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THE STRUCTURE OF NAIMARK DILATION
AND GAUSSIAN STAT AONA'?Y PROCESSE

Gr. Arsene and T.Constantinescu

L. INTRODUCTION

The well-known interplay between classical extrapolation problems, the theory
of Toeplitz operators, and the theory of Gaussian stationary processes stimulate for a
long time the research in all these fields. The main object which connects these
-subjects is the notion of positive Toeplitz form. This can be theught as determining the
correlation. operator of a Gaussian ,tatxonary process, or as determining the Fourier
coefficients of a semispectral measure.

The study of dilation theory of contractions in Hilbert spaces asks. for a
generalization of the Schur sequenceswhich appear in Carathéodory-Fejér extrapolation’
" problem; «this is the notion cf~ choice sequence which was used in indexing all
contractive intertwining dilationstand in the structure of positive Toeplitz forms. As a
by<product, the description of the structure of Naimark dilation of a given semispectral
measure was obtained. This fact proves now to be usefu!l in studying the regularity
properties of a Gaussian stationary process.

The contents of this paper is the following. In Section 2 we collect the results
concerning the structure of some matrix contractions, the structure of positive Toeplitz
forms, and the structure of Naimark dilation of a semispectra! measure. Section 3
describes the connection between the theory of (vectorial) Gaussian stationary
processes and dilation theory. Section 4 gives the main technical-result (Theorem 4.7)
which shows that the parametrization by choice sequences is useful in computatidns (in
the general vectorial case) connected with informational regularity of the processes. As
a consequence, we obtain in Section 5 a criterion (Theorem. 5.2) for informational
regularity of matricial Gaussian stationary processes. More expiicite results (Theorem
6.1) are obtained for the scalar case in Section 6. Here we:insert also two remarks
concerning the connections of our setting with«<the notlon of entropy for Gaussxan

m———

stationary processes and with Szego's Limit Theorem.



2. PRELIMINARIES

In this section we will recall the structure of Naimark dilation of a semispectrai
measure as presented-in [13]. For this, it is necessary 7o review some results on the
stsructure of matrix contractions (see [7], [3], [11], [12], [13]); on choice sequences (see
[81, [2], [12], [13); and on the structure of positive Toeplitz forms | (see [12]). Some facts
are described here in a more general setfing (or more gompletely) than in the quoted
papers; moreover,those papers contain proofs which cover the cases considered.in this

section.

2.1. Structure of some matrix coniractions

Let H and H' ba (complex) Hilbert spaces and let T € L{d,;H') be a corm action
(e. [|T]| <1). As usual D and D will denote the defect operato: Eir )’ ) resp.
the defect space (_,)T(H)) of T. A straightforward computation shows that the

cperator

e . Sl
T : H@L)T_X_""""' H'® Dy

(2.1)
< T o %
IT) = :
¥ | De. ~T*_i
is a unitary operator.
Suppose now that H = D(%l ;{p , where n ¢ N. Then T = (Tl’Tz’ e T )€ L(H, H") is

a contraction if and only if (see [73, [L1]}-
(2.2), ENTES?
and for every 2<{p<n,

2'“ E = 5
( A)P : Tp Dr-ic.” I’f, D

where Il =T, andi’T. e LH, ,D ) are contractions for every 2 <k<n. Moreover, the-
s k k I'k i = ;
defect spaces of T and T* can be identified as follows. First, the operator defined by

u(T}: o DTM}DTIDPZGJM °®DI‘




D e o e o {Dp#ee.Dpx T |
Iy i) i o : T e
0 D o Traae ol 6D T
I‘2 25 2 I’B rn-]_ n
5 9\ . ]
(2.3) qﬂdDT._ " 0 Dy :
3
0 0 0 ; Dp
L. n

is a unitary operator. For computing D consider

T
{ .
B(T) =8 iDT% "*DI-;%
(2.4) 5
B(T)DT-& = DT* S Dr* :

: n ek

which is a unitary operator.
[e2)

The cdse H= @ Hp is ore delicate (see [13], Sections L.3-1.65% LEet

b e [n] ,_ 1"
g ) | EL (H,H'), and dencte for every n2 1, H @HPC Hoapd Te-s=T|H €
= ool
€ H[ ]H'\ From (2.2) p> 1 it follows that T is a contraction if and only if T is &or
‘contracuon and TP = DI,l Dr;_i = (p> 2), where T | = 'Il and I’ E:L(Hk,D I,r: l)
are contractions (k > 2). For computing Dt , define :

: Lnly (n] -
(2.5-)n : Dn(T) = o(T" -)D [n] e @ Dp C ® Dp -
= p=lop.opk. P
and
(26)- D (1) =5 lim D ('I) H—+® Dy .

PR R

Then the operator

ofT) s Dy —* !1 Dp
(2.7) e
-‘ ATID.r 1= D (1)

5 N
is a unitary operator.

For computing Dop= s consider the operators



("

G B DI‘* ‘ ‘
(Z.S)n : <

f“ :Dfn DI’;DI‘*’ (n>1)
and the operator
(29) G (T) = G, i= s-lim G &

Then the operator

BT} D_,—> Ran Gu(T)"
(2.10)

1/2

BTD_, +=G(W

£

is a unitary operator.

Similar results can bD mﬁ‘ained (by transposition) for the case of a "column"

operator from H into H'= O H' (or @ l‘”)
p=l P p=1

Finally, consider the case of a two-by-two matrix contraction ‘T : H( = Hl®

: e T
@Hz) = Hi= H’i ® H’Z), Te| ol 12} see [4] Then T is a contraction-if and only if

Hdy
(2.11), : eI TS
(2.1 J.)2 Ti,=Dyx 1"1 , where I’1 pH D is a contraction;
11 11
W2 1y Ty =T,Dp ,where T, : D, — H' isa contraction;
11 11 :
and ;
(2 ll) T,y = PZTIJFI +Dp«I'Dp , where T : Dp + D« Is a contraction.

s 1 2

The defect spaces of T and T* can be computed using the unitary operators -

(“
a(T) : Dp = DI,Z@ Dy
..(2'13) < Dp D -(DP TTII’I + T IDI, )
' oc(T)DT = 2.4l - s e
- ' paape o i DI'DTT“”‘

and




B(T) :DT* -—PD *@ DI"*,
(2.1%4) i

B(T) := ofT™).

2.2. Choice sequences

“* TH&" main object used for the indexing of contractive intertwining dilations (E81:

[2]) and of posmve Toeplitz forms {[12]) is the notion of choice sequence. A sequence of.;%

contractions Y = {I‘nl | s called.a ((H,H")-). choice sequence if r,:H — H' and for ¢

every n> 2, I‘n 2D —->DI, .For simplifying the wrmng of some formulas we»}
n-1 n-1
take TO:H — H', I = 0, so DI' =1y DI‘*’IH' 5 DI.O=H, DI,*zH’ 3 Fix now 2
choice sequence y . We will attach to it the space
n-1
1), K (=K = @Dy , (21
p=0 " p
and
©o
(Za6) .= _ ‘ K+('Y)=K+ o= ®DI' S
: p=0 " p
Censider the "row" operators
- o K o ’.
Rn(Y) =R, 1K —H
(2.17)n = R ‘
Rn ::..\(I' 1‘,DI. -)1(-]:' 2 e ,‘DI1 -i(-e o6 DF:-IPn) (n_>_‘1)-

and (denoting by Pn(Y) = P_ the orthogonal projection of K onto K_, n>1)

[Rw('Y) = _Rmo :K; — H'

(2.18)
R_ :=s-lim R P
n-> a
Using the notation of Section 2.1 we have, for n>l, Rn = R[n]
consider the operators: poe o
(2.19)n an(y) =0 :=<‘a(Rn)
(2.20) B,0Y) =B =BR)
(2.21)n Dn(Y) =D = Dn(Rm) D_#v)

(2.21) : Byl o= DR -

. and we will



b

) a (Y=o =oR) - -
(2.23)_ G (=G, =G R) e
(2.23) G (Y=G_R)

(2.24) B (=88R,

c§éfined by formulas (2.3), (2.4), (2,5) , (2.6);. (2, 7), (2 '8) , (2.9), (2.11), respectively.

Let us note that for every k>2, Y = {E. } s a (Drk_l,Dr;_l)-ChOice

sequence;x the upper index (k) will .indicate the objects~associated by (2.15)6—(2.24) to

~y(k) (e.g. Kg() = (k)), Rf}k;{}g?R

=K., 1(y ( (‘()) -and so on).

n-k+1'Y

Similar considerations can be made for "column" operators associated to y. The
simplest way of thinking them is to take the adjoint choice sequence Y - {I‘*}: g0 to
consider the ' ‘row™ objects associated to y*, and to take their adjoints. We wxll use the

0
symbol "ol for denotmg these "column® objects. For example, for n> 1, R (Y) = n:

: n-1 5
‘ : t
:H—+@® D_x,R _:=(T D) ....,I‘D : D), standmg for;'[natnx
: p=0 I'p = 2 I‘ ! n- P~ 1 Ty .
' ° o g
transpose); a“’(y)”,: &09: Do, @ D%, a D:{ =B and so.on.

R . = - .
The use of choice sequences in indexing contraciive intertwining dilations and

positive Toeplitz forms need also t-hef-f,f‘c‘;ﬂ_ﬁowing-ﬁOta».ti‘omm(For simplicity, we will

consider here only the case we will-use in the sequel, namely H = H'.) For a fixed choice.

sequence vy = {rn}r:-.l , define for everyn> 1 and 1 {k<n
Jn,k(Y) : Jn,k :

:(HRD, ®...DD YD @D _»)®OD ®-...®@D_ ) —
I T2 M1 rk@ Tesr T

)@(Dr* @D, )@(Dr @...@Dr)
k-1 ke k+1 Mo e

= 1@ I I‘k)®l )

(2.25)n

—~ (H®D | Q @D
k-2

where I stands for the identity operator on anv space, and some parantheses in the direct

sums may disappear (namely, the first and the third, for k =n = 1, the first for k=1and

n> 2, and the third for k = n).

Finally, consider the unitary operators e e

(2.26) | Vo=l:H — H,

B B
o 13E



Wome V. s HODr @@y @ODpx T HODp ®@.-GDp
' 1 n 1
(2.26)

TR ,
LVn = Jn,ljn,?_’ S Jn,n s L),.
In [12], the following connections were proved.

1

First of all, for each n>l, with respect to the decompositions

(H®Dp O.MCUI )OD % and HOWD O .®Dyp ) , the operator V_ has the
matrix B :
Racc
(2.27)n Vn = n n
B o
n n

where R G and D are defined by (2.,17)n . (2.23)n- ; (2.21)n , respectively, Vi/hi}@ A, s

the operator:

A tDp* > Dr @D
(2.28) S L L
n
A_=-(TDpx...Dpxs T3 JF%N.DT*,...,TQJDF*,r*ﬁ
n

2 =N 2 n

Using these, it follows that definig:

29) [ =\ = o [ -
(29 -9[1 Wl = \VI(Y)— Pl ‘;'-.‘l s H,
and
Weilpe=tW s —F K
(2'29)h il n n n

\"/ o R y
W 2= Vn—l(x@l n) v An>2),
then the operator

W (y):W S

{2.30)
W ~sthP

o n->-oo

is an isometry which verifies

(2.31) W

This operator W, is connected with the adequate isometries considered in [9].

In Connection with (2. 28) _1 o we wxll need the following remark.



LEMMA 2.1. Foreveryn> 1, we have
(2.32) ker(I—AnA:) =0y,

PROOF. The formulas (2.2 ) - imply the recurrence relations

2t
3 =ale 3 T el o o ‘,70
(2.33)_ An= (B Py s il n o

. . = oo A 5
We will prove only (2.3?}2 » an induction argument, based on (2.?3)r 1 settles
the whole matter.

Thus, we have to prove that D, + = D Q D - wheh_e L D @D — D%
‘ ' Ao T . I I3
is given by /—\;" = ~(D r Ty ,1’2)4 For this, we m*l use the analysis of "xow operators" as
described Section 2.1. Denoting by T = (I',) : DP»I ) gL(D Q ; DI'*)’ our goal is

Iy 2 :

equivalent with proving that ker D..= {0}. But (1’2 ; D'F'Z.“ T l), where T'y= erDl‘ze,

D _ %
; 2 I .
EL(DT?”’-}T’;) amd [i=Fp L?il%l e LD Pt I)Feﬁ}_ is the canonical form of T
. Fa : 1"" d: 2 Z ;
7. ;

described in (22);_1, It is clear from the definitions that ker D = {0} and
= 3 : 2

ker D = {0} From the proof of (2.3) (see e 2D it follows that ker D o {0} and
I ' Z

1
ker D _, = {0} imply that ker D = {0}. Therefore (2.32 ) is proved, and this finishes the

proof :)% the lemma.

2.3. Positive Toeplitz forms

For a Hilbert space H, a ([1-) positive Toeplitz form is a sequence of operators

T=1{5 j} {7 (°> e L(H)), such that for each n Zil, the operator

n+1 n+1 :
o e @ H - Bl Y peN),
n p:1 2 P=1 p P
I 5 S, : 5
9 * :
(2.34) 5y - S, S
+* ¥*
T = | S5 5 I e
¥* * ¥
: Sn Sn-l i

- is_positive, From [12], Theorem 1.3, it follows that there exists a one-to-one .

and the set of

correspondencé hetween the set of H-positive Toeplitz forms T = {Sn}oo |
- n=



(H,H)-choice sequences y = {I‘n};::l , given by the formulas

(2.35).  S_= R, (0U B s Dr.f...D r:_l‘rnD L

We will denote the corresponding objects by T(y) and Y.T)-

2.4, Naimark dilation

A (H;) semispectral measure F on the unit circle T is a linear positive map
(2.36) _ F:c(T) - L(H),

where ¢(T) denotes the set of (complex) continuous functions on T. We will consider
only the case when F(1) = I; this is not an essential restriction, and it simplifies some

unirnportant complications. The positive Fourier coefficients of F,
(2.37) Sn(F) = S.n’:: F(Xn), >l

where e (e )— '™ | define a H-positive Toeplitz form TE)=T=1{5 }:o 1‘ The choice
sequence y(T(F)) wxll be also denoted by y(F), and in writing the ob]ec‘tq associated to
+(F) by Section 2.2 we will use sometime F instead of (F).

Let us recall the structure of the Nalmark dilation (see [22], Sect_ion 1.7, for the .
definition and the construction) of F, in terms of y(F), as it ‘was described in [13]. To

this end, note that
: n
(2.38) ‘Sn.(..F? =Py W (FIP
(see [13], Lemma 2.3), so, having in mind (2. 313 the structure of the Naimark dilation of

F goes as follows. (We will fix F and omit the writing of F, or y{F), in denoting the ob-
jects of Section 2.2 associated to v(F).),

Take
(2.39) » Dy :=RanG_
and
(2.40) " Ki=...@D,®D,OK,

Then define

_ : W:gk(=(..0D)® D ®K,) —K(=(...®D®K,)
(2.41)

; Wiz I®Wred 5



10

; . s defined by
where Wred sp. ek kb defined by

[ 0

2.42) W oogis IR ) 5
0 (me l_5°° 0

It follows that W is a uniiary operator whose spectral measure is the Nai.nark dilation

(@)
—

~f F. Note that W has the matrix

eyl 0 0 0 0
0 L/Z Tl Dr*rz DT*DF*PB
(2.43) W= e e
] - ._T’* i *
5 ap L Ao
e —22 0 DI.2 1“21'3 oo e
where the operaters Z y(n> 1), are defined by
{Z D.}(.__}DI'
\2.44)1,1
Z 5 n n+l
using the opsrators
{Hn Dy —hDipex
n-1
(2.45) _
n;l"'cl’ (n>2)

‘which are constructed by partial isometries

,

Cn : Ran G(t:) -~ Ran G(ml)
(2.46) e ‘

LR el

| n

"It Is easy to see that, for each n> 1, the compression of W to i is exactly W

defined by (2.29)n , and that the restriction of W to K_ is W, defined by (2 30).



3. GAUSSIAN STATIONARY PROCESSES

~

The airn of this short section is to recall the setting of studying the regularity ..
conditions for Gaussian stationary processes, ([16], [25], [21], [15]) and to point out the
connections of this with the structure of the Naimark dilation of semispectral .-
measures '

‘Let "HYbe a Hilbert space, and § = {g Q&}m R a;}inv:'ilued Gaussian stationary
process with discrete time and zero mean wvalue (where w varies in a given probability
space). Then £ is completely determined by its correlation matrix T(£), which is a
H-positive Toeplitz form (see for example [21]). We will also suppose that the (1,1)
entry of T(¥) is I, which means a normalization of the spectral measure of g. Thus, it is .
possible to apply to T() the analysis described in Section 2. So, the process & is
completely determined by the H-choice ‘sequence Y(T(E)) = y(g) (see Section 2.3);
moreover, the spectral mesure of £ is the spectral measure of the unitary operator
W e L(K), where K and W are given by (2.40) and (2.43). The process itse!f can be
thought as the sequenf*e of the compressions oi W' to H.

Our mtentloms to study some regularity conditions on § using the previous
structure mvolvmg chmce sequences. For a fixed & , consider its correlation matrix T
and the associated choice sequence y ; we will use the notation from Sectlon 2 for these

objects. The paper L16] introduces in the analysis of processes the following operators

(3.1, _ B&) =B =P ()PP n) eLEK) pn2l),
where
K N A el
(3.2) pa e oo g )
n : K s -
and :
(3.3) P, = p§+, '

The fact that £ is a Gaussian stationary'process implies that for each n>2 Bn.djiifers
from B, only by a finite rang operator {(see for example [21], qu__i‘on,IV.Z)o Therefore,
our analysis will be concentrated on Bl :’P_»P+_P_ , (where P_ = P-—(l) is the projection
of K onto K _ =K ) :

There are quite a few notions of regularity for stationary processes [21]; some
of them are equivalent in the case of Gaussian processes. We remind only some final
results which use Bl A Gaussian stationary precess .isp cqmp‘lje"telyv regular iff B1 is
compact; and it is informationally regular iff B, is trace-class ([21], Ch.IV). In these

cases, the so-called the regularity coefficient pand " the information regularity
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coetficient I are defined as:

(3.4) n +on= 1Bl
(3.5) n )= -4 In 0

where {XE")} are the éigenvalues of Bn. \

The above facts suggest that a triangular tactorization (which involves the
choice sequence Y(&) of I-B, wil be very useful in this respect. This will be dene in
next section; the applications will be considered in Sections 5—6. -

4. MAIN TECHNICAL RESULT

Our analysis of the operator B | (attached to a fixed Gaussian stationary process

“ ) will use an approximation rocedure suggested b the special stucture of the space K.
PP p 88 Y p P

{(The objects from Sectior 3 which appear here are all attached to the choice seguence.

v(9).) In-this respect, consider first (for every n> 1)

(1) R R PR
n : : n k 1 n K
: n
and the opzrator
(4.2) B =PRP o
e I n+n

Then we have

o) - S R pyEe A oot % S
(4.3) Bl,n'Pnk P =PBP., (n> 1).

This expiains our interest in studying the operators {Bl n}:—l . We start with-an
9 = :

o - g . . . . .
useful result on {pn}r—l . For explaining it, ie. define

K

'(4.4)n Qn &2 PV\P+ = PKn s (nZ 1) .
Now, we can state:
PROPOSITION &.1. For everyn2 1,
\ - _ yy¥N n
(4.5) P~ WO
The proof will use the following result.
LEMMA 4.2. Fof every n> 1, we have
(4.6 i - % = e el
(4.6) shrr - Q- wQ WH Q] =l Qo g s



13
PROOE. Ha'ving in mind that for .every secifadjoint contraction T one has

s-lim T = Pkmr(I»T) y» we will prove firstly that for every n> 1

M-
0 0 0 0
\ T *\(y .
(14.7,n (I-Q - wQW it Q) = ; . - =
: hin
: 0 0 0 IJ 5

where theé matrix is written with respect to the decomposition of K as (...@D,®D,)®

@H@(DP l@. : .@Drn)GD(DPnH)@. ..)and A_ is defined in (2.27) :

The formula (4.7)1 is an immediate computation.
Fix now an arbitrary nZZ. Using (2.43), (’L,hlé)n, and the remark made after the

formula (2°46)n , we infer that

0 0 0 0
0
_ K
0 W ow* W [ n-1 '
n-n n 0
. = D
(4.8)n WO W™ = 5 L
: 2
0 {0 Bt D 0
Kol Tn Ty
0 0 : 0 OJ

““awhere the right hand side is written with respect to the decomposition of K as
(...D*QDD*)@Kn@DI, @(Dr
n

from (lf.S)n that

®...). Using now (2.29) ‘and (2.27) | , we obtain
n+1 =

= =
0 0 0- 0 0
0 * ¥ * 0
; K 3 5 * % ;
(4'9)n WQnW = . i Dn-an-1+An_—1‘rhrrlAn—l An—lrnf)l"n 0
e B DA e 0
]_"n n n-1 I.2 -
n
0 0 0 0 0

where the right hand side is written with respect to the decomposition of K as

(---®D*@D*)®H@(Drl®-=-@DI-n_l)@Drn@(Drml@...),- ard the. entries

marked by """ are not important in the subsequent computation.

From (14.9)n it follows immediately that



(- Q- Wo WE-0) -
B 5
I 0 0
0 0 0 0
= - * 11\' _\_"i. l\
(Q'IO)n = L : Dn—anml & ~1rn n[n—l n- anDTn :
n ¥ p % * i
0 0 ] 0 I
L i
with respect tc the decomposition of K considered in (4. 9) s
The formula (#.10) shows that (4. 7) will be xmphed by the 4quahty
= * = ¥n ¥ = r
LD B =B e Sh e
(4.11) A& .
2 g : * p % T*T
~DI’ . An i n'n ?

where i@ fatrix in the tight hand side is written with respect to the decomposition of
DI ®.. @DI‘ as \D“,@'“.DI’ )®DT E
n

n_.
From (2. 33) =it follows that

*
4 An IDV:An i e lDT*T
(4.12) A A* =
n n 'n
= P
nD :Apl r.n nJ

Comparing (4.11)_  and (4.12)_ one note - that' it: remains to show that (we use the

weli-known fact that, for every contraction i TDT = DW;GT) for every k> 1
T 2

(413) ATy oD

KAk Dy

l\k

This can be easily done by induction. For k= 1, this is the trivial equa uty I‘Trl =I- D% .

Supposeniow that (4‘13)k is true for a fixed k> . Then, using (4. 1Z)k+l and (4.13)k , we
have that '

*
- 1- DD - AT Tt g irk+1—]
Bt s :
B I‘* * *
kelPpx Dk i e J
k+1i

This is exactly I - Dk+1Dlt+l , if we note that from the definition of Dn(see (2.21)n and

r-
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(2.3)) it follows that for each m > 2

m-1 A m I m+1
(4.14) D =
m m

Ui DI‘ ;
i el
where the matrix is written with respect to the decomposition of Dy ®...® Dp as
5 1

D, ®...®Dp )@Dp
1 m-1 m
This finishes the proof of (4.7)n , n> 1. We have then, for every n> I, that

(4.15) s-lim [(I - 1)("1 - wQ W1 - Q™ =

1 0
0 0

Do o e | 0 0
0

S N,

0
0
0
0

bt

& - :

where A' is the projection of D ®.. @DI‘ onto ker(l - A A*), and the matrix in the
l n
right hand smde is written with respect to the decomposition of K indicated in (4. 7‘

The proof of the lemma‘is now completed using Lemma B il

PROOF OF PROPOSITION &.1. First, let us rermark that

2 : K o kD n
(4.16) : Pan =W 0w, (h>1).
This Ioﬂows from the fact that for each n>1, W* lh” e L(H,K) is an isometric operator.
We will prove (4. 5) , (n>1), by induction. For n=1, (4. 5)1 is exactly (4. 16)1 .
Suppose now ‘that (l;..‘)'}n is true for an n> 1. Then, from (l+.1)n+1 ; (#°5)n and (l..lé)m p o it

follows that
(“'17)n+1 p;x+1 5 (\V*nQan)\/(W*(n”)Qle 1) :

where '\/" stands for the lLu.b. of the two. proyzctxons Denote in thls proof E =
= W1 - Q)W" and F = e ol

for example [18], Problem 122), we ba_ve

Then, using von Neumann formula (see

e i (EEE)D

(4'18)n+1 e Pn+1 P

An immediate computation shows that

——— —t
e

m,, N+l

(4.19);’11 (FEF)™ = wr e D QW - @ -9y )] W
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for every m > L. From this, Lemma 4.1 and (l+.1‘8)n+‘ it follows that

-

n+1

(45.20) N Ee

n+l n+i n+

which is (4.5) - This concludes the proof oi the proposition.
n+ ‘

We pass now to our ‘main goal, namely the proof of some triangular factoriza-

Z
tion results. The first attempt wa be done on the operators DW” ;n 21 . The operators

n
which are really interesting for applications are those of the more general form
- xm “"n>1, 1<m<n (the previous case is, essentially, that where k=n).  However
i = oo , , e

Fik M :
the methods used in the proof of this particular case are strong enough to settle the

D

whole matter.
Fix now (for the rest of this section) an n> L. From-(2.29}n . (2.26)n_l and
(1 <k <n-1), it follows that

B2, 10
P
e Vnwl(l@ I‘n)jn-l ljn—l B Jn—l,n-l(l@rn) T
2 Vn—l(jnn,ljn Lyl XI@F )Jn L,n (I®_rn)"

and therefore

3 J

; n—l,-:n'*?}) “Jnél,l) 3

’»,n ST =1 % 53] ; :
W=V 3o, T ncd e 1, el

-~ bl 1 { = Ti {
(q"z-l)n : o ln)Jn—l,n-lug " n)jnwl,n~23n~l,n—1\l® I1n) i
)((1@ In}jn"l,l ° e Jn 1 A= 1\I® )

The formula (1«;.21)n shows that

) n
(4.22) W= K

where U:%l is a unitary operator from H® DI‘*®" <@ Dy onto K and the operator
n n-1

K, acting between K_ and H® Dpx@- - @ Dp* is defined by
: . N n-1 -

Kn =1 I1n):]n—l,n—l(l® I1n)‘jl’%-l.,n—23nn—l,n-1(1® I'n) o
(4.23)n ,
xA@ T I,y - nlnl\IG)T)

£
In (4. 21) - and everywhere in the rest of thm section - there;is a delicate point

concerning the notatlon Jn—l,k selsdled i 1 Sometimes thl?denofés an operator which .
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has only the non-identical part as in (2. 75/ e the spaces between it acts result from
the context. For examnle, the last J @ éom the formula of U‘ i acts bertween
(FIOD @Ls_,_,f\ ODI‘* ) and (HQDF UD +@.. ODI‘* % and so on. The
same problem &rises about 1hle space on which acts the 1dent1t/ m 101’ , which also
results from the context. For keeping reasonable notation we will dl-srega;d this matter
- a fact which will make no diificulties.)

The .operator Kn has several interesting properties. For describing them,
remember the meaning of an upper index, as defined after formula (2.24); for example

(l) 171 (2) PR ?
B =K s and K" acts between Drl@. - ®Dp and. D x@ @Dy« by

n-1 n-1
: (@) e G @ .
(4,24)n v Ko = UG1 )j‘ -1,n- (I@Fn)jn-l n-2"n-1, n~1ﬂ®$\nm*”x\\—
(2) ( )
xa@r i BUchm
(
It'is clear that K;)n):l"n , and we make the convention that K(m” is the zero-

~dimensional operator. Remember also  that-he symbol " o!! refers to the objects

associated to "column" operators.

LEMMA &.3. The operator Kn has the following properties:
aenivd

(1) K= G W _ -

(ii) Kn=ﬂ@rgﬁ]1n1 GQK )s

(iii)  The first column of Kn is Rn;

0 0
. ( 2
(iv) B ; . (

®0),

where the matrix in the left hand side is writien with respect to the decompositions

(Dp ®@.-.®Py )®Dp. and HO®Dp ®...@Dy .
1 n-1 n 1

ne-1

PROOF. The equalities in (i) and (ii) are simple conseétjenceS'O'f*the(jgﬁn’ition.

The third assertion follows by induction, using that Rn = (T l’RﬁZ)DI' )t and Hhatiee.

I
ke I
| ol menl
(.25)_ Lon-—l On-1
@, 512) : s )t
0 1
n-2
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where we used the first assertion, and the structure of Wn and‘Vn_l .

For proving (iv), note that using (2'27)n-1’ we have .

: Rl Ty !
(4.26)n_1 Jn--l,n-’l % n-1,1 7 = A |
LGn-] An-l_' ’
similarly, from (4.1 4)n it follows, thart : .
5 : n-1 ! ‘I
(4-27)n Dn = #e , 'ﬂ,‘o \
s SRR
,,,Jc;{' % . n_l y

The rolation fIV) Lesuits now by easy matrix computations, using (ii),. (Al.26)h_l and

(4..27)n . The lemma is now completely proved.

will imply that of va*n. This is

By virtue of (4.22)n , the factorization of Di*
n

the reason of the next lemma. n
LEMMA &.4. If n> 2, then (on D_jJihwe- o8
n
a .
n
(4.28) D = :
: el - ()5
3 0 (DK(B)* @I)Dn ’
n

- where ‘the matrix in the right hand side is written with respect to the decompositions
HODpx@...@Dpx )and Dpx@Dp+@...®D« ), and the operator

; 1 _ n-1 n 2, n

=

I

(4.29) U'ﬁ‘Dr: ®(DK(3)*®DI‘[’:)."+DK

n

is a unitary operator.

RRQ@F?W& will obtain (4.28)n using the method of dealing with two-by-two

r-—/*"ﬁhé?ric/es as described at the end of Section 2.1. For this, note that (2.43) implies:

x
5 DP*R(Z)
l n
(4.30) - W = o
n n ; %
I S e
oy By il R e i
feol - Wyso: 0] 1
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where the Ligger matrix in the right hand side is written with respect to the decompo-

sition of g as H(D(Dr ®---@p, ). From Lemma 4.3 (i) and (4.30)_ it follows that

1 n-1
[, —_—
I p R¥?
%ien
(4.31) K Ty _
@] AR
Kn DI‘ p-‘ I’TRn o K,-‘ Dn .
Inio 1 i On-2_| : IIn—2 Y
} {5 ol
Now, Lemma &.3 (iii) and (iv) implies that (4.31)‘6 is in fact
' 2)
Ty B R4
(4.32) K= I'y
BTy n 1 n n n _J
This form is quite close to the canonical form described in formulas (2.11). We only

have to note that Df}z) = (Z)D 22 and D( ) = Db( )*&( ) (seér('Z.Zl)n and (2.3)), and to
define the contraction n
4.33 - o(2), (3) (2)
( )n Ap =y ‘-(Kn @ 0o :
then (5.32) implies

Iy D B
(4.34) K Iy

°(2) g2 (2)
Rn Drl n TP\ +Do(2)*A D (2) 9
e -
which is the cansnical form of Kn' We can use now:(2.1%) to obtain (on DK*) that
n
Do (5),D_ % :
e >
*
{ (4'35)1'1 = B(Kn)
O D A *Dfi(Z)*
Horon
The relation (4.33) implies that DA* = (!512)(]3 ( )*@)I)a(z) From (2.20)n and (2.4) it
n n
-follows that D (2) Bf‘Z)* %¥.00 D_% 4,50
R T'n n
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FDP*...[‘F*DF* - *
(2)5 A 2(2) & 2
(4.36) DK = B(K_ ) B " @a )
n
0 ® \3)*®I)D(2)* ,
e ! s i *(g(2x o(2;
which finishes the proof of the lenma (taking UL = B(K ) (B )]D Q

®<D,K<3)*®Dr;)-
o

REMARKS #.5. 1). As K, =T, , we have DK* = D, % . Moreover, it is easy to_

Sy £
see that the convention made aft.P‘.‘s(Q..Zl#)n agrees with Lernma 4.4, Indeed
= : ' B D

*T
1 I‘l 2

rzDrl -,
| Bt B R

I'I’z r 2
0 D

oD Dpx@Dp«, the last matrix.in (4. 36) being.
LR R £

H
|

2). The proof of Lemma 4.6 shows a nice featurc.of formulas

(2.13) and (2.14), namely their usefuiness iiﬁ?ébtéining triangularization results.

PROPCSITION 4.6, The operator Div*n = 1= ,Wngn admits the factorization

n
(4.37)_ ¥ I-WoWh = UnFnFnU: ,
where Fn is an upper triangular matrix from H® DI‘ ;@ @D : ‘1 into
r*®...@Dpx (n-times) with the diagonal (G(l) - ), e Gﬁn)), and U is.a unitary
My T (
~operator from DI’::@' . ’®DI‘; (n-times) onto Dw*n ki,
: n

PROOF. The formula (41.2.2)‘1 shows that

5 i n *N £ 1 2 o ¥ "‘(‘\{v‘;g};‘-;‘:ﬁ -
(4.38)_ ,_ - WIS a P T
y n

Tl -

e

H n=1 or n=2, Remark 4.5 settles the matter. If n> 3, a.repeated use of Lemma 4.4
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-1) or K( )which

can be treated as in Remark 4.5. The structure of the diagonal of F follows by simple

([(n-1)/2] - times). reduces the problem to operators of the form K(
computations with upper triangular matrices.

THEOREM 4.7. For every 1<m<n, the operator D2, =1-p_wMy*Mp
il me hin

i

admits the factorization . : N e

m 5 %M T & %
(4‘39)n_ 1 P W W Pm = bn,an,an,mUn,m :
where Fn,m is an upper triangular matrix from (H® D *@ @DF*L )®(Dl‘ o

(m-times) ( _;.1 , m-1 ;
®D, @. . ) into (D56, . Do x)® b D ol wzth the diagonal .
I Iy e g
m+l m-« ke :
(1) 2) (m) (m-times)

(G n S ,Gn =), .and Un = is a unitary operator from(l)r*(@. f '®DI‘*>®
oon

bl
D‘ ®D caiwONLOD
v m I1m+1® : W:mpm -

PROOF. For an 1 { m<n, we havePQOF. 1

pm-‘]{/n 3 pm(Jn-l,l e Jn—l,mml)(Jn—l,l S Jn—l,m-Z) i (Jn-—l,l)x
m e IN .y
(#.40)n XL\Jn-l,m B Jn—l,n-,l)(l®Fn)(Jn-—l,m—l ! ""’Jn—l,n—l)u@Pn) .-

o "'(Jn-l,l ...Jn_l’n_l')(l® )_|— U' ~lyml PmKn’m, FEEE Y
where U S (Jn-l,l s Jn-l,m-l)(Jn-l,l ot "Jn-l,m-Z‘) e (Jn—l,l) is .a_umitary
operator,and K has the property.that

n,m
m
(-4'“)n Kn % (I®rn)3n—l,n-1(l@ I'n)jn—l,n--«ZJn-l;n—I(I@Pn) s
o et o T L MOT K

iy ' . o o
From (4.41)n it is clear that P_K. = P K, m so (4.40) " implies thaf :

(4.42)™ p W = U B
n e n-1,m-1"m 'n

The proof can be finished now as in Proposition 4.6.

3. REGULARITY OF GAUSSIAN STATIONARY PROCESSES

In this section we will suppose that H is finite dimensional. In Theorem=5.2
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below we give a criterion for a Gaussian stationary process to be informationally
cegular with p(1) < 13 this criterion involves the choice sequence attached (by Section )
to the prorcess.

Let £ be 2 Gaussian stationary process, and - = y(2) its associated choice
sequence; we will use {without nienticning §) the objects associafpd to vy in Section 2
and structure of £ as described in Sectinn 4.

Having in mind the formulas (4.3);”:_1 , we will firstly give a formula for

)

computing det (I - By
) he

PROPOSITION 1.1, For every n2 1, the following formula holds:

0 o
g 2p
(5.1) det(l-B, )= T {detD )7 I (detD

3

Z2n
*) 2

p=1 FP p=n+] Fp
PROOF. I'ix an n > l; the formula (4.2)n and Propcsition 4.1 imply that

23 = *yN ! N oy xN il
I.-Bl,n_(W ) an P W Qn)w =

(52) -« ' I i 7

= (W¥)" Wi

' 0 I=tbl Ve W P
where the matrix in (5,2) is written Wl'th respect to: the decomposition of K as
(K@K+)®K As W isa umtary oper rator;/itdfollows that

- 5 : . - Ny %N
().3)n det (I - BJ.,n) =det (I - B v Pn) -

This last determinant can be computed using-~Theorem 4.7 and an approximation

" argument. From the construction of W+ (see 2.30), it follows that the sequence
{p WkV(/;nP Ji= has the limit PnWEWrnPn (the sequ\:hce and the iimit ar:e“finite rank

operators, so the limit here is the uniform one). Therefore

)=lim det(-P WnW*an).

(5.14)n : det (I - Bl,n e e

From Theorem 4.7 it follows that, for sufficiently large k,

n
% -Xn 5 ! 2_ 1 (p)z,..w X
det(I-P Wka )_ (det Fk,n) = ] (det Gk e

55 =1
( )n,p ,,, o B

k
I (det D'F*)2P I (detD *)Z“T‘M“
p=1 P p=nsl rp, -

i
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Thus

: n k
: - 2P s - 2p 2n
det(l Bl,n) = II (detDI,*) II<1T I (detD]—, ) H é‘,tDr*) H (detDT.-y)

p=l p p=n+1 D p_l p - p=n+l P

which concludes the proof of the proposition.
The regularity criterion is the following.

THEOREM 5.2. The Gaussicn stationary process & in the finite dimensional
Hilbert space H is informationally regular and p(1)<1 if and only if its associated

choice sequence Y(&) verifies the condition:

(5-6) H (det Dl"*} I >O
p=1 P
In this case, we have:
= [oo]
(5.7) det(1-B)= 1 (detDp)2P,
: p=1 P
and
(5.8) I(1) = (1/2) Z pin (det Dr*)
p=1 P

PROOF. By [20], Chapter 1V, the condition of informationally regularity is
equivalent with B1 being trace-class. (As usual, the ideal of trace-class operators in ¥
is denoted By C (H)_C1 .} Thus we will prove that (5.6) is equivalent to B eC, and
p(')—HBH<1 :

Suppose first that B1 € ’“‘1 and HB [ECE R P *P_ (in the strong operatoz
topology) and B1 € Cl’ the relations ‘([’1'3)n;_1 imply that Bl,n = Bl (in the topology of
Cl)' Then

(5.9) {(ir_gw det (I_‘- Bl,n) =det (I - Bl) .

As HB1 Il <1 and B, >0, it follows that
(5.10) | 2 det (1-B))> 0.

Now using Proposmon 5.1, we have for each n 21

(det DIVX)ZP o

.11,  det{l- B )= T (detDI.*) P (det Dy x)2"
= 1 P

p=1 P p=n+l b p

m o=
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The relations (5.10) and (5.11):=1'imply (5.6).

Note that in tiis situation

20 (s 7
(5:12) I (detD r*)ZP < TdetB r*)“n Ca
0 p=n+! p p=n+1l p
: : i 5 e |
As (5.€1 implies that lim I (detD I‘*) P- 1, weinfer from (5.12)n=1 that
: ROt Pt 1 p
(5.13) | L
; k 3 L p:n+1 FP 2 ' =

“he relations (5.9), (5.1)::1 and (5.13) imply (5.7) The formula (5.8) follows by the
definition of I(1) (see (3.5)) and (5.7).

Let us suppose now that (5.6) is fulfilled. Take A ¢ L(K) be an arbitrary operator
such that A is trace class and A SBy Then det (Pr;(l e A)P;}Zdet (P;(I-Bi)»?;\ =

det’ - B, n). From Proposition 5.1, the ‘hypothesis, and the computations in (5.12)-{:‘_’_1
: =

©
‘and (5.13) it follows that lim det (I- B} )= I (det DT*)2P>O. Because A is trace

T > Bois .
class, we-infer that ,,ll:m det (Ph(I - A)Pn) = det{2 A). We dbtain then that det (I - A) >
e
© )
DL I (det DI,*)"P> 0. Thus B1 is trace class and “Bi [j <1, andithe theorem is zomp-
p:l p k 3

letely proved.

6. SOME CCNSEQUENCES AND REMARKS

‘A) The condition ”,Bl || <1 in Theoram 5.2 might be considered as a vs,e.r:iQus
restriction. That this is not the case it is pr oved by the following. In the classical case
of dim[=1, the same obsiruction appears in® the study of informationally regular
ércgesses.gThe thourough analysis presented in [21], Chapters 4 and 5 (using results
- from [22] and [19]) gives detalied information in terms of the spectral density of the
process (i.e. the Radon-Nikodym derivative of the spectral measure of the process).
Those results have also a counterpart in our setting.

Suppose ‘that dim =1 and that the process f has the spectral density (&) = f.

Then we have the following.

THEOREM 6.1. The scalar Gaussian stationary prbées_s £ is .informationally

regular iff its spectral density f has a factorization



(6.1) (1) = | Pe™)] “gt)

where P is a polynomial with roots on the unit circle and the choice'sequence Y(g)

verifies the condition

s ‘
(6.2) w2 ] el - [y @] D
p=1 .
PROOF."Note f;rst that if P is a pclynomial of degree m with roots on the unit

circle, then
(6.3) ' Bl hiEet) e 'WE

where ¢ is a constant of modulus one. ;
Suppose now that & is informationally regular. Then || Bn(f)]] + 0 as n * o(see
o
1

(3.l)n_1 for the definition of Bn). It follows that there exists an n_ such that
s
l

3 || <'1. Then the results of [19] implies that f is representable as

i(t) = | P(Y| %ev),

where P is a polynomial of degree n_=1 with-roots on | z] = 1, H_Bl(i(g))ll <1, and
In g(t) is bounded. Then, writing 1(t) = Icé(ei't)l 2 and glt)= lB(elt)[ - , where o and B are
ourer functions in B (see for example [21], Section 11.2, Theorern 1), it follows that
a =P . Denoting by {an} and {Bn}_ the  Fourier coefficients lof d/o and B/E ,

respectively, and using the rermark made in the beginning of the proof, we have tnat’

0 I : 2 1~»m s 2 =
(6.3) ;o B I i 18,17+ m |} o
p:_w = e

From [22], (see also [21], Section IV.4, Lemma 6) it follows (§(t; being informationally

: 9 ; , 9
regular) that e Lol IOLPI ¢ . Now (£.3) implies that ) |p] IBp: ik ©  then
p=-® == p=-%
(using the quoted result) £(g) is informationally regular and so B, (E(g)) is trace class.
Applying Theorem 5.2 to &(g) we obtain (6.2). e
Conversely, suppose that f has a factorization as in (6.1). Using again Theorem
5.2 it follows that Bl(i(g)) is trace «class and || {‘al(t’f,(g))H < 1. Note that the relation
| E ! 2 o 2
(6.3) can be easily reversed, so ) | pl |B | © < = implies Z lpl |& |Z<> , and
p:-—m p p:_w P R

thus f is informationally regular.

——

S

The theorem is now completely proved. snr:
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~

Let us remark that the presence of choice sequences in this topic is not a
surprise: in [22] and [21], Section 1V.4 some orthogonal polynomials are intesively used
while in [13] it is pointcd out the connections between orthogonal polynomials and

choice sequences (see also [5]).

B) Let us make now two remarks concerning the connzCtion of the present
setting with the notion of entropy and v ith Szego Limit Theorem.

Starting from ideas of Kolmogorov and Geifand-Yaglom (sce [16]) a concept of
entropy for scalar Gaussian stationary processes was developed in [16], [10], [c], and
recently, for the matricial case in [1] The presentation of the entropy in [15] (see
Sections 6.8 and 6.11) concludes withithe statement that it is something unclear in the
“real" meaning of this notion. Inour setting, the interpretation ofithe entropy is the
following. ‘

For a Gaussian stationary process & (in a finite dimensional Hilbert space) with

semispectral measure F, let defire the entropy of & by .
(6.4) 0 hE) = (-1/47) [Indet (dF/dt)(t)dt .
0

The following relation was obtained in [13]:

: 21 oo g
(€.5) G(F) = exp((1/27) [ Indet (dF/dt)dt)) = 3L det D?*; ,

where vy = {I‘p}p:1 is the choice sequence of F. (G(F) is cailed the geometrical rmean of *
F, or {, see [17]. From (5.1)1 we inter that

[ee] : o0
) H'(detDT,ee)2= Il detDi*.

(6.6) det (1 - B, ;) = (detD
2 i
: p=2 p p=! p

e 7
g
Comparing (6.4), (6.5), and (6.6) we have that

(6.7) h(F) = (-1/2)Indet (I - B, ).

151

.. This formula shows that the entropy is indeed a sort of “information rate" (as suggested
in [15]), but "measuring" only the angle of the first step (see (#.2)1).

It is possible to connect (in the matricial casz) the determinanté of Bl a with
some objects which appears in generalizing Szegd Limit Theoremi:dFop. Sze_g'o: Limit -
Theorem and its generalizations see for example [17], [14],-{24], [3]). Using Proposition

1.4 from [12], it follows that for everyn>1 . i S



(6.8)
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-~

Q r

g : n | o .
det T EN/G™LE) = 1/( 1 (etD ) 1 (@etD xXMD)
p=1 p p=n+l p 4

where T _ s defined in (2,3#)n. This shows (via _(5.1)n) that

(6.9)n
and sc

(6.10)

det(-By )= el iaet T ()

det (- B)) = 1/[lim (det T (F/(@™(EN] .

n >o

This formula is a possible interpretation of the number lim (det 1 _(F)/(G "Ly

n <o

which appears in Szego's Theorem.

Gaussi

Let us mention that in [20] Hankel operators are intepsively used in studying
I3 7 &

ian stationary processes. Some aspects from the theory of Hankel operators are

connected with dilation theory and choice scquences, and it would be intergsting to

explicite these at the level of stationary processes.

N

10.
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