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APPROXTMATION THEOREIS FOR THE LOCAL TIME:
OF 4 MARKOV FPROCESS

by Viad BALLY

1. Inbroduction

We consider a standard process-iX.  witHi-localy
compact with denombrable base state space ( L), a-wegular
point a &% and the local time L in a normalisabed such
L e /

Vi v

Teed
e...:

=
(i) B a)

(notations will be those in Elumenthal and Gebtoor /1/.:
Our main result is Theorem 2.4, which gives neces- |

gary and sufficient conditions iﬁ order thabt, a sequence

An, n&el (or & family Ae, E~+0) of incrcasing, adap- |
ted, right continuous with left hand limite (in short cadle é}i
processes converges to L,.This cdnverg@nce is an uniform -
LE convergence, To be more exact we introduce the fellowing i
7(§ossibly infinite) distance be,ween two measurable proces-
"ses M and N

5 da(ﬂ, N) = sup EX('Sup(Mt - Nt)g)
X t : :

AarnA Ay A‘D’ SFVEN - i oY e



Theorem 2.4, gives necessary and sufficient con-

dition in order that
dz(ﬁn,‘i) iy

We mention that the above convergence implies
lim dy(4%,1) = 0 (see (2.14)).
= Conditions on  A™ will bé expressed in terms of
some parameters which controle the difference between an in-
creasing process and the local time: the first one, fﬁ (see
: e
(2.6)) refer,to the additivity property; the second oné, é&,
(see (2.11)) refers to discontinuities and the two others,
f ard:- "¢ (see (2.15) and (2,16)) are about the "support",

'Béfore dealing with the prcblem of the convergence
to the local time, we giveaa¢generél theorem (Theorem 2.2@
‘whioh is interesting by itself) of.convergence (under dg)
of a sequence of increasing processes to an increasing pro-
cess, This theorem is a consequencé of Theorem 96, p.l176 in
Dellachéfie and Meyer /2/ which ensnures that if Al and A2
‘are two optional increasing procesées such that the left po-
tential of Al - A2 in dominated under module by ax uniform-

ly integrable marbtingale i, then

, Y B e £ s Eo gt Lrse2 Bekp
(1.2) " B - 209 £ 2 B0 Talls + 14202

By (1.2) and Doob's maximal inequality.we'geﬁ
the inequality (2.12) for da (AJ“ : [&2 ) (wb;jagg__lielrds Theorem
2.2). Ve mention that the same two inequalities are used by
Getoor in /4/ in order to get a convergence theorem Ffor down-
crossing processes to the local time forprocesses with homo~

genous independent increments,



ek

The theorem of convergence to the local (Theorem
2.4) will appear as a particular case of Theorem 2.2 (above |
menbioned)., To this end we have to evaluate the difference

between the potential of an increasing process and the po-

T

tential of the local time. This is done by Lemma 2.3%, and
Theorem 2.4, follows immediabely. 4s a corollary we give suf-
ficiznt (bubt not necessary) conditions for almosh auye con-

e

vergence to the local time (this corollary follows from Theo-
rem 2.4, by a Borel - Garm‘{:eili argunent),

In sections 4, 5, & and 7 we are dealing with
srticular approximation models., In section 4 we consi-

deP a sequence of continuous additive funchbionsls which are

normalised such that (1l.1). holds for them and prove that if

their supports are closed to a, this sequence of functionals

.

converges to bthe local time L., The occupation time, the "area"
and the "regidual area'" (see section 4.c) are ex«mplés of
this kind. In section 5 we give a genefal model Of‘”down»
“eroesings" and section 6 gives gome informations about the.
Haugdorff - Besicovich meacure of the setb {t H Xt.m a} (it
is a generalisation of 2.5, in Ito and lic Keen /7/). Section
7 deals with the exéu sion model which was introduced by
Frigted and Taylor /3/. We prove by our methods the main'rem
sults in this work (in a Slighﬁly‘sﬁronger form) and also
some variants of them.

Except for section 6 (in which only the assump-

tion that the point a is instanbaneous ig requiered) we have

———— ot
T

to assume that
b =% g

e nll = G?a("iw) ?..E(a)) =0

I
Sl : .
whe re Cfx(y) = (e ¥), Weimention that this condition is



B

true for processes wibth homogerous independent increments

for which the local time exists and which have instanta-

neous states (seze Getoor and Kerten /5/7).

2. Main results

a, Nebations and parameters

ie;

We consider a standard process X = (L2, F, E,

i

X"i;’ @t’ p7) with sbate space (E,& ). For a function fe&7,

Ik 5

-
Jramat

Exifa)l;g and zéfgfg = sup || i§§¢ For hwo measu-
X ; :

o

rable processes A and. B we define:

X ek 0 o o NS
d-(A, B) = E-(sup (4. =:B.9%) and
o 2 ,t; U L
e
i) = ey e
d(f;} (1“.9 R ) = Sup d2 \J‘i‘, .f )
> =

Ye shall use the convention from Dellacherie and
Meyer /2/: when :speaking about an "increesing process" A

B

we shall also assume withoult other mention that:this process

ie eeglaey 4 € Fopd = 0 aGnd ol o= ik
e ’ i

v o2
U

£ For such a

process we define

WE_‘: = g Q—S {'3.:’1$
[0, 11

(with the comvention that dA 1s concentrated on {t : A oo}
A1l the informations about A will be expressed
in terms of A. We define wu, (we write wu 4if no confusion

is possible) to be the 1 - potential of A:
(2.1 u(x) = BT ) = B { e an)

For the processes we shall deal with the follo=.i®

wing additional condition will also always be assumed:



(2.2) u(x) £ oo for every x &F
We. start now to define the addibvivity parameter

\
[t (see (2.6)). We note first that by (2.2), Ao Lo ag

S B
(2.3) Poul  f ~a g 2By

¥ L V g o

We also define for every x &B58:

v < % e

) ! ki B A ~ g

LCidls “ ) Y g = \:,.4'_; = .bL,zG and
¥

p |

ot

b8
= '}: "i<‘j;_0':.§{) \i’t

s e ey

. . X
where M~ is the cadlag version of E (A | E%)

Ly = € u(it)

We note that for every x & E and every stopping

time 1

i
g

(255,) ‘{-:X.( Fﬂfi\ [ w%‘g'x) - f“ﬁﬁ P}; e84

Ye are now able to define the additivity parame--

L_”
@
H
o
en

- L/ 2y B0
(5.6) | T? = d2< i:““ . O)l‘ 2 = ‘8Up (EAQS}JP ( P{') ))i/C

We. 1list-now sonme simple inequalities which give
E g &

an- idea about the way in which [ workg, The first one will
be usefull through applications in order to evaluabe & -

(247 Lf lfﬂmf é{ K asg. for évery stopping fime T
Ehare ] Ry
: We return now to (2.%) and write it in the form

s

. e PO
(2¢8)v sz AT + GP Aw" @ poF PT

o ang
(thisrequality makes sense because A ° e m 8¢S

for every stopping time T (see (2.2))).



A o

Using the strong Markev propezty we get an ana-

togue of Dynkin's formula:

e

o o ol b [ N B ¢
~and note that for the error which appears in the right side
of (2.9) we have the inequality

i » % i BTN .
2kl) B ( f.\> &,Tm for every x &E and every
3
gtopping time T,
We go on and define the "discontinuity parameter"
A

4oeny

TR
P
%
}....
£
M)
e
i
ot
it
i::v
i
e
o o

b o o = B i
A = afg &g O)l/’“ = sup(E~(sup A g))‘}“’a
~

We note bthat ﬁi}“( A e A for every x & B
; T/ g .

and stopping time T,
i &

b. A general result

r) :
Let at and A® be two increasing processus
; 1 ’
end ¢ = (ﬁAmﬁﬁa'bliwm EYV7 « To get a nice form

for Lemma 2,1. we assume thab

+

Noy - wll # &0 ) O+ 604, AN 12

Lemma 2,1

(2.12) (&, Bl (huy - wll + a4 1, s

-%d»(Al, A?)> ng(“s 3»(

If At and KQ. are previsible proce s sus than

—— T

(ul?)  Llh, & )ézcl(i -~ wll + 8 (0, PN
et

with (:l and C; universal constants, '
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e | o
Remark., If A -and A

¥ - " v »
of a Hun%t process, they ar

4
M.L ‘T"& " 4
a ‘\ ; & \) 51.3;? e T

Remaz f‘“ i,

P e

tion bezween A

Folr el S -(2- &)6,,1 2N2 gl T
(2.14) sup B (sup e ° (AL - At) ) :p d, (A7, 4 ) >
 sup T ( sup N E% - E%)a)
X T
The 'above inequalities easily follow by u%iﬁ&
an inbtegration hy parts.
The following theorem is an immediate consequence
of lLemma 2.l. and we shall omite the ugmofs
m sy (531 T \n N -y
Theorem 2.2, Lielh-ad™, ﬂ.é%h and A be increasin
vy Il 2 ‘ A -
processes with sup A" 1, 04 eull .. (oo . In order that
& T .‘

lim d, GRSy S0 e
g

lim [lu, - u Il = lim 4y (
n 81

n .
A and A

1im dg(' /:““';.1*' A

are previ

o The following inequalities

necessa

gible -we may

e previsible,

nake

metric

R

egular poinb

n
c. Convergence to the loccal time
Let @ & B be the r
ginning of the paper and L the

Ehalia
For

meters r and ¢ which gi

of A:
(2.15)

for a nearly Borel

o

an increasing

get

local time

process

A we

ivelan idea about

d?: for

drop out

axﬁ~na$u“wi additive LunctdonuL

-y 9
£

P
g; ¢ G, ag(ﬁ e e

clear the connec-

every € >0

ary and sufficient that

M) = lim &G(Ay A7)

the condition

fixed in the be-

in a satisfylng

define two paras

the "support"

d 4y



e

with T, = inf{t >0 : X & Bf.

We note that if A is a C.A.F, snd B is closed
then p(B) = iff sup A & B.

We also define
(2.16)  o(B) = sup 11 = P Pyla) 5 % €3}
with <, () = Bl (a1 - ey for Xy & E.
Temma 2.%. I1f A 1s an increasing process such that u
and u(a) = 1 ‘and B is a nearly Borel set containing the
point a, then
(2a7) fut) - Cfa(:sc)\\{ 2 e’ A v a(B)

R R R s )

for every X & B. &

Theorem 2.4, Lev A2 n €N be increasing processes
with u, < so and un(a) 1s TS _

(i Ifdim (ﬂn = 11 Zin‘: 0 and for every & >0 we may

n n
find a nearly Borel set B g

If 1im &, (GR,1)
n y o
a})

and =

l;m rn(BE)

R

(i1)-

o=y

. @ S"
1)}1}:m "V}L( H
Goxollary 2.5, Let An
Uﬂ<:e@ un(a)

‘and for every neN

that and

we may

©  then

containing the point .a such that

o

0 then 1im da(Fn,L) 0.
IM1TH=JAm/ =
n
es
né&E N be increasing process' “such
Rkt P e N e
0 R
find a nearly Borel set B,

containing the point a such that 2:1 c(B,) < oo and

S o P ( iﬁn) < s then
lim sup
W ek l

% Proofs

Proof of Lemma 2.1

-Let-us prove

WLJG{

8650

at Tirst the inequalities in the yags



e

right side of (2.12) and (2.13). It is easy to see vhat

3 cmal o)
ﬁul - ‘u.2-‘\1 édz(ﬂl, 3 awd da(&l, ' ) 2 d, (.A ,H.[))-
We note that

. g 20sup ‘“X(L*up( YI) - N o2y
2 2 - 2 _

U

: T AT g 2
+ sup & (sup(2q (L) - UE(U)) )
o' G =
The seccond term’ in the right szﬂe of the above
inequalities is bounded by |lu; ~ ug{[g;da(ﬁyﬁ A%), Tor
the first one we write

gy’

oY) - NI B s 0 )
& 5

+ Sup (Ei - EK)Z)
t T T

We apply Doob's maximal inegqgualitiegs for the

: X =] o) i
submartingale B (Al - A {Et)

B (sup BN - B 27 0 TGt - 4HBg

52
CHalat, 49

which ends the prosf of the inequalities in the rigﬁt side
of [2.02) abd (2.13).

Let us now prove tha inegualiby in the left side
of (2.12). We write

Tl:ngg':(th%)«(szxl)-b( ’\.,i-,)

which yields

i

== ke X ] -0 e
Ty - B = YE(0) - Y6 & WAL =R B Fas,

As above, we use Dood's maximal inequality for

.

EX(EiQ« KZ@E Pt)‘ and get

X X fr gV
(31 G, B <2 SCYT, YD + 8 P 2P



oy '\{X(‘t) ) L s W
"4 4. 4 5
] Koo 7 e b
and  d5(Z¢; 20w - w, {l we get

: X Oy X g ey
(3.2) g\ YD € 20y - wll + HCTy, 1))

'n. bound the second term in.the right side of

.....

(%5.,1) we shall use theorem 96, p.l76 in Dellacherie et lie-
yer /2/ ior the process ‘Al - A2 (¢ L oo thus this process

has integrable varistion). Its left potential is

i el oy )
ﬁ%) - (Atm - Aﬁ"

which under module is dominated by the martingals:

(5.5 Ex(zi e Eﬁ 1

H, = E(H |¥,) with

t
Ho= 0 ! A% - Ail + s;té.p:‘\‘j{"?(\’c) -\ Z,f(-t)l
By the above mentioned theorem we get
o 3 o], iy » ,. Nr e =
(3.4) F(GEFSIP) 2 P g T o DR

o, )
By
< 2 2\ n 1 Gt 12 + HaSl) 2l
Pt TR e YT, YD Y O0h A
thus-{3.1), (3.2) and (% 4) imply the firsht inequality

1

I{f A~ and A2 are previsible we may apply

'theorém 96 (above mentioned) for pr eVLUthp processes and

so we have to consider the potential of El - AEM which is

EX(E? ”‘Kg ] Ft) - (K% - E%), In this case . H = sup l\(i(t) -
g’%(v)l and the parameter Z& disappears. ’ .

Proof of Lemma %.3.
Since X(T ) = a and X(TX) = X a.,8,, by applying

ﬁw1ce (? 9) we get



2 ) P @E )« BT 4

e X .4 a ‘a
& (IO (x) u(a)
= be
and since ua) = 1 we gedb

; - ; N T o

% “a
+ Cr‘(zx,) el
% £,
and since :’I:ﬂ 0. by (2,007

*““(Am ) <<gl“ 4+ (1 - iD (x) @ (a)))/ (123(8«)

which by the definition of ¢(B) yields

> g '\"\T-r e ‘—:% 5y ™
(3.5) sup B(Ep ) L@ TN+ o))/ o(D))
X & [ a

We put T=Ty. Because P& T T, is strong

a’
termined and f[‘a o @T =0 BBy
: &
(§o6) Ta P T Taa Cfﬁ -

We also note that

N e
.

(5B Bla) = B )+ B Ag) L r(B)x 2

N

We are now able to prove (2.17).-By (2.9)

’1 :

(3:B) < ufz) s By » BC 1 5) » e %)
By applying (2.9) to the last term in the right

of (3.8) we may write it in the form

o <

(3.9) BT o T, ) + B BT rp ) +
: a
Ly f\
+ Ex(e”l 5 i (e T ita) )
Since u(a) = 1, (5.6) implies that the last
term in (3.9) is C{f’o (x) andiso we may write (3.8) in the

s FoDm



\ Lo X e
(3.100 giutx) = qu ) = By} + B I+ de B ClG Ok
&) - B a
v He
+ Hk(-' e (An W)
a

We consider (%,10) under module and dominate the

teyrms in its right side in the folriowing ways: the first one

Erovony

=

®

5]

by (B} 4~2§ (see 3.7), the two following ones by

(gee 2,10) and becauvse Xr =B a.s., the lastcone is domina~

ted by A2 r!& e(B) /(1 = ¢c(B)) (8ee (35.5)).
" Proof of theorem 2.4 (i)

We shall first prove that.for sufficiently large n

T Lz _ i s a

3

To this end we consider B such that c(B)gQ»l/Z

. ; T e -y
and by lemna 2.3, we ge?b “ unﬁl§§l + 6 {1p‘+ Z&n o+ r%JB) + 2
which for sufficiently large n “is less thanh 4, We write
now
L]
(Hele) “'{((f& ) ) 2 '-:""“(5) e“E’(Kfu—u_ K?)d Af‘l) o
o wd [
o g' = [XJX d ﬁ
o}
The first term in the right side of (3.12) is
equal to
: O
i KF By B n o0
235(& \Lso.hs)<21”‘x(sun\3’_ g

<c’ d ( \(li O).L/g T Wu
which by (3,2) is dominated by
TR Y R T | :
ECT e Gb



We dominate vhe second term in the right side

of (Fl2) by é&n" ﬁ Anw H o \‘{: isi;l:ﬂ@;w “2 <Aﬂ‘~< 1) and sc

e o wan i}, 2 = e § S e . : o 4
we get |\ 7 el J‘flcmm i 2 which yields (3.1L1).

Now we may apply Lemma 2.3, Lo get 1im{§unf-ui}m 0

n
5 o e n ; 4 f
(with u, associlated to 4~ and u associated to L by -
~ ‘ T K i, . - "“"’Il = ;
(2.1)), and then TMmﬁw1&2.bogm:]Jma2@.?L,zOn

n .
The point (ii) of Theorem 2.4, is immedisgte.

S [E—

+ I\

where K is an universal comnstant. Thus, by our assumptions

£

= e
ik c(an) + l:Cﬁn})

p e MENC R

¢hebyshevts inequality and a Borel Cantelll argument yields :

e b AL =
lim sup |E; - Lﬁ{ = 0 Byl
G '

‘

4, Approximabion by continuous additive functionals

a. A general result

Ye are in the conbtext defined in section Z.a, and
aasune thab

(4.1) bl-f—%ama(l - -‘310&0:)) (fb(a)) ;_Q

Let us consider a family Cée , E~»0) of C.A.F's

[ors)
: -8 5 ,€ P o] K e
a :3&(806 d AS ) and ugfx)m & ;(A@Q,

The following theorem igian immediale consequence

of Theorem 2.4, and Corollary-2.5.

——— .

Theorem 4,1, Assume that (4.1) holds and u &z <eo= for every

E»O.

(i) If 1 im dCeupp L€ , 8) = 0 then
&0



= Th

such that

Ay -such that

Lim & (a0l 3® 1 o0
g0 e
(ii) If we choose g, >0
. 8 u%p L5n ) < o= then
1a-m SUD ‘ C!E{ ?? Lo -LL'L f’
g=20 e
We consider now & C.A.F.
a &G supp A and put Sg= {}. i d(a,x) €Y

: P
Cr; = SUp ‘i-s

O(Sae 3

Cf’a‘(:'fc) ?X(a) :
e &
X E ‘*-
{SEL ) dA ) and Ay

-]

-

The following Cuibila¢y

X ésaﬁ},

o

e
o § (Xm

is an 1mmed1aue CONS8~=

guence of Theorem 4,1,:
Lorollary 4,2, We assume that (4,1):holds and u, Lo
% oS
Ci)-Zf ljxncza a0 - then 11 m'dg(A?,'i)
E-»0 : ol 1) :
5 G - i3 i
i) 18 zww = < oo thgn Lim SUP IAU &
£-»0 ¢
8.8
be Approximation by local times

X

We assume that every

of the point a is regular and denote b
4

in x with the usual normalisation

v T S }?:
b'( Soe dLSD:::l

Proposition 4,3, Assume that (4.L)

Then lim d?(z

Xu,.%a ;
4 s (ol & 5
Proof, Pat &, = B3( ), o7% au¥
iy o
X ~»a, By Theorem 4,1, 1im d, (a
| e

Lemma is proved.

S A
s AR

in a neighbourhood

holds,

C? (a) =+ 1 as

X
X; 120 = 0 %hus B

L

‘Cco Occupation time, area and residual ares

et us put

i

e i Sa
L™ the local Timeh:




t ‘ L el

g L ; il '
by = ), Ag B )dm 8= B () P Al
L 1) . & ~
i3
542
€ a . < : A T
iy = o Q%f\ub\na)dﬁ m, = Za(g e dm&A)
Z Ja & o S
e
OO .l n 5*"3” i e
0 = Sad(l.ﬁ,a) Ao (X e n_ = B S Fogne
""”‘g Lo ; o)
e e ol B w & ‘esm bl and Y : )
(clearly Ap, Mg, N <eo for < ee and ag, m., D oo

A is “he wellknown occupation time, M is the "residual area”

(which was introduced in cection 9 in Fristéd and Taylor /3/)

and N is the "arvea" (the intuitive interpretation of - M

and N are immediate from a picture).
3 € ¢ 'E". T %:- ¥ A £ . 3
4, M7 dand [ are C.,A.F's with the support
|

imcinded in S,v and so the following proposition is an im-

o3

mediate consequence of Theorem #.l.

Proposition 4.4, Assume that (4.1) holds.

(1) lim d.(a "f‘j‘;"‘- T) = 0 (the same for M and N)
g% ;
&3 :
e 4 rq ﬁ"og =
(il e ) e 419@ then lim sup \a‘{ N I;} = 0
N &'m n t <, t :

8.8, (the same for M -and W)

5. Downcrossings

We are in tnﬂ-genernl context defined in section

2.a, and assume that (4.1) holds. By the obvious.inequality

?;(y) b Cfx(a) 1)a<y) we geb

(5.1) 1in - @ () ¢ ()

Ly =g &

We give now a general model of "downcrossings".

Let us congider a sysvesar Ml, cens mp of disjoint
closed subsets of B and denote N; = %;{ mj and
N = L?j Mj. For this system Qf sets we ée%ine the following

sequence of stopping times:
q L 2



e

P
sl :

B oo (y;o )iy + oo ./ (X,)
d=d mi AL N

1 PON LB T s i o

10 P J—I\-\]— fld K’}'l = .-k: (L Q{;}l{

Since X 18 quasi-left~continuous

8.8, We may conclude that: sup L. = oo ., We

: : .
:
el B e k)
13

and we shall need that
(5.3) , 0Lb < &=
% (‘!‘\
,.‘Sinc@ b :%'E (e Wy for x €N,

if d(N, a) is small enough,

and xf(’
put
b (5.l

To get the other inecuality we write
& 1 J

thus a sufficient condition in order that b

e S
(5.4) sup B(e 1) &1
¥ el

b0

o R

To get (5.4) one has to assume that one of the

following two conditions holds for N:

b card N X o=
{5:6) luLm

LY

() (*’)) = Tor
TaeT |

s

Ty ESN

Since W“(e l) <1 for every x€ N, under {5:5)

ulearly (; 4)-YHolds,

To prove that under (5.6), (5.4) holds it will " "w

suffice To prove that

B i e T e aiiidE des
X 6*31‘.'1"1‘ ;



o e .;." 2
(6.8) - H(a » Jomw B (n

e

Lfi (5.7) 1 false we ey fdnde iy o 3 2
wLM 5 -

5
steh that . B Ble - H)ie 1 g8 Neses o BEewribe

S L o
K = o
o, TN; = TXM)m (e L) 4+
X ¥ .
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faa
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m
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(5e9) " (s He M yem
Nl> e 5
-z
e 0 \
> (Z}&'/ R :::? (@ ?*r ("{f >9 i’Ll\ rpv' >>

we . get EX(

| x o
s
T
i “iIL
Haine (5.8, (5 9) and 1lim E n.(e l) = 1
"".1 l .Ll
e =-d  which is contradictory.

We go on and present our construction:-

Tl . 6 M :
-1
At = b ) Bt k
g 7
We note that AC.: 2. bp - T8 <0

clear Lhat

fice that
(270 ) Ts

lities

= ¢
We shall now study the parameters of A Lllade

By,

D K1
To get the same inequality for it will et
< co ; $

Hﬁo { < 1/b tor every stopping time S (
(]

prove thig we congider the followlng two possil

= —t
——

(a) T, & 8 < and (D) & 1\1

il

(b3 T Ciiy S8 <y and XM &,
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in . the first cage S 4 ‘.‘L‘O o®@un = 8 and

£
g+ Do = for- pe 1. and 8o
p 3 pik - 5

1 o=k, ! - (8+T &) :
Flo = b (o e P i 8 3 : Lat

{ o ity | £

» o e W e
s S p > k: Lo, ) .L/I)

Pl

In the second cage 8 + TDQGQCgm o for

I‘”‘?

DK+ 1

Pp >0 and so g = 0. So we may conclude that

e .
F< 1/b
Since. X(T,\) &N a.s., r(N) = 0, In order %o
09
: 7 =) e , : St
evaluate Z& and lﬁ we shall need en evaluvation of 1/b,

For this purpose let us consgider "xeﬁml, ngmg and define

m i a0
1 + T o & m

z. - -
By =8l and B, 5 = S + 80 ¢ gor kS0l
Obviously 8 },TK and so
€210 & }/“}:k ?Ia'(emgk) & C)O}{,C:a.)/(l —- C[),(;y) C]O y(X))

Let us consider now for every n & N'-a finite

aE s} e o s 2 e
sistem M., ..., M  for wnich (5.5) or (5.6) holds and
B ol

1 : ; :
A™. the gsociated inereasing processes,

Theorem 5,1, Assume that (4.1) holds

(1) If lim a(¥,, a) = O then 1lim d,(E%, T) = 0

o 8
n “ n
Caiy i f "ﬁ:nc(ﬁn)<:®o then lim sup fﬁ? m’Et) =0 a8,
: : : : neih = : :

ool by (B0 and eVl Tin dti el =0 implies that
: nie

o P——

; A > N > % : :

lim /N o= l@m,( o = 1im C(Nn> = 0 %hus (i) is a consequence
n ' n n '

of Theorem 2.4, (i). For sufficiently large n, s < 2c(N,)

thus (ii) is a consequence of dorellery 2.5,
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Remark, For the system of sets §x,

ﬁ%vgy%ﬂi‘with X, = 8
we gebt a generaslisation of (1.9) in Getoor /4/, and for %he
system ( € :XE,), e we get the limit theorem sta-
ted in the same work in the low part of p.% (only the 5
convergence)., For the systenm %Xﬁ%% %af% we get Corollary 6.D.
i Tristed and Tavlor f3/.
Remark, Another model of downcroésings'may be the following:
considexr the system of sets Ml, i MP and assume Tthat B
increases with ore after X has visited Hl, Boy eeey MP
in this precise order, The evaluation of b changes in

b 2 j"x(a%“(l - C)G:{l(xz‘;) (fxg(}cf)) ihj‘?'xpwl(yp)\

where x, €& M. are fixed peints. Proofs go like above,

6. The liausdorff Besicovitch dimension

Wé are in the general counbext defined in section
Z.asand we assume +Ha+ the point a i3 instanbaneous. Ve
shall give a theorem of convergence to the local time which
vields the same inequality for the Hausdorff Besicovitch
diménéion A tffw) = S 5 Xt(ag) = a} g 2.5. 18 Tto
and Mc Keen /7/. We do not cons1&ﬂ. the same model as-there
because an evaluation of fﬁ’ sould be very difficult,

For a fized E£20 we define

TE = €4+ 'i‘.aﬁ @24
wao .@ﬁ %wl“T§+qk°8Tf for k=0

. -SEhoe X(Ti) = a @a.,8., 8 simple calculation

shows that

-

We define nows:

L4

- T
S D= Q-2 )
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W e T
s -
‘ i £ “E
_bam 1 - B (e Jom liwe g:(?%(ig)}
‘ & WX e
A%,: bg'Bt and tla(X) = ﬁY(‘i¢>

It is clear that ue(a a) = 1  and U Lo,

Since X . = a a.s., Y;({a})

Qr\

« &t 18 alsoclear thak

Tﬁ
A ; & = .
/ ‘ i * ) :' Fy { v 3 i i = & %] i il ts -
e {fLE and for {8 §;,,1)€ see The deteministic cal

culation in the appendix at the end of thig section.

Theorem 6.1, If a is an instaneous point, then

(i) l 1 Qa(.xip L)
£~+0
: s & b 1
(ii) %;»?) sup ZA§‘~ Lt{’z’O Ga 8.
E-80 %

Proof, Since ﬂf is 1 -~ excessive, E"*Cfﬁ(Xii)’iS
fetd
a.most. sure right continuous on the trajectories thus

demy b S O
&% '

and so Theorem 2.4. implies (i).
To prove (ii) we shall first prove that g —= be
ie continuous. The right COHu:ﬂdTQY follows from the above

mentioned argument and to prove the left continuiby it will

suffice to show that T - T = T_ . The .inequality

6}
<<§' E. EO

it g'TG 1ls immediate and it is also clear that T 2E ;e
» :

i

If T g, by the quasi-left-continuity ¥p = lim Z, a
S : & ;fﬂ f.

and so T :;Ké_ o TR R o f{o the same arwument &hOWu that
< (%

.

e P thiis 351 ot e o o PP e
X:8@ = a ‘thus, since, a is regular, Leg = E:O +1Tag§%§:eg;

w2
and the proof is complete,
Now we may choose €, > 0,n &N such that

bl = 1/nd° By Coxollary 4,5,
=



é\/ o
: : oilep) 0w '
(6.1) Lim sup i 4. r by % = 0 8.8,
4 v :

DL
g o e
e ! e o ik
b B~ BB B B
L J«,;gv.. d e
511»:'1 - ré e = Byt
thus, since 1lim b, /g = 1, (B,1) dmplies (i1),
n n+l  “n .

Corollary 642, 1L from some 3} 0

€ ~»0

lim sup E:J*/é /(L - Wc’ a(T (‘rg’))) c L oo
then the Hausdorff Besicovitch dimension of

/\ (lw) = {’i: v X (s al}g is almost sure greater
then é
brood, Consider k. defined by - %

; inec th t < Tkﬁl

I £ =1 \
y m ) b= fd 3 e 5 iy i /;4'
LN.J k & kf - Ly l.k + ;..,,J ig-a closed covering of {( -t
with intervals of length & -

lim sup Z:

(m}r e ) ”"1*— l—fé o

e Lo Lt ~iz =
= lim sup Sﬁfé Bf;: gc_lim sup bﬁ.?ﬁfz Lt{ oo g,s8.
=0 & eip
Appendix 5
e m‘? .
In order to prove that TE .g' 3 bE (used in

the proof of Theorem 6.1) wa'fl give a deterministic calcu-~
labtion which clearly implies The above.ineguaiity (see
Lemma 6,3%), A | | '

Consider A&GR_-which is assumed to be left
closed (Xn «Li?, xﬂ' A x:;;: wuE A), Tor a fixed & >0 we
define

D = j_n:fgu)t A MYCE, u) # Z}



The following simple proprierties of D will
be usefull:
= M2 S &y A i
(i)l et m} D, &b, (i1) t LDy,

a and a A 1lmplies by & 2,

We also define

T =0 it
i . a

1 S
Kl Dy

£4 )
Do or kg O
: g :
(we mention that T * in the definition of "B~ are equal
to T, definmed with respect to { % : X, = a} ).

: o > S ® o
We consider now a fixed t& 1T Tp+13 and de-—
i :

:p!
fine
Soasat an S, 2 Do a nie ik 0
2o s k+1 € 2
£
(we wentiom that t + T, e €, = 5.
We pulb
kK = dinffx ¢ T T ek
0 e K+ p+l > k+p 2&]
{
= o if the above sebt is void
It is easy to check that
R » T 2E& Tor- G
(a) ke +p+l > k +D ok for k, <

(®) Es‘kéfmm«k’ Tp«ﬂwlj for oveny. & e

AN e o G s o ol :
() If 8 =T, .y, than §, for k ¥k,

e
k:o Pk e ‘Lp+k.+l
(0) Tf B F Ty arythen B =0 . for k Jk end

soafr on «wfg

g i PRL

We are now able to state our lemma:
=0

- Tl e e z -3
Lemma ©,%., If o= 2. @ & and P = F 8 -

then




SR, .,,Jjgl .
(6.3 [fé%m Aim e - )w 4; 2
g k gp-1

Proof. Clearly (6.2) follows from (6.3)., To prove (6.3) .

QORIn—

4 ]

ve note first that Tk? bkf@ k€ and so we may change
the order in the above sums. Consider first that RO<§$0

, Then, by (d) the term in Lthe left side
0 0 .

e <® Ie
gas q.:z.: l{o

A
!
i
o
i
yor"'
e
(6]
Lo
P
A
f-..J
P
0]
ko
+

%} ¢ r{\
- = ; e L
o ) P+l [ Tp4k
< il M m . s )
S o e k. n e Ol - e i
: K <k Pkl P‘%“Ki - B g
2 < kg
EX ,
sy -~k & o . ’
e s = oz /(1 - e &2
& Eal =
k=0
(le&.‘ sma Ll 5:),,
Itk and T = 8 analogue
If = <ee and Lp+x 1 wko an analogu
argument works, and if ko = oo the argument holds with

the- sums over ko Hill oo

7. Bxcursions

[}

Through-this section we shall sbtudy a model of

increasing processes cons tructed in terms of excursions from
the point @, This model was concéived in Fristed and Taylor
/%5/., Although thaflanguage is those of excursions we are nob

essentialy related with results in the theory of Poisson

]

a and b we do nobt use

t

point processes, So in sections
them,“but to gel a nicer form Tor our theorems, in sections ¢
we use such results (presented in Ito /7/ and Fristed and

Taylor /5/). In section d .we deal with counting construc-

)

oug which may be regarded as a particular form of the ex—

,4.

.
v.



cursign Lle\l’

are presented in Fristed and Taylor /)/ but we have already
£

L O SO o Py 4~ e
presented them in the other se

a., Congbruction
W
PR 2

S
2.2, and asaure

o

. (other pogsible

P LR by 5
are in tlhe gen

that the point & is instantaneous.

the set /X?(Qa) 25?@ >0

is a counbable

with W = ¢

such an interval exists) and

Tox

©

o
<
n
i
(s
M
<
@

we define:

%{t(&é)

and note that

union of open intervals

poid X(t o .‘;ij“
= -8

and ';‘L’J"' g /?)

/

shall ignere the first

and measurable

)

H
nM -
@

f\ Uw
e

s e
- iR agab b

b

iy e*"“"‘r(;"(@t(w)>

‘fo<@t@)>

excursion defi

it

Xt(ﬁo) = a’g is Qlosed9 Lz
(e (@), [%,(cu)_).,

“wPor such an intervel we define the excursion W by

- % ot
for t W

for B wt

3%,

fane o SRR

Y.( w)

oL

WS b
—— el
e e

epplications of %his.model
ctions of our paper).

11l context defined in section

terval (a{,/@ i
S50 we may assume

D [q “wt)“%’?

e e
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We denote

H
e §
o
it
[t
@
5
(’j’\
<
o
§
ed
2
i
2t

o = 3?”\ 35
+
£ i i
Sy "“F e u«“r
s g‘ e AC. =0 ¢ 4;z~ gn
£3 3 :
o) Wt
We shall pow study the parameters of B;
! el O o LSRRIy
Clearly, Bale) = 1 ‘and 4% b= E(supe ™" {0
i t
then
Py
Pz ‘ZX, < o/p°
To get
(?‘9) w‘;’B “9 .\/b
we write
e o= 13K(b““l (oo{}@ 8 0 (A ) =
; %y ?’t pliy) =

oy

Z = Q} : 4 pi‘f st
with W -~suchsthalt™ W

5?0 = ?Dt .

follows by Doob's

we usge an
maxima l ine

we

{a}) -

(B b+ i I
Since W 2; T

(7.4

Wo

and

s

A

for B, u,(a)

(7.5

G

et
LW
P

e are now dealing

and

and O<e< e and define

S le 3“::
L W b

and

€.

- e e SR
B)-b eV el P

(to get

d-(7el)s

quaiityé
get ‘

™ 8 n

dod 4y i( ) s O

with the parameters of

N/C

¢ = B tfo(@;))

GeBe

£()

the lost equality

The inequality (7.3)
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: o it
a - W
with © = E°(sup e o i (’T))

Since %; » & gg} v l Byl = Q}) g end by
(7.1)

pros G-“L e”‘*' ,‘(”‘) k-)}x ag Sq

Wa' concl uf* e that
(7.6) ety o2
inally, since W >T -

i e l ( o o .«\\’lr i B
(79172 TQ(S{”%) *' (/m ) - O

b. General results’

TLet us consider for every.. £ >0 a positive

; ' = .
and nc(,surabh function £, ¢ Df0,e=) —>» R and B,
the increasing processes assoclated to f«z’."’

™, ¥ 7 233
Theorem Y.ids

(1) We assume that 0 <D _€-< oo for every € >0,
5 x o §F T e - Cs 2
Then L in dg(‘h% L= D aff Ldm bf./ba =40
o W = el = ;
(ii) We asgssume that O < o < oo for every €50
(' M Ay

i : o f‘ < » »
Then 1lim 4, B al) =0 iff l:»_‘m /r“ =
&=» €20
Proof. It is an immediabte consequence of Theorem 2.4, and
(7@2> s (7@7)@
Theorem 7.2,

AnEE R ’<,.'ba < oo ':foj:* every € >0, then

e 2 : A
o aﬁ/b&"n :}.mplleu

(7eB) Ylim Si%plztm m”ﬂt[ = 0 jas,
n U : ;
(i) 1z 0< o, £°° for.gyery €30, then

L g
e Eﬁ/cﬁg implies that (7.8) holds for C =, n~» N,

o



D
3

Proof. It is an immediate consdquence of Corollary 2.5,
and ’r/ o= (7@7)0

.5 K. for evesy ‘£ 5o

OQorediary Vo5, 1f for some K. 0,

g
then
‘ e b L i : . g e
Gl be = 00 implies lim dg("’ L) =
el £-20
(i1l Gg = OO implies 1im 4, ( £y . 0

e-» 0 ' Fip O

Biroot,  1& 49 an immediate consequence of Theorsm 7.l.

Gogoldony .4, If g :’ﬁ'g increases when & decreases

and fE,Sx:‘ K for evely .o >0 (1{&21’{%‘) then

(i) 1l dm b e o inplies

7 : : s * ‘:.N %"ﬁ w‘?‘
(7.9) lim sup ] e ( = 0 - a.8.
gé: S ¥ JC

im co= oo implies that (7.9)-holds fior
(L

( C; €-»0).

Proof., Let us consider at first that ¢ —> bg- isconbi-

~nuous. Then we may choose *:p >0  such that h&l =
A
Since 5: g £ J Ty 2 <eo (7,8) holds for
n

& o }J
(8 ®, ne& .as).,

e cs . ¢ -
e o SO ® disn

T e e, P £ (N2
€ wgt €nl Wt

s il
€n+l W &b el

thus, since 1lim i /é C R e L) %o;us for (Bg e 0),
5 T . w P ——
If & ng is not continuous, the analysis ar-
gument of p.88 in Fristed andg Taylor /3/ works and we getb

(7:9)«
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The same proof works for (ii).
Cieoileny 1.5 Asgume That "€ —% A _ decreases when

increases and :f& L lon every
(L) <ot Do

then

bty 1 f g —»Cg is

'i:hen (7.9) holds for (GE9 @ —dea)

Proof. The 'arguments are simillar

but the analysis argument in

cont.d

ol

£ 0 (KEeR)., Then

puous and Limb

conbinuous and

. OO
e

g-» 0

Tim o, =po

e=p 0

those in Corollary /. te

FPristed and Taylor /3/ no longer

works in tGhis cas@f thus we have to preserve the condition
on the continuity of € =*b. € g c:é:).
¢, The connection with the charac seristic meafsm?e
Let us denote by ¥ the characteristic measure
of the excursion ;!.’mssbn péirr’; precess (Sce lto /‘ﬂ,) and
assume for a positive and measurab ble function £ : DEU,M)
--» R that
- b
(7.10) Ve
By Lemms 5.4, pg.84 in Fristed and Tayloz /3/
bt f
ars B B e T ey = n(e)(£m avim

]

)
T
W

W ) we getb

&y
(S — g
el

il(é?#)

&
<ok

Peld)

with . a constant indepe
’“b(*f}m\ﬂ 7 G :
4 ==e =
‘dam d;g(m sl
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I o o Ry i j_ y m
E s O

e e 2
Sig a3 /AL gfg ay)

ant of f

itf

=7y

iy
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Proof. The implication from left to right is a consequence
of Theorem %.5. p.85 in Fristed and Taylor /3/ (see_also
Lemma 2.2, pg.79 in-the same work and the remark afber
Lemna: 2,1 40 our work),

To get the: other implication we use (7.,1l) and
write :

b= h(4 ) st ay and
e s =W - C o aa DU
b = Esupe™®" 2m) € (I 2 =
= h(z)g fé ay

Thus the implication from right to left follows
from Theorem 7.1l. (i). : R

Theorem 7.7,

J

lim j‘e"'@

g—» 0

(R

dp/(i‘ ¢f£ d"};) implies

lim d2(.€?’, Eiatine g
. &0 ,
Treof, By (7.12)

& = n(q) e %t

5, € B e -2w" £2(M) = h(2) TFEE ayp

thus our assertion is an mmedmue consequence of Theoren

;7010 (lj-)“

d. Counting constructions
: " & e
J.:et us consider a messurable get 85 gi‘- D E ) 7

such that ‘)) ( gg) oo and define.

J& (b)= card %17;" W e 88’ ‘5!“.5\( L 'k

Coroliary 2,8, f 1 im v(;&?ﬁ) = 0 Ghen
e—» 0 =

Lim dg('))(g) Z)zO
e i :




= e

P inerencenian € decreases

; W, i :
L Camptl Pl D) BRGSO
g ~»0 t l EA?‘ & ' l

Bmolof, It is parvieular case of Corollary 7.5. and 7.4.
Let us now take 638 = QW stifhes G S E}
We denote by n the Levy measure of the subordinator
x.--lr ¢ 3
§ ='L™" end N 3 card fs CuniNg, E"]
[(),,L']Xéfa <
We have:

e Y \.: / ’(E’w o
v<€> [o,ﬂxeé n(({ ))

: (oee 1461) /6/)
We define
i () = card g q W - e, WGt ]

and get a generalisation of /5/ pg«4% in lto and lic Keen /7/:

Corollary 7.9, If the point a is instanbtameous and

m o = n( €, ) then
lim 4, (m =0

. 2 E. .!'-:ig,

. -t e
1in sup l ~, (B —libll-= 0 ' "gis;
€20 % % s '
Proof. Since the point a is instantaneous, lim m_ =
: £ 0

= li‘% n{(€,e0))= 6= and Corollary 7.9. is a particular
g—p £ it : .

case of Corollary 7.8.
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