EEE=w u

where Y is a tangent vesctor fiBid on "M :and ‘X a finslerian

vectoxr field on M.
+> The formula in the theorem 4.3. may be also written

(making the necessary identifications) :

= £ - H
aXF ) =0 ¥ (F ) )
r u X '
Theorem 4.4.
e s s o B
i) B, ) ) =20 fdno (K& ¥ J-
u
e = v He B
2) L Y, e 2 n [Hdo g 30 )
1 u
for any tangent vector fields X, ™ on* ﬁ; gox S
xE M, Tes M, « @) = =.

P



Proof
We denote X = £ X, Y= 2 Yoo Then &
= =~ oH v
BY = ¥ and. Y € 0@ Hence :
h v
T Gl = F W XY Ve X =L [3? ﬂ) =
- X X
e s H ol
SR () —u( Y (f )] T [X, Y]N =
u Y u Xeor X bid
e s e H
570 feX (0 (B¥) )i Y «(0 (B X) ) =
u u
e o H
- u 16 (an) X (an) Y s e
> X 2
L E ek H JH ‘h E
= R S R
u u h
- B
- Lo kdr mey) LX Y 1 } =
R u
o b B n h[;H oH
= Uk ole B N (0 RF ) =e LK RS
u <1 e -2
= Bl W
u
OLEL DL
There is an unig@ié¢“tangent vector field H(Z) on BG(M)
2n . :
associated with a given & & R SomtEhat
WooEE) @ w .  n O BoOn
e u
25 egHEN.. = E
u

Then clearly



c () leh i =%t H) B

2
L

as
o(H(E)) »  ©CH() )
are constant functions on »BG(M).

Tt¥is easily seen that :

h : T ‘
o { BE(E)) . orEE))

are also constant functions on BG(M), that is

@ h '
CelH () = Dok
u ik
v
o Rl o D ok
u 2
Then
h 1 e
do (H(E)y H(mI)_ = - 50 ( H{E), Hnk )
u u
det (HCel, H@)): "=~ 5 0 CHE) e H ) )5
u e u

where from we obtain the following :

Theorem 4.5.

2n
For sanyl =&, 1 EjR and any -

~

u € B (M), nP(G) = x, we have :

e (e A ) =

S

S Lo el :

(uw  T((drny) H(E), (an)H(n));, u Tl((an)H(a),(an)H(n))N)
! X



Proof
e fitin == o oL HIE] HG) )~
u
= ¥
=< =l (B, 0al ) e fml ahy e
Ll u
h v
= ffo o (B E)=HE)) v dec(H(E)L, B{n)) . )=
_1.1 u
=l = e e
= (u T(XI Y)’N ’ u Tl (Xr Y)N)
X X
where :
Xoo= dan,) H(g), ¥ = (dny)-H(n) .
We have also made use of :
! b
X =H(€)i Y. = H(‘})
Q.E.D
REFERENCES

g L E.AKBAR-ZADEH '"Les espaces de Finsler et certaines de
leurs generalisations", Theses, An.Sc.Ec. Norm.Sup.,
(3) 80(1963), 1-79.

2 M.CRAMPIN "Pseudo-Riemannian and related structures on
differentiable maﬁifolds", Ph.D.Thesis, King's College,
London, 1967.

3. R.CRITTENDEN '"Covariant differentiation", Q.J.Math ., ..

‘0xford, (2) 13(1962), 285-298.



4.

10.

211,

13.

14.

15.

P.DAZORD "Proprietes globales des geodesiques des espaces

de Fingsler", Ph.D.Thesis, Lyon, 1969.

P.DAZORD ‘"Connexion de direction symétrique associée a

‘un <<spray>> génédralisé", C.R.Acad.Sci., 263 (1966),

576-578.

C.T.J.DODSON "Tangent and frame bundles ofilorder two,
preprint, Lancaster Univ., 1980.
“S.DRAGOMIR "p-Distributions on differentiahble manifolds",

An.St.Undiv. "Al.I.Cuza", Tasi, 28 (1982), -55-58.

S.DRAGOMIR "On the holonomy groups of a coannection in

the induced Finsler bundle", Proc.of the Nat.Sem. on

»

Finsler Sp., 2 (1983), 83-97,.

S.DRAGOMIR "The theorem cf X.Nomizu on Fimsler manifolds',

An Univ. @imnisoara, 2y 1g(i98l), 117127,

S.DRAGOMIR  "Jacobi fieldsmion Weyl manifeclds", Demonstratio

Matematica, (1) 14 {(1981), 249-255.

'S .DRAGOIIIR "On the k-flatness of connections", An.Univ.

Timisoara, (1) 19 (1981), 41-50.

S .DRAGOMIR "The theorem o% L.Cartan cn Finsler manifolds™,

Coloq. Nat.de Geom: si Top., Busteni, (1981), 103-112

S.CRAGOMIR "Geometria differentiala a fibrarilor asociate",
Publ. Sem. "Gh,Vranceanu'", 2(1981), 175-202.

S .LRAGOMIR & M.RADIVOIOVICI "Some algebraic properties

concerning ‘the thangent bundle of order two!,2Dem.Mathematica,

(4) 15(1982), 993-1005.

S.DRAGOMIR & S.IANUS "On the holomorphic sectional
curvature of the kaehlerian Finsleruspaces", Tensor, NulS., .

39 (1982), 28-32, e o B

O



16,

27

18T

395

20,

21.

23.

25,

26.

2T

S.DRAGOMIR & B.CASCIARD "On the geometry of the finslerian

almost comﬁlek spaces" to be published imn Rend.di Mathem.,

Roma, 1984, fasc.3.

S.DRAGOMIR & O.AMICI- - "On -the finslerian almost complex

structures with a vanishing torsion tensor field!,

to.be published in Rend.di Matem., 'Roma, 1984, fasc.2.

G.GEEQORGEIEV & V.OPROIU "Varietati diferentiabiae-finit
si infinit dimensionale", Vol.1-2, Bucuresti, 1979

M.HASHIGUCHI "On conformal trans formations .of Finsler

metrics", J.Math.Kyoto Univ., (1) 16(1976), 25%5-50.

B.T.HASSAN "Sprays and Jacobi fields in Finsler geometry",

preprint, Grenoble, 1980.

B.T.HASSAN "The theory ofi"geodesics in Finsler spaces",

Ph.D.Thesis, Soushampton, 1867.

S.IANUS “"Sulle strutture dello spazio fibrato tangente

di una varieta,fiemanniena"; Rend.Math., 6 (1973), 75-96.

Y. ICHIJYO "Almost hermitian Finsler manifolds" Tensor,

N.S., 37 (1982), 279-284.
M.MATSUMOTO "Introduction to the modiern differential
geometry", EKyoto, 196 7.

M.MATSUMOTO "Founidations of Finsler geometry. Special

rinsler spaces", Kyoto, 1980.

R.MIRON & M.HASHIGUCHI "Metrical Finsler connections",

‘Rep.Fac.Sci., Kagoshima Univ., 12.(1979), 21-35.

R.MIRON & M.HASHIGUCHI "Almost symplectic Fimsler

structures", preprint, Kagoshima Univ.;; 1981



- <

28. R.MIRON & M,.HASHIGUCHT "Conformal Finsler connections",

Rev.Roum.Math., Pure Appl., (6) 24 (1981), 861-878,

295, S.STERNBERG "lectiires on differential geometry" ,

Prentince - Hall, 1962.



