~ INSTITUTUL ' INSTITUTUL NATIONAL

DE = = - PENTRU CREATIE
MATEMATICA - -~ STINTIFICA §I TEHNICA
. o 188H-D2B0. 3638

ON ISOLATED SINGULARITIES OF COMPLETE INTERSECT IONS
by
Alexandru DIMCA

PREPRINT SERIES IN MATHEMATICS
No.67/1983

B P TR S SRRy 2 ok RS

ALV BUCURESTI

/‘&ifi ?






ON ISPLATED SINGULARITIES OF COMPLETE INTERSECH IONS

by
)

Alexandru DIMCA*

December 1988

Department of Mathematice, National Institute” for Scientific and Technical

Creation, Bdul Pdeii 220, 79622 Bucharest, Romania.







ON iSOLATED SINGULARITIES OF COMPLETE INTERSECTIONS

by

Alexandru DIMCA

Let (XO,O) be an isolated complete intersection singularity and
G:(X,0) — (B,0) be a miniversal deformation for (XO,O)a

Consider the following generaltproblqm:
For a point s€ B, how many (and how ''bad") singular points xi(s)
can occur on the fiber Xs=G_1(S) ?

The following two estimates are already at hand.

(0.1) | Zim(xs,xi(s))<\‘m(xo,0)
(0.2) 2{: [embdim(XS,xi(s))-dim(Xs,xi(s)z] < WS(XO,O)
i

where m(XO,U) (resp.ﬁs(Xo,O)) denotes the multiplicity of the discriminant
(resp. the dimension of the base space B) of the deformation G.
Indeed, (0.1) follows from~[16] (4,8.2) and to derive (0.2) we note
that G is a stable map germ and hence we can use Lemma 1.8 in [5], p. 11k,
Whgn Xo is a homogeneous hypersQrFacg singﬁlariiy Bruce [2} has
obtainedva'better-éstimate, using the Inte;play between deformation of
sihguléfitjés and their inferéeétion forms. Namely, he showed thattﬁhe

numbér of singularities on XS can be bounded by a number N{d,n) squ'that

i lim-%&%ig% = % _



where d=deg Xo , n=dim XO and kaxo) is the Milnor number of Xou Note that
iq\this case tA_(XU)=m(X0)='C(XO)°

Finer results in.¥his case were recently obtained by fuivental [8&
and Varchenko [17].

In the nresent note we try tc show that the method nsed by Bruce
can give sometimes better upper bounds than (05)) -end (0, 2)-a"the case
of complete intersection singularities as uveli.

In fact, we consider X, as the fiber of a function £:(x,0)— (C,0),
w%ere X:ie {tself an “solated singuiarity ofe complete intersection. The
" main ingred?eﬁt is the use of morsificaticns of the function f defined on
the Milnor fiber of X and of their associated vanishing cycles. This con-
struction was introduced in [3] and’is briefly reveiwed Here'in the first
section.

The second section deals with relations between deformations of a
function f as apove and the intersection form S on the middlgrbpmology:
group of the Milnor fiber of X . : 5 >

For weighted homogeneous singularities, we relate in the next
section the rank of S to the middle Betti number of the corresponding
weighted projective complate intersecticpé and to the eigenvalues of
some associated monodromy operators introduced by -Hamm [10]. '

‘In this way, our upper bounds can be explicitly computed,in terms
of the weights and degrees of the equations for XO in many situations
(e.g. homogeneous singularities, Brieskorn-Pham singularities, curve and
surface'singularities).

* As an éppiication, we bound*in.tﬁe last section the number of iso-
lated singularitie; on a projective complete intersection V, in a similar .

way to the hypersurface case treated by Bruce.




fhe upper bound we get is shown by examples to have an assymptotic
behaviour similar to (0.3) and hence it gives indeed sometimes an improvement
of the direct estimates (0.1) and (0.2). (Recall that for a weighted homo-
geneous complete intersection singularity X one has m(Xﬂ)z ?5(Xo)=fA(Xo)
[e]).

' There is one additional difficulty comparing to the hypersurface
case. To bound the number of a!lvsingu]ar poirts on XS when dim‘XC.is even,
one has to make a suspension (stabilization) construction as in [2].

But for functions f és above this suspension (with few exceptions)
takes us outside the class of weiggtea homogeneous singularities and we are
no 1onger able to make explicit compHLations.

However, Example (4.3) below suggests that the upper bound obtained

using this suspension has the same nice assymptotic behaviour.

1. The construction of morsifications

In this section we mainly recall some definitions and results from
[3]. We prove that the monodromy operator constructed via morsifications
coincides with the monodromy operator introduced by Hamm [10].

Let X:g1=.q.=gp=0 be an analytic complete intersection in a neigh=

bourhood of the origin of Cn+p o b, pk,O) having an isolated singular
point at 0. z = -
Consider also an analytic function germ £ P 0) —>4C,0) such

that Xo=f_1(0)r}X is again a complete intersection with an isolated singu-
.]arity a;VO and dim Xo=dim X=1=n-1.
For ES> &> 0 chosen sufficiently small and recP sufficiently

general with |Jr]< §, it is known that the Milnor fiber of X

=X ={x e C™P; Ix|gE, gx)=r}




.

is a compact C* manifold with boundary, having'the.homotOpy type of a
bouquet of n-spheres. The number of these spreres is by definition the
Milnor number fL(X) of the singularity X (10].

Léf P denote the vector space of polynomials in x1,..°,xn+p of
degree ( d, for some 43 3. FOr'Q;>0 cHosgn sufficient]y small and for a
generié polynomial a &P with  jg| <" ,-the function fq%(f+q)\§'has the

@

following properties.

(1.1) The inclusion E=Yf\f;1(D&-) > X is a homotopy equivalence,
wher‘e Dé‘ =£zé¢; {z)(cﬂ.

(t2) The-restriction fq\'aE is a submersion.

(1°3Y:fhe function fq is a Morse function, i.e. it has only non-
degenerate critical points with gistinct éritica! valLes CysnnesCy € DS =
where s=fk(X%+rL(Xo).

(1.4) The topological type of the map of pairs

e i
fq-(E,fq (c)) ~—~7(Dg Ll C—{p],...,cs}

is independent of the choices made above and moreover depends only on the
restrfction £l X
Let bE;DJ be a real number with b ]cil for i=1,...,5. Then the
fiber §;=f;1(b) is a compact c% manifold with boundary and is homeomorphic.
to the Milnor fiber of thercomplete intersection singularity X_.
Any pathVMIE‘Tq(Dg N C,b).induces a monodromy operator hw:Hn_1(Y;)—a
= Hn_1(§;). (Singular homology groups with Q-coefficients are used

throughout this paper).

We denote by h the monodromy operator corresponding to the path'
wo(t)=b.exp(2fnf i), telo .

On the other hand, Hamm [10] has constructed two fiber-equivalent,

¢ fibrations associated to the function fi(X,0). —= (€,0) in the follow-



ing way.

eti st S e Ejo=Xof)S£ for £>0 small enough, where S, denotes

e = . e secaie. +n <
the sphere of radius ¢ centered at the Of]gfﬁwa4&n‘uT_N‘w»*m~

ot

: 0 s . oo N = 1 T Ny
The first fibration is then (fo' z:\ldo i Lfo(x)—.(x)/}f(x)y
and is the generalization c¢f the Milnor fibration,

The second fibratioﬁ istthe map
#ﬁ:{xe¢”+9;|x}<£, g(x)=0, [f(xﬂ==5}~*95; )
P, 6=F ).
Our monodromy operator h is associated to the 5?bration

. fz;{xé s | £, ()] =b}——‘———> S P, (xaf ()

The next result shows that our construction is closely related to

tnat of Hamm,

Lemma 1.2.

The fibrations (f1 and &62 are fiber homotopy .equivalent. in parti-

cular their monodromy operators are conjugate.

Proof

Let E‘ be the total space of‘f1 and nptejiha{ E1C_B£ =
={x€ ¢ P, | x)g f_} . Let 51 denote the closure of E, and ¥f1 the extension
of \f1 to E1.

== o ; : .
Then Lr1 is a C fibration having as fiber a smooth manifold with

el

boundary diffeomorphic to X .



A

~r ~ ; : S
Since the inclusion int XOC Xo is a homotopy equivalence, it fol-

lows that the inclusior.E1c;E'] gives a fiber homotopy equivalence.

Next, sne cai consider stiil snotnsr —ibraon

)

- ‘ 1 8 VS = .
Cfg: {LX e X jf(x)}= 8}»—-—-» 88 ; L}”B(x)=4f(x; and, using deformations argu=
ments.as in .({3}, §1), it is easy to show that for J,r and b chosen con-
; H 3 H i 2 o 9 (J) ] i
veniently the fibrations t]D1 and (f3 (resp. /2 and I 3) are topologically

fiber equivaient. D

We have associated to each critical point L of fq and to an ele-
mentary path w, joining b to ¢, a thimble Ake Hn('x“,SZ’o) and a co.responfi=
» . . % ; ~ e —{ : r :-,
ing vanishing cycle ék— BAKG Hn—1(xo)' Note that the set gﬂ-gv..., O'sﬁ“f'
is a system of generators for the vector space: Hn~1(§o)' [3}

Since Xn is an orientable compact manifold with boundary a',‘?o’-‘—’ij; ;

theré is a nondegenerate intersection form

which gives an intersection form S on Hr”](SZ'O) via the morphism
_’:an_] (Xo) e Hn-—l (XO,ZO) induced by inclusion.
Far o set §_ of vanishing cycles as above, we shall denote by
S(_S_) the s x s matrix (S( Ji’ 5,;:;),) oy j=t#o, ,s~and it is a trivial fact
o
that rkS(§)=rks.

\

2. Leformations of smoothings

" First wesshall 'consider_»r{_ -constant deformations in the foll‘owin'g
sense ({3], §1).

Leit® (kt J0) C(Cn+p,0) be a smoath family of complete intersections

with an isolatedicritical point at the origin such that dim K0 and



fL(Xt)=constant, for t € [0,1].

¥

Assume that ft:(Xf,O)-_w§(£,ﬂ) is a smooth family of functions such

- 1 : ; : : : :
that X ozft (0) is an isolated singularity of complete intersection with
dim K oo=ne 1 and ﬁ& ) cofisitiants For. s [b 1]
In this situation we say that the functions fO:(XO,O) —-% (C,0)

and f]:(X],O) ——% (C.0) are fk-—equivalent. : ‘ .

We have remarked already in [3} that in this case the topological
type of the map of pairs (1.L4) associated to the function F; is the same
for any t € [b,]].

We get thus the following (compare to [1#], §9).

Proposition 2.1

A r&~constant family ft:(X ,0) —= {C,0).as above gives rise to.ag
natural identification Hn_1(XOO)::H (Xlo) which preserves the intersection
forms, the sets Q_ of vanishing cycles and under which the monodromy

operators hi corresponding to the functionsf, {i=0,1), are conjugate. D

The next example will be needed in the last section.

Example 2.%'

Let A8 be positive integers 2 2, dsdi 82 dk=d/ak
Assume that the defining equations g1=..;=gp=0 of X and the function
£:(X,0) — (C,0) aré‘qiven by weightéd homogeneous polynomials of degree
d with resepeur to the weights wt{x ) =d, ",

' Then the characteristic polynomial of the monodromy operator h

associated to f is given by the formulas



)

' ()
LA 7- ' [Ad i '(X)] e
ng rg np 1 r
' 1\<i1< <ir\<n+p

where Zx : ! (A)= ; / (627ti(i]/b1+,,,+ir/br)_ 2)

Proof

wWhen the polynomials 9 and f are of Brieskorn-rham type, the
result is proved by Hamm [11].

Let W derote the vector space of all the polynomials of the given
weighted homogeneity type. The set G={(g,f)=(g],...,gp,f)e;wpf1; Xg=g—1(0)
and X9F=X3ﬂf—1(0) are isolatedﬁﬁjngglaritféskpf complete intersections}
is a Zariski open subset in Wp+1.

In particular, G path-connected

Moreover, if (g,f) €G, then.fk(*g).and f&(ng) depend only on the
numbers di and d [6].

The result follows using (2.1). [}

Now we shall consider deformations under which the initial function
£:(X,0) —= {,0) splits up in a number of (cimpler) functions fi:(Xi,0)~—*

—s (€,0) (compare to thl, '§7).

The precise setting of the problem is tﬁe following. Let gt(x)=0,
£ [0,1] bé a smooth deformation of the equation g(x)=0 of X, defining-
for each t an analytic complete interc~ction Xt in some ball B£<: @ 2P ;
centered at the origin. (go=g), -

on X we fix k distinct points a1(t),r¢4,ak(t), shagular or not, for '

ey 0. Let £t be a smooth deformation of the fgnE;Téﬁvf such that
£(a, ())=0 for i=1,...,k and t>0 and fO=f. i

Consider the corresponding function geums



:(x%,a, (1) — €,0)

and make the following assumptions (see [21, Def.1.b)l

(a) The family F? for t& (0,1 is a M -constant family, for
any =% mhk, In particular X¥O=(f?)-1(0) is an isolated complete inter-
secti;n singularity.

We denotz by {?{(XE,O)ff“* @;Q) the fk"class of f? and by xio the
corresponding fiber f;1(0)

(b) lim lai(t)l =0 for any =, ke

20

Proposition 2.3

With the above notations and assumptions,

o F(xnfvxxo).\,}: (e prix, )

i=1,k

: s i : ' -
(B) ihere are sets of vanishing cycles & associated to the functions

“fi il Kk and a st ‘§ associated to f such that the cerresponding

intersection matrices M=S(§) and ¥.=S( $') satisfy the equality

1 —

/ :
My ‘0 0
0 M, 0
M= *
0 0 e
* *
L \ J

Proof '3~MMM“Mf

Starting with the function' f: @0) —> (€C,0), we construct &

morsification fq:Xr~——a C as in sectiomil.



We consider also some disjoint>discs Bi centered at ai(t).and of
radius &i(t), =kl

It Lieland 'éi(t)-are chosen small znough and r and q sufficien-
tly generai, one can show che follnwing facts (using for instance the
Second lsotopy Lemma of Tiom-Mather as in [31, §u).

(i) The intersections §1r=§}i}8i are ﬁ?turé]1y identified with the
Milnor fibers of (Xt, ai(t)) for any 2152 ek

= .
(ii) Via the identifications, fq[ X: are morsifications for the

E

£

functions £1:(X5,a, (1)) —> (€,0) for any i=1,2,....k.

i .
.Let s=fA(X)+fA(XO) and si=fA(xi)+;xlXio) for i=1,2,...,k. We know
that Fq has precisely s critical points bj on Y}. From (ii) we deduce that

S; of these critical points are ip the ball B, .and thus we get (A).

H

Moreover, if the critical point bj is in Bi', then the corresponding

vanishing cycle 8. eH

\JJ n_'i

et . o o~ ;

(X ) has support contained in X, =X 1B , where
Oits i o

X =f—](b) i's taken as the Milnor fiber of X .
@ g o

Using (ii) we find out that y}g is the Milnor fiber of X. .

J

-and hence
the vanishing cycle 6] corresponds to & vanishing cycle <§je Hn—1(§}o) for
X
io

On the other hand, it is clear that the intersection number of two

vanishing cycles.which have supports in disjoint balls Bi is zero. D

" The following consequence will be used in the final section.

Corollary 2.4

With the same notations and assumptions as above,

=1,k

~rank FS\<“2 [/\&()'()+iv4.(-xﬂo)]-2‘z\ [IU\(X‘)+ Hi'so(xi‘oﬁ] 5%

where fiiso(xio) denotes the maximal dimension of an isotropic subspace



S
in Hr—‘(Xio) with respect to the intersection form.
i i .

Proof

Each of the intersection matrices Mi is conjugate over @ to a matrix

0 } fw(‘)

& i i ! e 2
where Mi=8( P ) 5 EL being a basis of the vector space Hn-l(xio) extracted

—

[
from the system of. generators §

S

% i : ' [
Moreover, we can change the basjis ﬁé to a different one X',

such that S(Y"') has the form

: A 0 %
(2.5) e

where the dimensionof the nul sguare block is rkiso(xio)f

Via these transformations,. thesmatrix M is seen to be equivalent to

S imak i ast (2. 5) i thea snule square ibliock wof Tdimension Ez: (rL(Xi)+
i

=1,k
fiiso(xio))'

The result then follows by easy linear algebra. D

Remark 2.6

Note the following est|m§tes for f&iso :
(i) If n-1=dim Xo is odd, then . the intersection form S is skew=

-symmetric and one gets

'riiso(xo);,uz'- M (x )




(ii) If n-1=dim Xo'is even, then S is a symmetric form [say of

type (}Ao’f&+’f&—) ] and one gets

ﬁ&iso(yo).Z f&o+min(fA+,fk_)

3. The rank of the intersection form

3

In £his section we relate the rank of the intersection form of the
weighted homogeneous singularities of complete intersections to the middle
Betti number cf their associated weighted projective varieties and to the
mulciplicity of the eigenvalue 1 for a sequence of mono dromy aperators.

Let (X,0) be an isolated singularity of complete intersection in
¢"P defined by the weighted homogeneous polynomials fi with deg Ffzdi with

resnect to the weights wt(xj)=wj€;N*,~for i=1, et J2 e sk B

Befinition 3.1

We call X a good weighted homogeneous singularity if the polynomials

fi can be chosen such that the germs

= n+p, et Vi | =
X, {xECC p F ()= mf (=0 kel,..p

are isolated singularities of complete intersections.

As remarked by Giusti, not ‘all weighted homogeneous singularities

are good (e.g. f1=x2(x5+y3), f2=y2(2x§+y3))
However, if W1="'=Wn+p ot d1=...=dp ;- then a_QFTFIni type
argument shows that X is qood. g vy

e ""‘\‘ . .
To the germ X, corresponds some algebraic'yarTety7<n the weighted

k
projective space P(w1,...,wn+p) [b]. i

When X is a good singularity, Yk is a guasi-smooth complete inter-
section and hence a V-variety [h] (3.1.6) . “ It pacticdlar Yo is a Q-homology

manifold and there is a Hard Lefschetz Theorem for its cohomology [15] @3



S

Moreover, in this case, the function germ _li_?'
fk: (xk_1 30) Gl (C,O)
has an associated monodromy operator hk acting on H__ k(;L), as described
. -c . - n--p-«’.
in section 1. Let S denote the intersection form on H ().
n

Proposition 3.2

(i) rk 5-—-/m,(x)—bn_1

(Y)+ & , where Y=Yp > bk(Y) denctes the k-Betti
number of Y, & =1 for ny3 odd and € =0 otherwise.

(ii) If X is a good singularity, then

A. = RIS - k N~ - it
rk S~fA(X).ki1’P( 1) Cblonk(hp+1_k id)
where corank T=dim coker T.

froof

The homology exact sequence of a pair gives

foiay Hn(a'i‘) oy Hn('i) S 1R nn(')?,a"i) o

and we derive rk S=/A(X)-bn(a X)
Let SO be a small sphere centered at the origin of_lf,mp and let

§:~:Xf\50 5 2:’=xp_1[)so be the iinks corresponding to X=Xp and to»Xp_]

Note that 3, =0X.
The S]-action on SO given by,

5

W
n+
pox=lt Xy, et B )

n+p

Jeaves invariant the links 2:, and z:’ and moreover §:./s SRR
P 7
Uéfng the Smith-Gysin exact seguence associated to this action on

z: [17?'and the result of Hamm on the connectivity of z: {10}, we get

b (R)=b, g (AX)=b 4 (L)=by 1 (V)= &



where € is defined in the statement of the result (i).
On the otiner hand, comparing the Smith-Gysin exact sequences asso-
; : 1 ’ : ' :
cilated 'to the S -actions on 2: and S?/, we find out that the morphisn

Hr(§:)~mm% Hn(Z:‘) induced by inclusion is trivial. The exact seouence of

the paLf (505, ),) then gives
dim H (3! §:)=bn- Z: +b E:l
The exact sequencc in [10] (1.8) shows that
dim Hn(§:',il)=corank(hp“§d).

The last two formulas give the result (ii). !3
We aention now ;ome situations when rk S can be combuted effectively
using Preposition (3.2).
Note first that r&\n) can be always fomputed sn terms of w LGX
Bk In the case of hcicyeneous singularities Cike. W= =W =1) we can use (I),‘“

n+p

since there are rormulas for bn«l(Y) (see for instance [12}).

When dim X2, we can ccmpute bq-j(Y) using the formula for the |
"'geometric genus'' Py given in [hl (3.4.4) and the obvious fact that.a..
1-dimensional V-variety is smooth. -

For the singularities described in Example (2.2) we can computc rk S

using (ii).

Remarks 3.3

(i) Since the cohomology élgebra H*(v,q) has thé same structure as
Fﬁﬁ”aﬁ u?ua] complete intersection i.e. excépt the middle dimension Hk=
=Q(resp.0) for k even (resp.odd), it follows that to know bn-1(Y) is
equivalent to knowing the Euler-Poincaré characteristic 7((Y) o Y.
(i) 1f ¥ludisr g semi-weighted homogeneous sinqularity of complete

intersection [6] corresponding to the singularity X above, then note that



e e

. —

oz

the Milnor fibers X and X‘ are homeomorphic and in particular X and X’ have
the same intersection forms.

{11i) There is a variation operator

associated in the ‘usual way to the monodromy operator h introduced in
section 1 (see for instance [9]).

The formula 3.2.ii shows that for.complete intersections (as
opposed to the hypersurface case!) the variation operator is not in general

an isomorphism. lIndeed, otherwise one would have as in [9]
rk S=rk(hp—id)

and this contradicts (32 )

4. lsolated singularities on projective complete interseccions

N

. . . . . i n+ .
We consider a projective complete intersection V&P P defined by .

the equations P1(x)=...=Pb(x)=0, where P, is a homogeneous polynomial of

degree di ; d1>/d2>/... >/dP}/" Ly p',;.z.
We assume that V has only isolated singularities Py i=1,...,N and

we try to get an upper bound for their number N (and 'their comp]exity).
The polynomials Pi can be chosen such that the complete intersec-

tions

— n+p. 22 Pt = l» _' il :
vk-{xep L Py (xR (X)=0 ] Sfe BT P,

—_—

are singular at most at the sinqular, points of V.



Indeed, this can be done inductively on k, using'Bertini’s.Theorem
([7], p.137). For instance P1 should be taken as a generic member of the
linear system [ (V) 1 , the homogeneous component of dearee d1 of the idedl

I(V) of the projective variety V.
d 3
Then apply Bertini’s Theorem to the linear system [(V) 2 on the

sméoth part of {P1=O} and so on.

Moreover, we can suppose thet the intersections Wk=Vk()H are smooth

for any k=1,...,p, where H is the hYperpfané given by xo=0,

Let gf(x)=Pi(t,x), Ft(x)=Pp(t,x) for t € [0,1] , x€€™P and
i=1,..,p—1.

Then X:g°(x)=0 (resp. ongo(x)=f x)=0) is an isolated singularity

ofvcomp1ete intersection, namely the cone over the smooth variety wp_1
(resp. W ).
P

- Note that the singularities of Xt:gt(x)=0 (respvaxgznt(x)=ft§x)=0)

for t#0 correspond to the sinqularities of V__

/
cresp. -\ =\).
p-1 P

Moreover all the assumptions cof Prop. 2.3 are ful-illed. Using

(2.4) and {3.2.i) we obtain the following.

Proposition 4.1

i=1,N

: a4 0 00 € f»u(x)-wz{ Pl e i E}

where X, (resp.Xio) denotes the singularity of the complete intersection
Vp—1 (resp.V) at Fhe‘point P fpr F=l NG ’D

Let usﬂdénéte'by %(X,XO)’the right-hand side in the above inequality.
Then the ®ropositiom-(4.1) gives a better upper bound than (0.1) and (0.2)
when, roughl king,

ughly speaking B(X,XO)< fL<Xo)'

The following example illustrates the (assymptotic) behaviour of

the invariants involved.



Example h:g

We consider the case d1 .=d =d. Then using the formulas in. 6\
' o

we find that fA.(X) (resp. FA(XO)) is 2 polynomial in d of degree n+p with
n+p"1)

leading coefficient
3 ( n+1

, resp. (n+i~1). Moreover, bnm](wp)”is i this

case a polynomial in d of degree n+p-1. 1t follows that

B(X,X,) el

2 (n+1)

L(n,p):=1im
R /N
d—’) 6] Iuv\/(o)

Note that L(n,p) ¢ 1 if and onlyif

dim V> 2 codim V-3

and moreover we have as in (0.3) -

Lo, D=t imilinpl=5 - ]

n-» o0 -

Note that if n=dim V is odd, then ﬁklso Ypd afor amy =ty s o gl

io
and hence (4.1) gives an upper bound for N, the total number of singular

points on V. When n is even, it is.easy to see by 2.6.ii and [14] (8.10)

that

1l

f& (Xi)+'f1iso(y|o

if and only if Xi is smooth and XiO is a simple hypersurface sinqularity

2

([ee. of type A D Eg »E5 OF Eg in Arnold notations).

In order to obtain an upper bound for N in this case, one needs a

suspension device as in Bruce [2].

We could imagine no better approach than the following.

= —t
Consider the suspensions X :gt=0 (resp.X_

=f =0} where g ( 2=
=t 1z X 2 .
gl( x)+ l Z . x,2)=f (x)+4Az for z, A and )u. G,
“1f the constants A l are chosen general enough, X and ngare

isolated singularities of complete intersections. Moreover if a; (t)e X

is a singular potnt then (ai(t),O)GEYZ is again a sinqular point.

Pt A Oda A
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In this way, using (2.4) we get an upper bound for N in terms of
/AKYO), /A(?g) and the rank of the intersection form S of YS.-

Note that the singularities ?o,iz are no longer weighted homogeneous
in general and hence one has no general method for making explicit compu-

tations.

A happy excepticn is presented in the following example.

Example 4.3

We consider again the case d]=...=dp=d.

Using (2.2) and (3:2.11) it is easy t0-show the following.
: e SOy . o
The Milnor number f&(X ) resp. f&(XO) is a polynomial in d of

; : < 7 oo n+py. . - .ntp=l n+py . (nt+p-1
degree n+p with leading coefficient <n+2} + e ) resp. (n+1X'§ e )

Moreover, as in [2] Lemma 5, one can show that corank (hk—id) s 5
polynomial in d of degree < n+p for k=1,...,p.

Let us denote by B the upper bound we get using (2.4), namely

- -

= . Yoy 7 <
B-,&(x )+/"<Xo) T/2-rk S
The above computations show that

- B _nZen(bp-1)+bp -hp+2

L(n’p):zgi;;ﬁd = 2 (np+1) (n+2)

S

In particular, we have as in (0.3)

L(n,1)=1in T(n,p)=y -

n-y 0
Remarks 4.4
e - d
(i) If we used a ’homogeneous’ suspension.given by §i=gi+ Aot

d :
=t t -0 =0 " : 75 T . .
f=f+ Az 2 , then X ’Xo are homogeneous singudarities, but their Milnor .

numbers become too big to give interesting upper bounds.

(ii) It seems that there are veryTtypes~of complete intersections



V for which it is known the maximum number M of singularities which can

really occur on V.
The only such example known to us is when p=d1:d =2 and it is due

to Knorier [13] Chap.ll. In this‘cases-and assuming n» 3 odd, one has

the following equalities:
M=n+3, f&(Xo)=2n+3 and B(X,X )=(3n+7)/2

the maximum M being obtained for a pencil of quadrics with Segre symbol
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