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STEADY CONVECTION [N POROUS MEDIA-|

The Solutions and their Reaularity

Dan POLISEVSKI

INCREST, Department of Mathematics, Bd.P3cii 220, 79622 Bucharest,
Romania

Abstract - This work deals with basic aspects of the study of the

steady convection in fluid saturated porous media. In its first part we prove
‘the existence of the weak solutions, via a theorem of Rossez’s tyne, and we

give some reqularity properties, inter alia a natural -maximum principle.

1. INTRODUCT ION

The description of the motion which apnear in a porous medium, caused
by gravitational forces and which arises from density differences due to tem-
perature gradients within a viscous fluid passing through a porous, rigid body,
have always come up against serious difficulties. Sunposiing that the skeleton
is fixed, we accept that the velocity of the F1ufd is far smaller than the

Fracoustic velocity and thus the motion induces little changes of the pressure.
That is why we will neglect the variations of the thermodynamic quantities
owing to pressure changesi Moreover, we assume that the temperature differen-
cpé are small enough; permittina to take advantaqe of the Boussinesa approxirs,
mation, that is the density of the massic gravitational force is varying
affinély with-the temperature. So we adopt the model proposed in [Hiiand ob=
tained by a homogeneization process for which we have proved the convgrgence [2].
el be an open connected bounded set in R" (n=2 or 3) locally located

on one side of the boundary 9§ -a manifold of class Cz,‘composed ofwa finite



number of connex components. |f U, p and T stand, respectively, for the
Darcy’s velocity, the pressure and the temperature. then they have to satisfy

in some way the fcllowing system:

div u=0 in 2 ' @)
o f e - o \ i Q 4 )

EH’ Vp=(1 (T To,)g in (1.2)

-div (AVT)+uVT=0 Pl s

~ ~
with the boundary conditions:

4.0 =0 on B2 (1.4)

o~

=G on oL . (1.5)

- il st :
where B (R B s the positive symmetric constant tensor of permeability,
N

. M o i ie ; . 2 N
®> 0 is the volumetric coefficient of “‘thermal expansion, ge&H (7)) s the
7 p g i
putential type gravitational acceleration, Q is.the postive ronstant “tensor:.
: 2 ; - : - o 23 :
of thermal diffusion, :Z is the unit outward normal on QL , 6 € H3/ ( ajl)

is the non-uniform temperature of the boundary (the case & uniform isunot

interesting) and TO>~0 a uniform reference temperature, by convernience

1 ;
To;f( sup& + infé s
xed x €L
‘ 2 1
As usual the scalar products and norms in L568), Hm(ﬁl) and Ho(ﬁl)

. .are respectively denoted by:

(u,v)= Su~v dx [ul =(u,u)1/2
L2 .
; u g . e 'l
(o), = 2 (2w M) ol =t 2

Ulém

(e e e sl =t /2

_.and..the-norm_in LP(E) (p#2) by | lp' We agree to use the same notations fer:

e
‘the scalar products and norms in k?(il)=L2(iL)n . Hm(il),lgo(ﬁl) and kﬁ(il}:

~n



—

Now, in order to pass to homogeneous boundary conditions we introduce

for any h>0 an element w &HZ(Q) with the preperties

h
w=0-T o -l (1.6)

i

]sth{-éh\isii (V) seH;(--Jl) (37

T

Fei this we use a standard method:

Let f (x, 2L )=the distance from x to DL | For afy U2 0slet’s

consider

‘Q‘( =§:xc~;.ﬂ_ 1 f(x)<2 exp (-1/};)?

and f < C (L )-the Hoof’s function which has the following properties:

T fy =1 in some neighbourhood ofe Dl {which depends on ¥ ).
s fy =0 in L D
: ah i i :
O b A M / 9% A
S = -(x)\ & in ﬂAﬁX 2 i<, 1gkgm.
‘)""k R S’(x)

Warnina. Whenever real numbers are concerned the ordinary modulus ,
{" | , have not fo be mixed up with the norm in L2
Let 1("6)6}%!2(.Qa) be an element obtained by "lifting the trace' of

T € W/2(30); noting with Cpb/ =(1(z)-T ) f, , for any S(—ZH't(_Q) we have:

|sve,| < Ssz(l(z;)—T())Z( 76y ) dx: 2gSi(V1 AL
L.
4 Yv‘%"'%(](-z)—TO) +\2( §52<v]<z>>2ax>v2 <

Lo
= WZ!](@—TOLQ & g—( “'“f(ﬁ’_)jzfsih

where?(X)={V1(6)l L (Yw} 0 s as 1(B)E HQ(_Q_),—CQL“,‘('QQ.

L («Qy)

With the Hardy ineauality [3 ]



vfgc(_v_) Ajs |l (W= sen’ o)

o jn

it follows finally

lsve | € c(z,4) max }g(a\? s (v) sent().

Because for every h» 0 we can choose Yh>0 Satisf‘:ying
c( % ,8.) imax § '}’"h, 7 ( Xh)[z < 1

the element (FY has the properties Gl Erana o7
h

Puting's=T—(wh+To), and keeping the right to choose later, in a proper

way, the parameter h» 0, the system (1.1)-(1.5)rbecomes:

div u=0 fh ks (1.8)

:?EJr Vp+ v&(s+wn)gm0 o o . (1.9)

=div(A T lstw ) )+u T(s+w, )=0 in L. (1.10)
N h nN h

u.y =0 on 0.2 . ’ : )

5=0 on oL - (1.12)

Because of practical reasons we put the systemi (1.8)-(1.12) in a non-

~dimensional form, by defining:

Koo gk :

;\(."L % K(}QS’./\T-»}!)\(‘/&_Q.,

o g S e
5 —ﬁ; 5.5 W= ﬁ; W 3 To_fs To ;
% =1 e =i



where L is the length of the ‘edge of the n-cube in which {2 can be included,

/{gz supiGo- - inf . b : gr—!gs and Ay b1 are respectively the' smallest
xedL xE QL Al :

B. Defining the non-dimensional number of Rayleigh by

eigenvalues of A and
s ~

e 0(/;’) a:_s b;1 al

the system (1.8)—-(1.12) take the form

div u=0 i il : ' (1.13)
AN

But Vpta(s+w )g=0 in .2 (1.14)

N hivss : :

~div (A V(s+wh))+u T(s+wh)=0 T (1.15)

i n n

u.¥V=0 on 22 , (1.16)

N o .

s=0 o 0L o v (L

From now on, in order to simplifiyathe writing, we shall omit conven-

tionnaly the index %, as we have already done in (1.13)—(1‘17)‘.'

(x)= =

1 : : 1
Remark 1.1. sup _wh(x)—f and inf e

X€D0. xe R

2. EXISTENCE THEOREMS

The proof of the existence of the weak solutions of the problem (1.13)-

-(1.17) will be based on the following theorem, a slight generalisation of Lh]

Theorem 2.1. Let Y’ be the dual space of Y, which is.a separated locally

convex space,continuously imbedded in the reflexive Banach space X. If the

——

mapping G:X—>Y’ is Weak]y _continuous, that is continuous between the weak

topologies, and coercitive, that is («J) r»0 such that



LBy y/ >0 (V) yeY with )y‘ Sfee

where i f is the norm in X,
S = ...(<)~ = . i ? o 1 =
then () x € Br"(’JXCX ‘ lx[érJ such that Gx =0 .

~o "
Proof. Fot every FE I , where

N : ;
o= %Ei E finite~dimensional subspace of Y}

- Wé put jF:F"-%-Y the natural injection, j[f_:Y’«#-%F’ the surjection defined by

< IS =<y (¥) y’€ ¥" and (¥) yEF |

~ and GF:F —2 F’ . the ‘continuous operator given by GF=j;_o GojF "
Let’s suppose that GFy#-'O (¥) yeF B'r*' As F is closed in Y and the
topology induced on F is the Euclidean one, the set FﬂBr is. compact I'm F.

Y

" is convex; by Brouwer’s fix point theorem, there

exists y € FN B_-such that Ty =y .. It follows:

ldentifying F” ‘with F, we define T:F() Br'f-'?-’F[\,Sr by. T =-r-‘GFy[~1GFy . As

T is continuous and FB

{ sy, ,\/O>=<G°J‘F<yo),yo>= Gy, ,yo>=

ek, oyl <o
mer GFyO 4\5 Vs ,yo>—- f GFyO\ <0

which is in contradiction with the hypothesis, since yOﬁY and lyo‘=lTyo{=r.'

Hence, for any FQ%\G there exists yFanBr such that GFyF=0. (.lt is obvious

that if Y is finite-dimensional then the theorem is already brove_d.)
Now we can define for every e€? the non-empty set .-

= L.__”_J Jy €1 Gy =0 B
v {yF&. FO B l ,"‘FyF'O } -

©lre® | Fa

~
and VE - the weak closure of V. in X. As B_ is weakly compact in X and the



family &V} < B has the property that every finite intersection of
its sets is non-empty, it follows that () x u ﬂ ' V

23 r( \}“ [

For any y€Y we choose E(y)é_{ff’* with the property y& E(y). As x € \/E(v)

there exists a (generalised) seauence S'y,;- (which depends on y), inclu-
SR Ifel
ded in \'/E(y) and weakly converging to X . Using the definition of \/E(y)
3 5 M e . .
results that for any 51244 there exists F~€ & with the properties Fr 22 E(y)
4 &

and GF{ Y -:0. Consecuently

/ ; \/\= . < N \/ \::
<\G\/€ Ly <G JF(S_ (y< )’JF(’ / <CF& ’y/ 0

and because G is weakly continuous we can pass the last relation to the limit;

thus -

& Gxo ,y>:O (V) yey : il

Let’s make now the correspondence between the-elements of the problems, i

(1.13)2(1.17) and those of Theorem 1. Denoting

v.\::O on 'B.Q.. }

H =%V€L2(‘.Q~) g div v=0 inQ,
~N NN ~d

then instead of X we put the Hilbert spacelng;(..Q,) with the scalar product

(4,5, (y,0)) =)+ ((s,0))

0D o

and instead of Y we put the Banach space /UX\'!L; LX) with the usual norm cn a’

product space; the operator G is defined here for any (u s)E HxH (0 ) and for

any (/x,t)(—?{\Hlx\?lL(*” (52.? by :

ot t) ,,,4(\2.1)

where A(S,t)=(ﬁVS,Vt), B( ,,\\/,)=(.,§5,¥I} and b({l\J},S,t)=(;Jv,tVS).

So'we have arrived to the weak formulation of the problem (1.313)-(1.17):



ot}
G

to find (u,s)€ HxH (2) such that (¥) (v,t)& HxW, ' (2) holds
N Y 0 v 4 =+

L etys), fy,t) p =D | (2.2)

The “equivalence" between the oroblems (1.13)-(1.17) and (2.2) is

legitimated by the following two propositions.

Proposition 2.1. If ({&J},S,D) are smooth functions satisfying (1.13)-

-(1.17), then *taking the dual product of (1.14) and- (1.15) with v€H and

't(z\?!é”(.ﬁ,) there results obviously that (/%,s) is a solutiommef(2:2). il

Proposktion 2.2. If (g,s)é/@le(.ﬂ.) satisfy (2.2) then choosing the

test functions in a proper manner we get

B(RJ’-V)M(%Wh ,E.I\;):O () xé)\i} (2:29
A(erwI L’+b(u,smh Jt)=0 (v) tﬁ,\uli”(,z_) : (2.4)

As (Bma(s+wh)g) 2( Z) and the orthogonal complement of Hoin
A ;

5.9
l.2 L) 1s

nSt
X ' o 2 r . - 3 1 O e o
H=dw &b (2) (3) peH (L) such that w= Vp
~ e G N

(for relatad properties the reader is refered to[B]) it follows firom (2.3)

that () p(‘H1 ) such that  {151h): it 1stsatigfied in }3(»9_). Also because

z : St o g .
b(g,s%—wh ,L)} ﬁ\ o ‘kl}l !\(s+wh)! lt!w : (2.5)
o ‘ = > =
-and W1E1)( Y () it follows from (2.4) ‘that (1.15) is satisfied in
V;)(.Q) Final y, From. the défini,_pions of ) and H;(.,Q,) rIeSuH:é_that y and

s satisfy (1.13) in the distribution sense and (1.16)-(1.17) in the trace
senses of the spaces H and H;(..Q.), respectively. k]

Here it is the main result of this section:



Theo~em 2.2. The problem (2.2) has at least one soluticn.

Proof. We shall check that G defined by [2.1) is:(a) weakly-continuous
and (b) coercitive; thus the result is a straight consequence of Theorem 1.

s
(a) Let ng,sk) SE___:fii,.(s,s) weakly in‘ﬂxH;(lZ). Obviously, we

bave only to prove that

b(y 0 — blys,0), L) rewy ) (2)

k’sk’ N

“all the other convergences being trivial.

For this let’s notice that

blu, »s, »t)-blu,s,t)=bly ’Sk'i-’f)'b(ﬁk-ﬁ’t’»«'ss)-‘

As (s‘Tt)G:k?(ll) it follows bgek—u,t,s) —> 0. For the other term we have

N

the estimation

48,». '[thdlsk's",ﬁ%lﬁk

Since gl k‘} is bounded as kgk is weakly convergent in H)and \s ‘Slq 0)

’b(,«“,t% o i i isk-slh o 26K

as the imbedding of H_ (Jl) in L (JZ) is compact.from (2.6) TOTlows i,

-~Vbr('ue. asui_ss-t) — 3.
- K K

)(Sl) we have

S o(1
A{b) From (2i1)% . Forany . { E 1

\ 7 il Y / A _\
&b\u S},\U S}/ 87-\\5 57 ‘D\ ‘,U"}""'o" \Uiv\'ﬂvvh) C 5 e

4 iR el

Ava
+a(s u)+a‘w g u)+a b(u wh,sk> ]]s]] +|ul“-a idlv\A\/w il

—als\iul-axwhl-lg

2
=a u
Y

sth

(2.6)

Using the property (1.7) of W and the Friedrichs’ ineauality



L slgzal! Jisf (¥) seH (2) (2,2 277 V7) . b
the relation (2.6) becomes

<:G(£,s),(£,si>.>'a2 Hs}]2+|5‘2-(2aa;1+ha2)ﬁg’-Hsi{-

) _;“(_“ i st ' i
—2a a, dl,\i (ﬁ' th) . ”s” -a{‘v.h ][uvl (2.8)
If h>0 is sufficiently small 56 that ps
héiai s ) (2.9)
b @0 o
we obtain immediately from (2.8) the coercitive property of G. O

3. REGULARITY PROPERTIES

Lemma 3.1. |If (u,s)éIUle(JZ) is a solution of the problen (2.2),
= ~ c

e —

then ueiﬂ(il) and
NN _ .
ol e, () , (3.1)
where C, ¥s a '"constant'" (depends oniy on the data).

Proof. From the Proposition 2.2 (3).pézH1(Jl) so that (1.14) is
satisfied in k?(il).'Tak$ng in account (1.13) and (1.16) it follows that p

has to verify:

-div(KVp)=a div(kg(s+w )) in L _ (3.2)
(KVp)9=-a(E-T)(Kg). on DL B G

Let’s notice that the system (3.2)=(3.3)cis—aNetmann problem; as

the compatibility condition is obviously satisfied, there exists a unique p

(up to an additive constant) which verify (3.2)=(3.3). Moreover, as



5 39; D(S+Wh) 2
div (,L(,%(s+wh))=(s+wh)’<i_j_é_x? +- ;‘:ij(]j _S-TGL (tQ_.)

(3-T,) (k)€ /2 (00 ) ch'2(30)

by usual regularity results for the Neumann probfiem{S] we get peH (D) and

u p ”2 \<c2 Hs[{ +;:3 (ci-"constant“) ‘ . | \(3-4)'

Now, from (1.14) results u€ }(Q_,) and we¢ can Irﬁprove the inequality -

U € H¥
I
(2.5) in the following way

Vot el [P e gy [P e

V) ten! () (3.5)

Hence (1.15)<is actually satfsfied Ih H_I(.Q) and therefore -

ol 9), (v p=0 (V) (v, )€ xH (2) (5.6)
Puting :(,\\/l,t)=(5,s) in (2.6) we obtain

42t Ly
Pt s I Cesluiteg s

-and -afterwords
sl <<y @) ‘ (3.7)

Then, via (3.%) we Find that p is bounded in #2187  “Thus the reiation (3.1;
can be obtained straigh.t'ly from bl o) ek
: T'h.e .foilqwing weak ‘maximum principle is f_ormu.lated in terrps of inequa-
1~ity in.'thé"S’ense of 'H1'(,Q.),_ That’s why we s-tart by recalling this notion
and some propositions, following [6]
Lét ug H1(;Q_) and Egb‘_; we say that u is nonnegative on E in the

sense of Hi"‘(‘L@.-), or briefly, u}O on E in Hi(,Q..), if there exists a sequence =



unewo(o‘) (L) such £hat un(x)>0 for x€ E and [ s in H‘(-D—). Let v€H1(£);

naturally, we say that u{v on E in Hi(_()_) if v-u}G-on Eiin H‘(Q.). As v may

be & constart, we de%fine

A

sup u=inf§m€ml u<dmon E in H1(l)}
. .

Proposi__tloh T u?O on E in H'Y.2)ithen u20 (a.e.) on E.

" Proposition 3.2. If sup u<0<7 then for any M}stp u we have:
oL p: R :

m_axgu-M,C‘3€ Hl(.@) and max{u—M,Oj) 0 on L in H1 (0)"

Proposition 357 Let u€Wé1)(Q) (g L) then v=max%u,0 éWé”(.Q‘@z‘:;

and we have is the sense of distributions:

Vu in §x€.§2. u>0 ongxgin H1(J)_)¢

0 in gxé-g u‘é_O on%x} in H1(.9_)"§ :

We can pass now to our ‘maximum principle. .

Theorem 3.1. If (u,s)éﬁxﬁé(i} is a solution of the problem {2.2)
e e e ~

“then s& 2.0 and : N

\s+wh\méll' | 5 ’ : (3.8)

Froof

Choosing. in (3.6) v=0 we get
5 s N o~

Alstw, 1 8)=b(u, t, 54w, ) (v) tent) » . 2i3:3)

Opre

i 7 5 : 1 1
Via the Remark 1.1, we have from Proposition-3.2 R=max§5+wh- 7,03€H0(£)

and from Proposition 3.3



V(S+wh) when R#£0
VR=

o

when R=0

Puting t=R in (3.9) we obtain

IR 2<A(R,R)=A(s+w R)=b(u, R, s+, )=b (4,R,R)=0. | - (3126)

h

and hence R=0 in H;(.Q.), that is<s+'w;)(\%~ on in H](;Q). According to Propo-

st ione 3=l

1

s+wh<—2‘— (a.e) on 2 5 (3.3

Analogously, with R=min %S*-Wh%%’of we get
1 : =
S+Wh>‘- i lasel on A2 - fs (3.12)

" Thie - (3.8)iis p.roved and concomitantly the whole Theorem because w it =

h
e T ]

——2

dcemma: 8.0 df (u,'s)éi-,l’xH1 (L) is a solution -of the problem (2.2)
e 5 o) !

then for any subdemain 0'cB'c 0 we have seHz(_Q_’) and
Is “ 2 Celfa?)® (c(&’)-“constaht” ) =1 g
HA{0) :
1 t ot 171 3 TN e d g B
i i i OF i P | = W SVl o dietal S T s B B R R B 1) o prpperty,;g o T iy 60n e, SR e 1 1. My P W (G

‘for any £¢ (R and i, 1<i§n., we define

.G‘;t(x):t (X+8€i)

where e:iv-is the versor of the Oxi—axis. Let’s notice that



—

R) (V) t,R_,eLz(“sz“)
Finally we desicn
Alt=t(E) t-t)
g E

Let now & be with izl d(2'", 32 ). Choosing successively ia (2.2)

" the test functions (B,t) and (O,.‘E'&t), with t(:‘:Hé(JZ_“\), we obtain:
N30 _

Als, ©)+b(u,s,8)=(dIv(AT W), t)=blu,m, t) | (3.14)
A(BLe,reb (B, Bls D=V AT w) B 0 blew , Bet)  (3.15)

Subtracting (3.144) ‘from (3.15) and dividing with& , it results.

Alals, t)+b(E A Bl b A, 0=(av(ATw), & U-bluw, AL ©) (3.16)

With fGQ(Q"), f=1 on .3 we define F=fs. Puting in (3.16) t=A£'F and taking

in account that (see[?]):

|4t

we obtain the estimation

<er el

L (.Q“

L}

R

+c1(

rof

lagrl<

ldi"(ﬁ,\,vwh) L h_’gv‘”hgu)

and finally

lael<eClully sl

According to (3.1) and (3.8), it follows that t/hé‘s*equeﬁce'{AéFj ia
: : £

bounded in H}(.Q“) and hence we can extract a subsequence (still denoted & .)

h2.2";

¥ ¥

div /—\Vw ‘ ! ihﬂ ) A : (.3."17)

such that



A;F — R weakly in HY (27

in 81(2‘), it results that ?——S—’---?:Rng(‘)ZI)

i
But as F converge to
AE/ Y a Xi

for any.ly 1 <igh., ]

Theorem 3.2. If (u 5)<€ '-le (£) ds-a solution of the prob]em (2.2)

then s< H2 (@) and

l{suzécz(_ﬁl) ' s E (3.:.8)

Moreover, H (L) and
~

U<
N

lull, <oq(@) - j (3.19)

Proof. With Lemma 3.2 we have been made sure of the regularity inside
therdomdin. So we have to prove only the regularity on the boundarv. For this,
with the local charts and the partition of unity we can confine ourselves,

by an usual step (see [7]), to the case of a n-parallelipipedon Y with

sopp. Y YUY (in Fig.3.1, Z=€x€}Yl xn=0}). With the technigue used in

Lemma 3.2 one prove that ««B?x-i%—;; ‘C:LZ(‘:’) 1f at least one the indices. i jJ

is different of n. Afterwards from (1.15) results _)2.2_351_3/2(\'\ .and hence
: ‘ Bx

SéWé%%(V) Cocnsequently VsE W(”( )C;L (Y) and as from Lemma ’3'1, ':!3_ C—H;(Y)Q

k;(Y), it follows (UVS)\,L (v) and recalling {1.15) we finally get ~§Yu§-{i
e im. | =
The estimation- (3 17) reduces lnSIde‘the domalr to (3 13). On the

};oundary th’é’v‘estimation of -9—?;—2;—59—)-(——]- with (i,])#(n,n) can be made analoqously,

. g :
then, the estimation of 2 52 followystaightly from (1.15).

i

n.

THe second part of the theorem can be proved with the technique of

=



Lemma 2.1; the pressure p. solution of the Neumann~problem (3.2)-(3.3), has

the property p€<H3(il), because, this time, in concordance with (3.18), west

have (s+wh)g cH(D), 3
" o~
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STEADY CONVECTION IN POROUS MEDIA-11. "LOW RAYLEIGH NUMBER''-CASE
AND ASYMPTOTIC EXPANSIONS

ban POLIEVSKI :
INCREST, Department of Mathematics, Bd.Pacii 220, 79622 Bucharest,

Komania

Abstract. in this part of the paper we prove that for sufficiently
low Rayle'gh numbers uniqueness holds; moreover, this only solution is analy-
tic and reqular with respect to the Rayleigh number. In connection with these
general resu]ts, we study hy ‘the perturbation metiiod the case cf the domain
confined between two concentric- spheres which are majntained at different.
uniform temperatures. Using the first three terms. of:the asymptctic exparsron<
two Speciai values of the Rayleigh number are pointed out; they separate

different types cf flows - with one, two or three cells.

L, 'LOW RAYLEIGH NUMBER'" - CASE

Recalling the Friedricas’ inequality (2.7) we can specify what we

meant previously by sufficiently low Rayleiah numbers:
| . b1
a<ao : : bt

The relation (4.1) will be the framework of this section, first of all because

of ‘the following result.

Theorem 4.1. If (4.1) holds them.the solution of the problem‘(Z.Z)

]

is unique.

Proof. Let (u1,s ) and (u 2,52) be solutions of (2.2); denoting with

u=u,-u, , S=5,7S, and subtracting the ru.resyu“dlnq relations of (2.3)-(2.4}),
TRiT8 2 =



we get
A T S . e
A(s,t)+b§u,52+w ,t\.+b(u1,"s,t)=0 (V) _,teH] () (4.3)
~v h o~ L (0]

Taking in (4.2) v=d and in (4.3) t=s one can easily obtais the follow-.

ing estimations:
sl <als) ey o

Is1<z ]y ] . )

nN

From (4.4)-(4.5), with (2..7) , enfol tous
s -:—c;) | sl <0 | (L.6)

that is, bscause of (L.1), “s"=0;'finally (4h.b) with (2.7) implies ’EJ=0. 2]

Another important thing is that in the presence of (4.1) we can fix
whé,Hz(Sl) (which satisfy the properties {1.6)-(1.7)) because in this cases
ho=2a;2(éo-1) verify the condition (2.9)- for any a EJO,aO). Denoting with

w=who and (g(a),;(a))é.Eo :

e (] (@) N @2 (), ()

the unique solution of (2.2), then the system (2.3)-(2.4) take the form:

B(ﬁ(a),x)=a(s(a)+w,g.x) ) (V) vel = (L.7)
A(s(a_),f)?ﬁ(g(a),S(a)+w,t)=(div(ﬁ'\7"w),t) (¥) tEH;(vD—) (4.8)

PrOpositioh L (%(a+h),s(a+h))-—4>% (a),s(a)) strongly in ﬁfH;(ilLﬁ

u
~

as h —> 0.




—~

Proof. From (4.7)-(L. 8) with v=u (a+h) (a) and t=ska+h)-s(a), we - have

=i
Ba%

!
!

a+h)

2

Eg(a+h>-gﬂa)\\\ ’l (a+h) s(a)n i

a+h (a)

[l (a+h) -

=0
n
and the proposition follow immediately. []

For any aéE(O,ao) and any h#0 with the property (a+h)€£(0,ao) we

define Dyu(a)=h ' (y(a+h)-u(a)) and D s(a)=h"' (s(a+h)-s(a)).

In order to examine the analytic nature of (Eja),s(a)) we differen-

tiate formally (4.7)-(4.8) with respect to a, defining (5’(a),s’(a))GiEo by :

4B ( T(a),v)=a(s’(a),g.x)+(s(a)+w,g.x) (v) ‘xﬁgﬂl (4.9)

u
O ~N ~n ~ paaer !

u
~N

A(s’ (a) ,2)+b(u’ (a) s (a) 4w, t)+b(u(a) ;57 (a) ,£)=0 (V) teag(,,cz) (4.10)

Remark 4.1. The existence and unigueness of (u’(a),s’(a)) in»ﬂ;Hg(ll)

can be proved like as the Theorems 2.2 and 4.1, while the regﬁ]érfty property
follows with the methods of § 3.

Proposition 4.2. (Dhu(a),DLs(a)) —=(u’(a),s’(a)) strongly in
™ il : o

MDY | as: b b,
~ o

Proof. From (4.7)-(4.8) for-any (v t)é.HxH (L) it follows

) - ¥ (l&.lAl) :

B(Dhg(a),,\')=a(Dhs(a),g-X’)+( (a+h)+w,g.x
A(Dhs(a),t)+b(D u~(a),s(a+h)+w,tA)§rb(}\1‘(a),DHSf(,a),t)=0 ' : (4.12)

Subtracting (4.11), (4.12) reépgctively from (4.9); (4.10), results



(Dh‘i,( a)- H)’\a)’V)=a(Dh5(a)'S’\a)’;?,',‘(,)+(S(a+h)'5(3)’,»?,'X,) (h'.13)

A(Dhs(a)-s’ (a) ,t)+b(}uv(a) Dy s (a)=s(a)se)=

=b(DhuN(a);rLj’(a),t.s(a+h)+w)-b(}d”(a),s(a+~h)’-s'(a),t) : (L.14)
) : Taking in (4.13) v= Dhu(a) u{a) ‘and i ) “t=l)hs(a)~s’(a)~, we get

the estimations:

|o,u @)=y () mnn (2)-5" (2)] +]s(arh)-s(a) (1.15)
“Dhs(a)-s’(a)\é—;—‘Dhi(a)v-gv’(a)l+_¢i}’(a)n‘q‘ts(a+h'}'~'s(a)\1}v (4.16)

If we use besides ?Ziﬂ-15)—(l+.16) the Proposition 4.1, the proof is comnléted. Y

Denoting with (}d’(o)(a),s<°)(a))r(yv(a),s(a)), (u(”(a),s(]),(a);)’-‘

.=(;\j:’<(a),s’(a)) we define recursively For.fany‘mz?. (lg(m)(a),s(m)(;))F:Ec; by
8u"™a),v)=(as M (a)ms " (@),g.) ) yen (h.17) -

3 m - < :
aTs ™ (@), 00+ ™ () w00+ T 0™ (@), s W () 000, L
: ™ k=0 & _
(v) teH () (4.18)

Following ‘the way of the Proposition 4.1 and 4.2, one can prove by complete

induction the propositions:

P]_(n):(g(m_])(a+h),s(m—])(a+h)) e A=) ety

(ha= i
strongly in Hle(Q-). i ' HC
Py : 0™ (a0, ™ (o)) P (4™ (a),s™ (2)) w

strongly in HxH;(ﬂ-) . “=ong i



Thus we have

Proposition 4.3. The solution of the problem (2.2) lsof class g

with respect to any aé&(O,aO).

We reconsider now (4.17)-(L.18) by puting X=2fn)(a) and t=s(n)(a);
it follows
|
RISIPE: 2|+ a] - o B (h19)
m-1 : :
l (m) a)“é%\ﬁ}(m) l_*_ = ’ (m k)( ) L}ls(k) (a)[l+ (4.20)

Passing~€ﬁfough the Neumann problem of the pressure, equivalent to LhlTE

BE: Il e e
-\[g““<a)

s o (ML 1BL 20V el e
bl <] -]
'k)(aSV +(m-k)

k)(a>“ (|

After some easy reductions of (4.22)_we. are- conducted to the follow-

c_ | s

)(a)+ms(m-1)(a)'

(V) m>1 o (4.21)

= (s
+
e

gs<m'k"><a)ﬂ Y (422)

ing estimation

E%—“ s(m)(a)“ é; A (V) rn} Ay T; aesis . (4.23)

m

where A_ is the sequence defined by

) my2a s @] (4.24)



(everywhere Ci> 0 are certain constants). As Am can be cetermined from (L.24):

5 :1_< 2m—2)cr;-1 H o (a)‘u Mo ) me 3 : (L.25)

m m :
"\ om-1

and from (4.9)-(4.10) with the standard estimation metiiod one can cbtain’

) ) .’ “S’(a)“ é —E-—(-:—-Z-_—a—)— : . : : (L4.26)
it follows
wrl ! @)R ¢ feglagman)™ (528!

With the comparison test we have finally

Propesiision . k. The Taylor’s series

m :
Tam=Z D™ (), ™ (@37 22 wia,h), 50,000 (4.29)

| —

m>0 m. ~

is well defined in H(}ﬁf(ﬁL)le(iz.);'Moreover its radius of converaence is
FaY) &y
at least equal Fo c3(ao-a).

" Our next objective is to show that (kfa),s(a)) is regular. This will

be completed by the Fol]oWing proposition:

Tlam)=(u(arh) ,s(arh)) for any heR with || e la -a).

Proposition 4.5, g,

Proof. Defining the—partié] sums
Tl ) mn)
U (a,h)=>. —u'''(a) and Sm(a,h)=:Z:s (a) (b.36) .
4 n=0 Y

and using (4.7), (4.9) and (L4.17) we get



o

By (2,h) )= (a+h) (5, ath)+wrg.¥) = o < (a),g) W) xef (4.3

Passina (4.31) to the limit, uéing Pronosition 4.4 and the relaticn

(4.28), it follows

B(g(a,h),v)=(a+h)(S(a+h)+w,g.x) (V) vE

- H
a4

(‘u.32)7

e do the same thing with the second equation of.the system; with

(4.8), (4.10) and (4.,18) we get

A(Sm(a,h) ,t)+b(k1'm(a,h) aSm(a,h)+w,t)=(div(f\\,Vw) b o

m m-n n+k m-k o x
o) kzg»b(ﬁﬁu‘v‘”’*mau W M) (g),0) * ) ey (2) (i)

m

= S’me) “t“ with some fé(ﬂ‘,]) ; (14.'34)-‘
passing (4.33) to the limit, we obtain

A(S (o, ) , ) +b(U(a,h) S (a )+, )= (div AT, O, (Y e (2) (1,35)

S 1r it o sasiom ol 375 ks 35] s Identical with the system (4.7)-(L.8) which
has a unique solution (Theorem 4.1) the proof is completed. [:]
Now it is abvious that with the Proposition 4.3, 4.4 and “aé we have

proved in fact

Theorem 4.2. The solution of the problem (2.2) is analytic and regular
Aheonen oo :

with respesct to any aéE(O,ao).



5. ASYMPTOTIC EXPANSIONS

Thie sec%ion have to be~considered as a complietion of the works{:hj
and [5], in whichi'the problem of the natural convection in a fluid-saturated
porous media, placed between two water-proof concentric spheres, was studied
by strightforward expanéions in terms of the Rayleigh number. For all that
we start with recalling this problem.

Let bevthe radii R Ry R <~R and let be the center of the spheres
0, the origin of the co-ordinate system Ox XgX3 , SO that Ox3 is antiparallel
to the gravity (27-933 , 9 >0). We adopt here a particular form of che

system (1.1)-(1.3) (in fact the classical Forml:1]):

div u=0 %o (5
~ : .
v e L : o
f’c uVT=kAT o 1T L | ' (5.3)
\A :
- E . At
for any r= X+ +x é;(], 2;, where &, c 3/4 and/’ stand respectively for

the coeffic}ent of thermal expansion,: the specific heat (at constant volume),

the Viscqsity and ‘the density of the saturation fluid, while the Defmeabiiity

¥ and the thermal conductivity k are specific features of the porous medium.
Assuming that heating or cooling is uniformly applied along the

boundaries, the system (5.1)-(5.3) have to be solved subject the following

conditions:
u.V=0 for = =R, and r=R ; ' (5.4)
T=T, for  r=R, = =P, - (5.5)

=% . for r=R, ‘ . (5.6)



- We suppose T174T2 , because the case T1=T2 is trivial. Now we pass to a non-

~dimensional form by defining

F o= : e
=R, X - q —R] R271

~n

2%

% _ % i ; R, -1
T_(T1 T,) (T T2) = CVR1k y

hi{’:/‘*qk—]fcvx(mfg(] + -;—(TO—TZ))x3)
=1

a =/«A ! fzc‘va]xgo((T]-Tz)

Remark 5.1. The Rayleigh number a® covers the case T]> T, (with a*> 0)
as well as the case T]<T2 (with a~<0).

Omiting conventionally the index %, we obtain

div u=0 for re&l(l,a) (5.7)
N N

ut ";"h=aTI§3 for ré&f(1,q) (5.8)
}\JJVT=AT for r€(.1,q) : (5.9)
u.y =0 for - k=l . cand - =g (5.10)
~

Tl for &=y o ' (5.11)
- T=0 for r=q ' .. (5.12)

Refering now to the spherical polar co-ordinate system'(r,ﬁ,?) the

problem (5.7)-(5.12) becomes: | Ly
A'i(r'zsint‘?:x ‘)+l—’—a—~(r,sin9 Yo P ————~} (il V=07 For rell,q) (5.']3)
or SEak ol ¢ Pl hiad s _ . .
i g}:* Tcost for ré(l,q)_ (5.14)
1 2h i : '
g # = bv,l“—aTsmV for r €l1,q) 7 (5]5>



e ] 2h
P tsing 3¢

0 for re&(1,q) (5.16)

- .( o(rzsiné?_;i-_::.).,, s (sinf '?)T)% o )T)*)__

Zsinf 2 e 98" Tap =ing 9
: AL un Lis ?
=u%.lr.. - ?ﬂ gg s - S‘f’ne Ba;* for r€(1,q) (5.17)
ur=0 for =1 (5.18)
ur‘=0 fior- r=q i ' (5.19)
T=1"7 " feor = r=l ; (5.20)
JT'=0‘ for' r=q ‘ . | (5.21) .

Propccition 1. For any a#0 ana q 1 .the totakcheat transfer is dif-

ferent from the heat transfer which occurs by pure conduction:alone. “

Prooi. Suppose that there exists a#0 and g >1 for which /ltVTE,.Q;
then from equation (5.17) together with the boundary conditions (5:20)-£5.21)

we find

T= —"-T('g’ - 1) : | ‘ (5.22)

Coming back to %VTEO, we see that it reduces to ur=0, and thus .

from (5.13)=(5.21) remain to verify

dug

3 . ' ' :
'vs-é—(‘s_lnS Ug )+ % =0 . ‘ (523
3}-: E?T(% - 1)cos® | | (5.24)
g ORI B



, 1 Db _
.uq e >0 = {5.26)
for any & (1,q). From {5.24) results

h =-§—]—((q In r-r)cosf +gf (& ,¥)) (5-27)

where ¥=F(# ,% ), via the elimination of u, “and ug between (5.23), (6.25)

and (6.26), have to verify

2 :
2 . o
2 —{(sinf = Ll ol L2 deaada ) sin 28 : Yok {5.28)
29 DB oF
which is obviously impossible- % R

Now if we look For asymptotic solutions of ithe form

(y,h,T)= Z_(u T i?- : : 15.29)
;>D m'm! o :
where the a-independent functions'(gm,hm,Tm) are supposed io sﬁtasfy the
set of equations obtainea by equating the cpefficients of the different
powers of "a‘which occur in the formal expansion of the system (5.133-15.21),
then it can be easily verifisd that {4.79) are the Tayinr’series in ‘the
origin, and we can refer to the results ofxﬂ§_ﬁ. Thus we know that the suc-
cessive problems of the expansions have unique solutions; that’s why in the
i present case they are independent of ¢ . This fact, together with (5.13),
‘ aifow us to iptroduce a stream function QJ given by
. Sl 5 DY Y

rsln@u = — rsinf?u&?-—j—?

% 39 gy (5-30)-

Thus, also eliminating h, the system (5.13)-(5.21) becomes:



-

R IT -
sing -—:}}—-—r?+ 7 30 Sing 2{9) (CF‘SQ o sm@—-n;)

(5.31)
for r€ (1,q) '
snn9 > ( 2)1') ) (aah QT) - A7 AV 3 2T W
or ) 3 or
3 9 g a0 (5.32)
fort r € (1,q)
T=1 and Y¥=0 for r=1 | - (5.33)
T0 ande Wl for rog. - gt . S

We underline the fact that the introduction of the stream function was
done under the hypothesis that the unknows have the form (6.29). We don’t .
know if (u,h,T) are "@-independent in general.

. N i

Taking (9 T)-inider Ehe Fowm

(Y,7)= & o E )a" . 15.35)
m}O

then (VL%—"'m.,Tm) can be defined recursively, for any m)1, by

2 . &
2 0.1, > ) 1 BLV ol 3T ]
r Brz"“ + sinf 30 (sin(} 39 =r sm9 (cosé 39 =~ rsmg——}—-L:
(526)
for r€(1,a)
V0 for 1=l and =g o (5.37)
Sind __B_(rszm) P DTm) : ﬁ(}.ﬁm__k Y, 2T }\,uk)
R W . L om
. ' ' | (5.38)

Tm=_0 for r;—-Iﬁ %and r=q ; (5.39)



- ]3 -

where the first terms are. = :
= = —..1.-—_9. =1 3 0 '
SPuis Candi T = q_1(r St (5.50)
The expressicns of (qj,,T and (q/ T as we already mentioned, can be

found fﬁ?ﬁh} andI:Sj\Nith various discussions (configurations of the.
streamlines and isothermal- lines, the Nusslet number and so on). Now we
want to emphasize two facts. First, that if we make q_—a o0 ther we find.
[ ] as a limit case of the present problem, that is rhe natural convec-
tion about a heated sphere with the boundary conditions 9’ 0, T=1 as r=l
and \E;\_€>O’ i “%*0 as r —>=&J . Second, that a multicellular flow cén

be obtain even with the following approximation
W o~ ¥+, ‘ s (5.41)
“Trying Qith (5.41) to get the streamlines on which W =0, we get besides
PG, r=.1 : 9=0 ;nd =7 : (5.42)

the (r,f)-points which verify

+ a CCQQ‘

22050 i =0 : (5.43)
12(q”-1) i '

(9—-—’-—:‘--}-
q

i
=
where

H(r,q)=r:2q?(q%1)(q?+qf1)-r_1q(5qh+3q3+2q2+3q+5)+
+(q2+qf1)_1((q+1)(4q§+6qh+7q3+6q2+u)+r(dé%@q?-}qL—ZqB-3q?-6qﬁ1))

Let’s denote



5 2 .
- f2(g =1 )(qe2) _in l2g¢])
1= qiifa,q) 705 e o s e

(for instance when gq=2,5 , a1{:17 and a,~12); thus in the case T15>T2

)=

we have the foliowing discussion:

1)7a Gioya]) - (5.43) has no solutioniand we find the usuai i
cellular flow:

2) aei(a1,a2) - in the relatively stagnant and stable cold region
from the bottom of the enclosure appears a second cell (Fig. 5.1).

3) a é&az,oo) - a third small cell appears at the top of the inner
Sphere'(Fig. 5.2).

I£ T1<T2 the discussion is somewhqtjﬁimilar, the configurations =
being upside down in-comparison with the previous cases. '

Experimental works'tanj have mentioned the small cell which appears
at the top of “the inner sphere, but no distinct motion have been observed

on the bottom of the ericlosure, yet.
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Pip, 8.2 Streamlines pattern for a>32
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STEADY CONVECTION IN POROUS MEDIA - Il

THE STRUCTURE OF THE SOLUTIONS
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INCREST, Department of Mathematics, Bd.Pacii 220,
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Abstract. The present final part of this work deals with some gene-
“ral and generic properties of the set of solutions, analogous to that
“obtained for the Navier-Stokes equations (see [1]—[311. Thus,. in the

first section we succeed in proving that the set of solutions is homeo-
morphic to a compact set of}Rm {m sufficiently large), emphasizing the
‘leading part of the temperature for this problem. :ln the second section

we show that for "almost al}”HQata‘jhe.set‘Qf solutions is finite, while

the continuum of the <oTuitons (with:respect to the Rayleigh number) is

an one-dimensional manifold of class C‘.

6. GENERAL PROPERTIES

We introduce AO:£9(£L\“"%“ Lz(ﬁl) given by

o . B L
AO(T)—"dIV(ﬁVT)——'Aij m")‘(’; PO

this operator is positive defined and self-adjoint in the sense of
! . . . . : . N _‘ .
Lagrange. Consequently, it admits a self-adjoint«extension Ao with the

properties:

3 : ~ e A
a) the domain of A D (A )=D(AX)[\H1(JQ)
5 (e} (o] o (o]
~ n
b) the range of A_ R(AO)=L2(JL)

o (5,93 s’ () sEDA)



N- =% ‘ .
Ae AO1:L2(.Q_) e LZ(JZ) is a self-adioint operator, from property

N1
a), via Rellich’s l'emma it follows that Ao is compact too. Hence,. there
: : e
exists a vequence ilkgk of orthonormal eigenvectors of Ao which form an

grihonormél basi&"in Lz(ﬂ.); also, if we denote /\;1>0 the eigenvalues of

Ao]’ they have the property

Bere by
Ince 5 rk—— ’ rk

~ o .
eigenvalues of A, corresponding to *he same eigenvectors.

it is equivalent w';th?r e %Xg are the
= o Kk ok RTRIR

L

S

1
oTI=A LT, (9) TEH (R)

L_emma-"ré'. o (e n

Proof. For any Té«g) (3) we have

e 3% Lo Dl Die, ot { i PAl
Alry,T) g 9%, 2% T S e T
L 0
=(r A (M) = (A5 (r),T) (6.1)
Because g;/»\ﬁ!f‘(!\j:)ﬁ H;(.Q,) , (€.1) becomes:
T v) T1€9(2)

and as ,9 () is dense in H:)(JZ—)i the relation follows by continuity. El

-1/2 \ { c ! ’ ==
Lemma:6.2. \Qms\<c = Q.S ‘ 7o) S&_,HO(.Q_) whcre Qm—'l-_ B
with.,P the orthogonal pl"OJeCtlon onto the space spanned.by ry,...,r, .

Proof Let Q S= Z— U ; it follows
o iy m+l



A(Q S,Q_S)= = T.A(r,,Q S)= Z T A (5 QS

i2 m+1 2 m+1
NG 3
" s >\D“2>>\ Z Q’Z ) ‘Q S\Z 3
. SN ml l m
1>m+1 i mti !
; . ~ B _
on the other hand, evidently A(QmS,QmS)<C uQmS “ : D

Lemma 6.3. >\ >C(«Q—)m2/3

m

Proof. This can be easily obtained using an estimation which can.

be found in[l&]:

s| <o, ISl 274 s] " aeqon, ) se(2) (6.2)
: ’ m
Let WiéiR, i€%1,2,...,m} and let S(x)=>_ @ r! () im (6.2)5
i=1

it follows

m m :
> Tr | =, [ i e 6.3
i=1 =1 ! =1 '
From the classical reguiarity result for the Dirichlet problem[S]
Ve o - n
I s“zgcz\Ao(s)\ e (V) SEDA) (6.4)
and with the same S as in (6‘.3) we get:
‘~ m \ ¢ \N m ' m.
\%Tiri 256 Ao(‘z‘:wri) =C2|Z=%“i)\. 1
\ m : (6.5)
< by B iz U‘Eri »

Introducing (6.5) in (6.3) it follows:



m : m = m
T sl s T ben i iz o)
e e 23 e i 20 m - i
Thus we obtain the relation
= a2l 227
21 L S
which by integration, via the fact that_lri}=1 (V) i completes the proof.[]

{
In this section we dencte with Uﬁ the set of the solutions of the
problem (2.2) and with szsp“%’ Lz("ED the operator Fm(kfs);PmS , which

" is obviously continuous if % is endowed with the topology of ﬁ)x H;(Jl).

Lemma 6.%. Fo ¥s injective if m is sufficiently large.

Proof. Let €%1;s1), (EZ’SZ) 31?2?L]EI'(ﬁis);<ﬁ1_52’51_52); from

(3.6) results

B(u,v)+ias,g.v)=0 . (¥) veH (6.6)
~ N ~o~N :
Als, )b (s, 4w E)+blug s, €)=0 (V) t_éH;(.Q,) (6.7)

Choosing t=Q_s in (6.7) and using Theorem 3.2, we obtain

i 1 i 1 4
HQmsu <~2— u +\’t¢1\ . \Pms\g—o— x,i +C4\Pm5\ ‘ (6.8)
o 4
As from (6.6) with we have

v=Uu
~n N

— -

|sl<elel <olPael o] B (6.9

the relation (6.8) becomes



a a
“Qms“é—?_-\gmsl+(—2-+ ch)lpms\ (6.10)
Using Lemma 6.2 from (6.10) it follows
—aey 2 ! ! .a )
- A e <G+ [l (6.11)
From Lemma 6.3 we find that for sufficiently large m the relation
(6.12)

ac>\ 1/2 >

m+1

=0; using once more

[

ho]ds Hence, if \P s\ =0 from (6.11) resulfs ‘Q sl

Lemma 6.2 it follows 'Q sl =0, and fipally, from (6.9) ‘ l =0

Theorem 6.1. th,H % H:)(_Q) is homeomorphic to a compact set of

R®, m sufficiently large sc that (6.12) is .satisfied.

Proof. From Theorem 3.2 and from Sobolev’s embedding theorems
{
it results that P is compact in H x Hl(ﬁl). If m satisfy (6.12), then

is continuous on this sety this follows

Fm(?) is compact in R" and F:

from (6.9), {6.11) and

“ PmS “ 2éA(PmS’PmS) 4 >\mlpmsiz D

Theorem 6.2. 50is compact in E_

Proof. Let (u ,é ) be a sequence of elements of (fc.;: Eo. As

%(u .S } is bounded in E_ (see Theorem 3.2) it contains a subseguence

EO and strongly convergent

(still denoted i) which is weakly convergent in

- 1 1 : Vo
in ﬂ(\ﬂ (2 ) x Ho(i) to some element ()\J:o’so)e E, - Puting (z\s/;i""'l’cfil"i_

={y.20 ,s.-so) , the relation (6.7) becomes

e = F AR U

x



N : 2 : ;
Ao(ti)+X,V(Si+wh')+,§‘,ovti=0 e oL ) . 3 (6.13)

Frem (6.13) we obtain

S.W

‘R’o(ti)‘\ 1”!\111‘ [ hHZ !No\ ”t } : (6.14)

We can sec ‘now that from (6.14), via (6.4), it resuits “t “ —3=0. Taking
in account the corresponding pressures, the equation th&fqi=pi—po have

to verify, is

- div (K Vq)=a div(Kge;) in 2. - (6.15)
(5Vq1)-}7=0 on o (6.16)’

From the already used regularity properties of the Neumann oroblem

(see [5]) Je get

\!ql '!3<°2)

2 div(Kgt,) l[]§c3 It I8 et s (6.17)
Now, the fact that n’\\/”“ T T olieons straightly from| (1.14). E

Remark 6.1. (An implicit representation of the solutions).
m satisfy (6.12), then Lemma 6,4 allow us to define for any
‘ T ; 1 i
’S'- CTPm(Ho('H‘)nH (L)) the only element (Li,(‘g),()"( g))é"}j’me(Ho(ﬁ-)(\n (D))
‘which verify

P (Bul®)+a(E+T §)+w : (6.18)

H'wn~

-div(a TFIE))+Q, (o) VIE+ TIEIW)I=divigVIS-am))  (6.19)

where P, is the projection of L () on i

%



—

Obviously, Qgpg), §4-U'(§)) is a solution of our problem, if,

and only if, & verify

~div(AVE )+ (u(T) V(§+T7(g)+w,))=div(AVP w) (6.20)

7. GENERIC PROPERTIES

The results of this section are based on Smale’s density theorem
‘:6} in the improved form of{;73 . That’s why we start by recalling this
theorem. |
[*8REilet E, F be Banach spaces and L:E —= F a linear continuous
opefator; then L is a Fredholm operator if:
1%, The kernel of L is finite dimensional,

o : = : S = :
2°. The image of L is closed and has fihite codimension.

The index of a Fredholm operator is defined by
ind L=dim(ker L)-dim(F/R(L))

CVf fiE->F is a C] map, then f is a Fredholm map ¥ for every
xE&E, Df(x) " is a Fredholm operator. FSr such an operator an index
can be defined by ind f=ind Df(x) , because ind DF (%) is indepéndenf of
x (see \‘8]) :

A point x&E is a regular point of f if Df(x) is surjective;
otherwise, x is a critical point of f. The image.of the critical points
under f is the set of critical values offénd jysﬂcompleménﬁ is-the set
of regular values- of f. e A BRI

Now we can state the Smale theorem.



Theorem 7.1. If. E. F are Banach spaces and f:E—F a Fredholm
map of class Cq, with q\;maxgo,ind f}, then the set of regular values
of f is residual (the countable intersection of op=n dense sets) in F. More-
over, if y is a regular value of f, then fF_T-s(y;)r, is either empty or a

irGIdGE Binanelon Traet (T Ind F=0 themit (v) i discrete):

Remark 7.1. By Baire’s Category theorem it results -that the set.of
regular values of f is dense in F.

Now we reconsider the system (1.13)-(1.17), defining v =—;—

)
ta¥

!
T=S+w +To and introducing an arbitrary amount of heat Q&LZ(&.) i 11 k)

h

the corresponding system that we-are interested in, is the following:

.div.{y‘=(’3‘: in L ‘ ; (7.1)
Py(By-Tg)=  in i (7s2)
~div(AVT)+ay VT=Q ine AU | : in 4(7.73)
v. V=0 on , (7.4)
~ . _

Q9
i

i
o~
~d
U
~

T= E on

Let’s denote with ba(a,Q,Z) the set of the weak solutions (x,t)
of--the problem (7.1)—(7.‘5); it can be proved that éi‘]ﬁ(a,;},z ) s a noh-
-empty compact subset of !l;i’!\)iz (-Q,)XHZ (e one can use the same. Itechniques
as in the previous sections and everything holds identically except the

weak maximum principle (Theorem' 3.1) which take the following form:

S H () e s sdllitionof (. 2EES)

The-orem‘7.2. | f (X’,T)(ilti)
then T€ L2 (L) and
e [ P S STV I _ (7.6)



Proof. Passing through the Neumann préblem of the pressure like

in Lemma 3.1, we get ué,i (2); thus we can make the duality product

of (7.3) with any SGZH](.Q)
A(T’S)+ab(X19Tis)=(Q,S) (7-7)
For any k>0 we define Skzsqn(T)'max.§lT\ = %-- k,O; ; according

to Propoesition 3.2, SkG:H;(il) and denoting with

.Ak=§x€52, T > %-Pk g

.

we see that V =V 71 on.A . and V3k=0 elsewhere. Choosing S=Sk EninlZ 7]

=
we have
\Ski 5 < ISl A5 )=, )40 (5,5 )=
(A, ) :
k
=A(T,S, )+b(u Ts) ) <lal (m 53
u, 50 <|&| meas a5, | S0
that is
IS i AT =
\uk\ L6(Ak)€; Cz(meas Ak) . \Q\ v 1(7.8)
As for any h>k
(h-k) ( A )57 1s s, |
' b J é\ k\ L6(Ah)<l k‘ L8 a)
_ with K7;8)‘it follows
< laf® V2 (s
meas A, §C3 ——p (meas A, :

(h-k)

Because ‘meas Ak is a nonincreasing function (after k), it results from a



: -~ = - - 16 i =
classical Lemma (see [9]) that meas A0 for d—Cu(meas AO) .IQ‘ g I_J

Defining now the Banach spaces

& = e e Ty ‘
E1_g(""r>°,ﬂnﬂ%z}( I ('9‘“){ PH(‘EYQTE;‘,?‘.Q (7.10)

e J

F=12(2) x W32 (32) . 7w

and the map Q:E1‘%>F by

g(v,T)=(-div(,QVT)‘”+an;7T = Tiloe) (7.12)

~

the system (7.1)-(7.5) i< equivalent, in the sense of the Propositions 2.1

and=2.7, with

f(V,T)"—‘(Q,-E) o ’ (7'13)

Proposition 7.1. f,iE,~*F defined by (7.10)-(7.12) is a Fredholu :

map with ind ng.
Proof. The Fréchet differential of f, , given by

DT, (0, D =(-div (R TS)eay TTeay VS,5/20 ) 7 (7.14)

has the form (L+K), with
L(u,s)=(-div(A TS),S/22.)
N N

an isomorphism from E] onto F, and

i -t
—_——

K(u,$)=a(u VT+v VS, 0/25 )
~ A OF

a compact operator from E, with values in F, because for any (x,T)éE

€ AW (2) x HZ(SL), the operator
N NV :



(/%,S)\Lwﬁ’* ‘}‘ﬂ,VTJrX,VS)

is continuous from QQE () x H1 (2) with velues in Lz(—Q). Hence 'Df1(vp'|')
P Fa¥)
is a Fredholm cperator and
ind Df, (v,T)=ind(L+K)=ind L=0 . E]

Theorem 7.3. For every a}O there exists, a dense open s&t 1/01 in
F, such that for any (8.6 )€ (01 the set &p(a,Q.?p') is finite. Moreover,
iiG (Q{ is an connected component of (71 , then for any (R,%) € @DC

the number of elements of S/}(a,Q,'Z) is constant and every element of

Sp(a,Q,Z) is a C°° function of the pair (R,%)-

Proof. Obviously f1 is of class ¢ and from Proposition 7.1 we
Find that we are in the hypothesis of Theorem 7.1. Denoting with (’0]
the set of regular values of f1 : and having in mind that f]p(df{,é )» 16

compact in /fjl/\jjlz (6] % H2(2) and hence in E, , everythinhg can be proved

exactly like in [2‘} D

We pass now to the second application of the Smale’s theorem.

This time we put

E,=Eq xR : (7 0k

and fZ:E2 —2= | define?d by

fZ(V’T’a)=("diV(A4§’TT)+aVVTa T/?,;L) 3 (7-15‘) :
~ ~ ~ Py A .

Proposition 7.2. fzzEz-—-"" F defined by (7.14)=(7.15) is akred-
holm map with ind f2=1.



Proof. The Fréchet differential of f2 . given by
<Df (v,T,a), (618,b) ¥ =(~div(A VS)+ay VS+ay Vizby VT, 5/232 ) (7.16)
2 ~n v / Pad o~ N

~

can be put under the form (L+K), where

N~

o

L(u,S’,b)=(—div(AVS)+bX Vi.she )

ay

for any h€ R, is an isomorphism from E, onto F,: and
K(y,S,b)=a(y VT+y Vs, 0/50 )

which is, like in Proposition 7.1, a compact operator. It follows that

Df, (X',T,a) is a Fredholm operator and

ind Df T,a)=ind(L+K)=ind (L)=1 | - D

/
Vv
27"

Theorem 7.4. There exists a dense open set (02 in F,.such thateope

for any. (R, Gie (02 the set

y’(Q,E )=§"(X,,T,a)€i E, ! (X,,T)éﬁsp(a,Q,E)j

is an one-dimensional manifold.

Proof. The map f2 is of class C ; as an exercise one can check

(sz(u,R,a)) (w,T,e), (v,S,b)\ =(cu VS+aw VS+bu VT+bw VR+av 7T+
> ~ : v i g A ~ ey PV ~

+c,\\/,VR, 0/2.2.)

As usual, (0,, is the set of regular values of f

, and as y(Q,Z)=

=f;1(Q‘,'C*)-w,:“(‘v’)v (Q,G)EF, almost everything follows from Theorem 7.1; v tid

_.we_have_only to prove that @2 is open.



e

——

Let (Qr,én)GF \(02 be a seauence converging in F to (Q,% ).
i e : o ' e ; : £ .,..
Let (Bn,Tn,U)u,sf(Qn,Zén), as %(Qn,u r)§ o 1S bounded in F, -from the

corresponding estimations of Section 3, it results that E(un’Tn) 2 . is
A~ 3

bouhded“'ih»H{]HZ(_ﬁ) X HZ(«Q—)- Hence, there exists (u,Me H!r\Hz(..‘Z.) X
~N ~N N N 6.2

2 : : ; ;
x H°(Q) for which, passing, just in case, to a sequence, we have

ren n

(W ,T ) = (4,T) weakly in H/ W () e G

Let’s notice that it follows at once (}CI/,T,O)& Jﬂ(Q,G ). Moreover, as

ind f.=1_we have
2y

£ . o
dim Ker D'Z(ren’Tn’O) dim Coker sz(Nun,Tn,O)H}]

and thus, there exists (vi4S. ,a)€E, with (v ,3 ,a)#0 =uech that
: n’’n 2 ~n’Tn ~o

bak

n v

\_.
oty ly ,T,50), (v, »5,,3) > =0
that is

PH(ABran—Sngu):O in ’I;Z(--Q») (7-18)

'di\z'<_£\\pvsn)+anfl¢nv-rp=0 in . —Q’ (719)

g e ~ : g )

’ i =0 impli Fe ‘ a =1
Let’s notice that a =0 implies (Xm’sn) 0 and we can suppose that a =1,

(vn,Sn,an) being defined up to the multiplication by .a -constant. From the
N 3

system (7.18)_—(7.2Q) with an=1 it follows thaE‘ g(xn’sn) ?n is bounded

—_——

P} - . : 2
in HRHZ(..Q,) X HZ(Q_), as the “"given'"term u VT _is bounded in L e
NN -4 AN n

Hence, we can extract a new subsequence (still denoted n) such that



ron n n

Now passing to the limit the system (7.18)-(7.20), with (7.17)

and (7.21) in mind, we get

5

<Df2 (fuJ,T,O) ,(v,8,1) » =0

With (XI,S,1)€,E2 v.as (x,S,1)#g the element gi;T,O) is ‘not a reqular

point, and hence (Q,% )€ F*\@QZ ) , [:]

Remark 7.2. From the theorems ‘7.3 ?nd_7.& it follows that (gene-
ieal) fhere areno bifurcation points and that fluctuations can appear
only where the projection of SO(Q,g ) on the Rayleigh numbér-axis
“overlaps; also, as long as the Rayleigh number remains bounded,
the number of overlaps is'finite.

These results are in a close connection with the problem of
natural éonvection because, as we have seen in ‘the theorems 7.3 and

7.4, § can approximate as well as we want the null value.
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5 ) —>(v,5) weakly in HNHE(D) x H2(2) (7.21)
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