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Abstract, In the general framework of the homo-
geneization method it is discused the problem of underground
combusfifon for a viscous compressible fluid. It is prbved that
the dlslpatlve term as well as the comnr9551b1 and convectévé
terms must be taken ‘into consideration. The non-dimensional para-
meters glves us the physical meraning of these terms.

1, INTRODUCTION

l1.1. Ceneralities

The problem of motion of a viscous compressible fluic
Ehrough a‘porous rigid body, is congiidered in the general framewor:
of homogeneization method (Bensousstan, Lions, Papanicolaou (1] or
Sanchez-Palencia {21, as general references). The periodie geome-
tric structure of the poves is associated with the small paramete:
¢~ 0., It is known that the asymptotic process and the limit equa-
tions may have very different structure }f several small parame-
ters are involved in the problem. '

In two previous paper (Eng, and. Saﬁchez Palenc1a LB)
was studied some cases where the.density, the viscosity or the
thermal expansion coefficients—are small. In {4] also was studied
the problem of underground combustion for a viscous incompressiblc
fluwid,. In this case the temperature equation contain..the convecti-
ve term and the disipativ oneur

In this paper it is studied the problem of the motion

of a viscous compressible fluid, but only in the case where it is



possible ‘to obtain the Darcy’s lew. It is known that in other
cases {3\ the velocity vectos may be large and the nonlinear

terms of' the Navier-Stokes equation may appear in the asympto-

‘l L elove

tic equationE€o 4 nonlinear Darcy’s law.
The physical meaning of ths¢equations is given by

the non~dimensional numbers.

1.2, General equations

We consider a fluld dcma1n~Q~f formed by the cavi-
flcs of .a rigid porous solid defined in: ‘the following way. We. con-
51der 3 parallelipipedic period Y of the:space of the variables:

v yi(1~1,2,3) formed+by a fluid and a solid-part Y£ and YS, with
smooth boundary ' , and also we denote by Yf (resp.Ys) the union
-OF the Yf (resp.YS) partis of all periods. We thene assume that
Yf"as well as YS are connected. If fL is the porous domain in the
space of variables Xy Ve defime «the fluid domain and the solid
domain by:
Jl{f mixég;.xein§; 528 =§ i; xngga
TE ? ’ 2, T? and v€ denote the defisity; pressure;:

terper iture and the velceity of the flow, they*‘must satisfy the

equations (see for instance Liepman and Roshko 15])
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fhlf% ; whcre fl are the components of exterior body force by unit

mass, z‘k' are the components of the viscous stress tengor:

- N -t qg»i ;
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e e 2 x \)« ( Vel ’ VR ) ‘. (1 )

and the state equation is of the form:
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2 ’ : s
there o ’F” Lol and 'ﬁ are the two voscosity coefficients,
the thermal conductivity, thermal expension coefficient and
compressibility coefficients.

] : S o
The boundary conditions on { are:

e
Vi =3 O (107)
T&]} = off, , §.(1.8)
S 9Tt P GTE )
S R ) o

In order to study the asymptotic process we suppose
the thermal condictivity of the form X'=¢2A .

2. UNPRRGROUND COMBUSTION EQUATIONS

2.1. Asymptotic expansions

It is well known ({(see Ene and Sanchez-Palencia fGK,
or Sanchez~Palencia fZ} ch.6) “that the Darcy’s law must beé obtained
in the case when the sum of the order of magnitude of the viscosim
ty coefficient with the orxder ¢f magnitude of the velocity is two.
Coﬁsequently, we are obliged to search for an easymptotic expansion

for the velocity of the form:
£ 2 o 31 '
vi=¢ v;(x,yhg vi(x,y)+ i (2.1)

On the other hand, the ekpansioasvfor the pressure

and temperature, are classical:

€ 5 e X
P =p2 ;) £ (x,y) + Lo (.

.

T =77 (x, y ) +4TE (x, v b o. T, 8 = o

"In these expansions y“E:§“§hd'all functions are con-
sidered to be Y periodic with respect to the variable Y. The two-
scale asymptotic expansion is obtained by considering that the de=
pendence in x is obtained directily.and through the variable y;

; The derivatives must be considered as
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Using (2.2) and (2.3) in the state equation {1.,6)

we obtain the expansion of the density

¢

Piso Gyl + ¢ (x,y)+ ... | (2.4)
where
~ O > I B ©) ; .
S (“’y)"So(l QT (x, )+ ? {x,v)) : 2 5
QY Gery) =] o (=um ey )+ B pt () . (2.6)
2.2, Continuity equation
Using (2.1) and (2.4) in (1.2) we have at order £’
and Qsi
0.0
mwoes (057 ) =0 (2.
e | (2.7)
_3_( Oy it 1v0j$o (2.8)
9 Xy e e § v _ R

As is usually in the homogeneization probléms, me

and pO does not depend on y, and consequently Qo,is a function .of

Y

x only. Then the eguation (2;?) takes the form:
aiv, v© =0 ' (2.9)
7 2

If we apply the mean value operaﬁor‘defined‘by

~ g9
, *Tﬁi iy

to the equation (2.8) we obtain the continuity macroscopic equa-
3 a4

tion:
v2). =20 R 2aan)

The mean value of the second term of the equation

(2.8) is zero by the Y-periodicity:f2].



2.3, Darcy'’s law

The eguation (l.1) with 2.1) (2.2)and (2.4) takes

ﬁhe form:
v dip? s ps sy sl
igooea L, Sl P ¢f eP
& ¢ o o0 e = '_,m,‘ —f\ T e e
“Zik © ‘
+ e +-o.+ ? f+¢uc (2e.&.1)
cYk
where
L
T =g + (- + et (2l Y
6 ik ik s vy P ; ,

From 2. 11) at.exrder E_l we have

and consequently p -p iz,

Also from (2.11) at oxrder go we have

,—\ (\ .)n_‘ s
¢ po O 4
0 = = s - mwnwmiv +’Auﬂm”%ﬁnzv)+y

@r. Oy |7y L Y4

or, taking inte aceonint (2.,9;

g @po %ni Bgs .
0 = = £ — o tuf v+ L, £2.13)
G %0 9Y; FAgViT S Ey

Now the system (2.9), (2.13) is the cglassical system
! el : . ;
(see Ene and Senchez-Palencia }6 ) or Sancn92wPalenc1a{v2]) wio

give us the Darcy’s law:

P Ko .. (2;'-".."’
Qe i% L tae
R ($Xj pof;) (2.14)

The matrix ng named permeability tensor is defined by
. ] ¥ = -

4 . S
Kij = —%T fw?dy : : : (250
o B ﬁ.\/. . :
ve “f»~3£«>wl (2.16)

where w #“denote the Y-periodic¢ flow corresponding to a mean pxes~

sure gradd®ntdequal to the unit vector in the direction of xl and



P e

depend on the geometric structure of the period.’

2.4, Energy equation

Eilrst, using (2.1)~(2:4) in (1.8), (1.9) we have

the boundary condition:

9 e (2.47)
] ———
o (2.18)
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o0t (A.grad TO)+’2*O[div (X ,.grad Tb) +
S By ey
v_ (X b i 2
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et el by o : : 5
e g)'\LdJ vx(if gradyTo)erlv_y(Xf gradeo) +

S o A o |
+ dl.v-y(lf grady’l‘ )]*‘i { cilvy(?(fc_;ra.dyT Ybiw ae . (2.22)
i qia -~y © : 7 : O :
e cxlvy(lsgrady‘l“ Y+ § [dlvx»(?fs qradyT ) +

i X : Oapas f : : e
e e Xggrad,T )+dle(xsgrady'fl)j +if [lex (Xggrad TS +
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+ dlvx(xsgradyTz)+d1vy(xsgradel)+d1vy(%sgradyT g e bl 2 )

Than equation (2.22) and (2.23) 'at order go give:

/, )
a rl}!rp e ;
(Pl (2.24)

Y5 13 \yj
whepg A takesthe values?{s ,Xf in Y, and Y. respectively.
Moreover, from (2.17) and (2.19) this equation holds jn.the-hole

Y in the .sens of distributions and from the Y-pericdicity we ob+a1r

EeE ‘
In the same way at order § we obtain:
o7 f‘\ e} (\ i S 3
o e ém ¢ g
e e Gae o E g
3 ii\xlj(y) ;; Xj‘ r;ij 0 ; . (2.2))
or
4 N « ()%Ti) g0 VA 5 -
Qyi LJ 3 y (B-Y-i 7% ij (J Yi % ( i ) ‘

Note that the convective term cf order § is zero by

T ~3 Lx) and the comprL5flolilty termiof order ¢ is also zero by

\ ) e

theey | 1] "ZJ and also it apears in the case of underground combus

This is the classical equation«imshomogeneization

tion for the incompressible fluicd \4}. Than we have

RS Fomd A e
RN T ;
1X13(y)92xj ‘yyg)J S (2,27
Ve
f‘(*1j I/bl,](y) h"kik(j);:;‘“; \J (2..28)
‘& (’\.TO : P
T(myruuwwffwnm (2.29)
J

where 07 is the solution of the problem

\ e St e e ;
Find &jeﬂper(Y) with §J=0 satisfying
el Gy g,'%w ¢
TS ==\ V)GeH Y 2.30

N
e At oerder 22, taking into account (2.24) amg (2.25),

,with the boundary conditions (2,20) and (2.21) and the Y-=periedici:

ty, the equations.  (2.22) and (2:.24) give:



z Ny - gt o)
o o O e Diigae el e IV
\) C r_‘fk (""_“’""‘" = )"‘ P Vk (-v'---— + g ‘:e z 'k...,...__;. -}
L NG 6du G ¥4 de0
N o " GO ok P Qi ar 7 5
+yo)vr§mkiﬂk(<§~ ,;%wﬁg : ZA{q,(ﬁ s b o
[ % 5 JE X s Yy @Y J& 0 X« ? Y

in ¥, where we admit that v? take, the value 0 on ¥ .

<
The applications of the mean operator to. the equation

(2.31) give us the macrosczoric energy equation. The v.h.S. of . this

equaticn’ is exactly the same as in the case of incompressible flow

{47, and then we have: s ‘ ;
' NS, ) g e o dge Qe
¢ B s &% @ éyk C v
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The mean value of the terms appearing in the 1l.h.s.

of equation (2.3) gives
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Then, the macroscopic ehergy equation is

e (b_{—o D (C 2 _,,l. Lot O gy Q l 0 e e .
e v Al - e L (kTh VIS e (G ) 42.32)
kax, — 9k 0 { g ke aR ke o

3
It is necessary to note that the macroscopic state
__equation is

go = ?o(lw{’l‘ofﬁpo)' (2.3



2.5, Complete system of equations

Then, the complete systems of eguations for the
underground combustion in the case of a viscous compressible £luaid
is given by the equations (2.10) (2.14) (2::32)(2.33).

In the vectorial form this system is of the form:

v = - ? (grad p ={4 )
L ( L)= " (2.34)
ﬂ (A=l T }p)
gcfygrad\T = %L Vv grad f ‘i: v 3 'AT

2.6, Non-steady flow

All consideration concerning the Darcy’s law holds fc
the non-steadv case, using a siow scale of time g =¢°t. .

New terms appears in equations (2.10) and (2.32).

The equation (2.8) have also a term of theg form

N e?
¢
“; and ‘then the mean value of this term is
¢ita :
riaw s oA 9 s '
e ?mm(”mm 07 Q) e el - ZaBh
R4 ) e\ (v : ¥ 06 ( gl ) ; ( " )
it :
% : : & e e
where w is the porosity of the medium: defopped by " = wTww’.
Yi
On the othar hand in the equation: (2.31) it appeasns
~N \ mU

asterm. ok the foim (XC) i%?-, like in sthe . case of incompressible

(o
flow [ 4 1 =
Consequently the system (2.34) in the non-steady case
takes the form:

K
v = = =(gradp ~{f)
- e g Pa

Oy =
?g§%$l + div(;v)=0 (2.36)

Sl Gnl pp)

- G : e o -
(R<) ,u;uﬁ & \;cfggrgd - ~S:~ v gradxm[; v +.7Q AT

&

3. NON-DIMENSIONAL NUMBERS

We take a characteristic 1ength€of the povex,-a -

_charac®éristic length L of the domaine Sl and .a characteristic

%



- 10 =~
~
velocity Q of the filtration velbcity X?; Now, the small “para-.
meter is well defined ¢ = £/L. Tt is known {GS that the permeabi-
ldty dsiof the form k=xk¥1" , Where K* is a non-dimensional per-
meability.

If we introduce the Reynolds number R by

§ 5.
Dk

}\25: ‘-'-;:“-‘ v ’(3»1).
it is known {61 that the Darcy's law hold,for RgﬂJO(inl) or in
the equivalently form

N

€50 ,

TS \ (32

‘f\& L

In order to obtain the physical meaning of the terms
which appears in the energy equation (2.32)., 1like in the incompres-
sible case, we introduce the non-dirensional number Si . and the

Prandtl number (63:

) ‘
LR e ' 3
2 ot} : .(w?(— . ( )

where T is the difference between the temperature &nd the referen-

ce ‘tempeEature. Than, with (3.2);=the equation (2.32) makes: senge

for S,~0(£%) and P~ 0(%), or:
Tl ; T 4
A Li { :
o B "(3.,4)
LT _ b, 8

These are the conditions for taking into account
al e tenmesidn - (2.:32)

4, COMPLEMENTS

It is interesting to compare the system (2.36) with
the classical system of underground combustion for incompressible
£fluid }4]:

-

v === (grad w?})
s ‘\k fais
div v = 0 =
v DT . :
(YC)=§: +ffcfy grad T = = v : +XﬂA'r | B



The system (4.1) is uncoupled and conseguently the Darcy’s law
and the continuity equation gives the velocity and the pressure,
without the temperature field. The: temperature may be determined
by the third equatidn (4.1), takingsinto account the velccity ieid

Contrary to this case, when we take into consideratien
the compressibility and the visecosity of the fluid, we obtain the
system (2.36), whoe is a coupled System. That meams thak ik 1is impos
sible to determin any quantity without the influence of the others.
Then it is necessary to integrate the couplet system-(2,36) in or-
der to .cbtain the velocity, the pressure;y the temperature and. the
density.,

inalk¥y, it is interesting -to-note that the incompres-
sible case is a .particular case of the compressible one. Of courser

the compressibility term is zere, and from (2.36) we obtaini 2.1},
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