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AVALYTIC OPERATORS AND SPECTRAL DECOMPOSITIONS
P.~H.Vagilescu

1. INTRODUCTION

Let .K be a compact subset of ¢® and let us consider the
Frechet space A'(K) of all analytic functionals carried.by K.
(see, for instance, [9],Chapt.IX).It dis not necessarily true that
uEEA'(Kl)f\A'(KZ) implies uEEA{(Klr\KE} .However,if one takés
only compact subsets of R" (canonically embedded in ¢n),then
such an implicatiop is always true.Mareo?er,if Kl,...,Km are

P
arbitrary compact subsets of R"  and - K==K1kl...kJKm , then the
following decomposition holdsouy:i.

(1.1 KBy = A'(K1)+ coe HAY(K ) 0

This important result,which is a substitute fo; the existence of
partitions of unity in the thédry of hyperfunctions,has been’ i 0.
proved by Martineau [10](see also [16],[9]).
V Equation (1.1) sﬁggests the.following questioﬁ ¢+ 18 the
decomposition (1.1) a spectral decomposition ? In other words,
~if KCR" is a fixed compact set,is there any decomposable.
system of commuting linear operators cn A'(K) whose spectral
decompositions are described by (1.1) ? (We use, the terminology
from [20],but full details will be given in the next sections.)
To give an answer to this quéstion,an obvious czndidate is the
Bl ik b éystem of operators associated“with the multiplications by the:
‘ cerdinafe functions (see Theorem 5.3%).
Let us note from the very beginning that the generalatheory
of spectral decompositions of_commuting systems of linear:operators

———~—-——pn Fréchet spaces,as developed for instance in [20] , cannotrbe.



. directly applied.Iﬁdeed,if Ky » K, are conpact sets , K, <K,
then A'(Kl)CZA’(Kz) and the inclusion is ocﬁtinuous.ﬁeverthe-‘

less, the space A'(Kl) is not,in general,a'qlosed subspace

of A'(Kz} .This follows,roughly spesking,in the following way.

I¢ A'(Ky) were a closed subspace ofl'A'(KZ}.,then,by duality,:s

“the restriction mapping from the algebra oflgerms of ¢nalycic

functions in néighbourhoods of K2 into the~a1geﬁra of germs

of analytic functicns in neighbourhcods:. of Kl would be

surjective,and this fact is not always true.Since the theory

of spectral decompositions usually reguires that the ~‘involved" 7
subspaces be closed,the atove remark shows that it .is necessary.

to make some adjustments bte the general theory if one wants to

include this importan’ case.

'The aim of this paper is to anslyze the decomposition
theoremfor analytic functionals,more generally for analytic
operators (see Definition 2.1),from fhg point of view of the
theory of spectiral decompositions of commuting:systems of
linear operaiors.To this end,ﬁe need a few abstract results
concerning certain commuting systems-of linear operators in..
Frééhet spaces,which rwight be of interesit:.for their own sake.
Specifically,we work with  spettral capaéities more general
than the current ones,and therefore with a more general concept
of decomposability (see Definitions 4.1 and 4»2).We show that
‘ decomposéble systems'of.linear opeféﬁors (in this sense) stiil
have some of'fhe standard: properties (for insténée;the single
valued extension property).

The space of all analytic operators that are carried by a



real compact set K provides a universal extension (see Defini-
tion 3.4) with "good" spectral properties for all commuting
s&stems of linear operators (in:.a fixed Frébhet'space) whoée it
joint spectrum is contained in ..X . One of the consequences of

this fact will be presented in ithe last section.
2. ANALYTIC OPERATORS3

Let X° be an sroitrary (COQplex) Préchet gspace,whoge toﬁmlogy
is defined by the family of seminorms {"X“m}£j£ , x&X IE
Y is another Fré@bet space,we-denote by Z(X,Y) the space of
all iinear and continuous operators from X into Y .(The symbé&
&(X,Y) will have the same meaning for arﬁitrary topological
vector spaces;we write Q(X) for &L(X,X).) -

Let  A=A({") be the space of all entire analytic- functiéns .
on ¢n .endowed with its natural Fréchet spaceAstrmctura;The
analcgy with the case of énalytjc functionals-ieads to the
fcllowing :

2.1. DEFINITION. The elements of Z£(A,X) 'will. be called

: % S _ ;
~ analytic operators.If K< isca compact set,an analytic

operator u 1is said to be.carried by X 1if for every neighbour-
-hood@ V of K and each integer m2>21  there exists a constant

& 20 such that

m,V
(2.1) “u(f)ﬂm ‘Qcm,v llf]!v , fe4a ,
“where |Ifll =supf|f(z)] ; z&V} .We denote by xK(A,x)’ the setu]
of7alllana1ytic operators uEEsf(A,X) fﬁat are carried.by#:K ;
this is a Fréchet space whose topology is induced by the ecollection

of seminorms




(2.2) ﬂuum’v = sup {uu(f)ﬂm ; f<4A ., "fﬂvfgl.} Lot

vhere ™™ m'="] ;27%, ¥ . Jand * V" ‘rufe 'a (couﬁtableaﬂfundamenfal systen..
.of neighbourhoods of K (see[}Z]for a slightly less gencral
ooncept)when restricted to Fréchet spaces).

Let us note that if X=( ,then xY(A,X):A'(K).If Ky e

. . : ]
K? are compact subsets of ' ¢

: i . : g Far n -
vand the:inclusion is continuous.iy® KSR (more generally,if

, K, €K, ,then ‘;»‘Z;”KI('.A,X)CfK?(A,X}
"is polynomially convex),then éfK(A,X) is equal to-the space
<i?(A{K),X) ,where A(K) is the algebra of germs of analytic
functions in neighbourhoods of. K ,which is an inductive limit:
‘of Fréchet spaces.This follows from the density of A I ALK) éee
(see,for instance, [9)},Prop.9.1.2).

In this section we shall show that for each analytic.operator
that is cariiedvby a real compact set one can define an appropriate
conééﬁt of support.Morecver,a decomposition similar to (1.1) still
" holds.By using the already known scalir chse (as axpounded in [2]).
combined with some tensor product techniques,our'task will net
be too difficult.

For a fixed compact set Kc:Rn ,1et us denote by ﬁl.K the
open set Bn+l\\(K><{O}) .Let.?%(&lx) be”the space of .all
harmonic functions on .fl.K sendowed with its natural Frechet
spacé structure.If s'= (stn+1) is the variable of the space
Rp+l ,where szg(sl,.,.,sn)‘Ais the variable of R" ,then we
'define the subépacé'?%jﬁﬁzgi ‘as the set of.those'functions
he;e'(ﬂK) such that

‘(2.3) : h(s,—sn+1):: - h(s,$n+1) ry

Plainly, gfljjl is a closed subspace of Z (.

I{,».ﬁti, s K )

.We also e



define the subspace '&'ffO(QK) as the femily of those functions
héﬁfl(.(lx) such that

(2.4 lim h{g?)=0 ,

s 'l-—>ea |
whe\re ||s'l12-— |s ]2+~ + |s |2 The space H (£..) has a
5 o 1 ° e @ kI;““l . (=38 4’ O K % 5

Fre/chet'space structure (the uniform convergence on compact
subsets o K and on the sets of the form {S'E"JRIWI ; «ll--?»’u:%r}
for large r=20).

Let us consider the function

-], T e | ;
25 P(e') = 8 .1 %1 I si sl e,
+1

vhere C ol is the area of the unit sphere din- . .

2,2. THEOREM [97] . There exists a linear and continuous

" mapping A"(K)Bu—ahue;}’fo(ﬂy) given by the equality

(2:6) hu(s'):: wo(®(s!=(z0)) 5 8'ELhy

K

Z

“"‘Gonversely, to every hégfl(ﬂK) there corresponds a

unigue ueA'(K, such that

(2.7) w(2e/os)|s ool = = | BleABe)(a0) a8’
oo , n+l -
where e'@:cgo(mnﬂ) , =1 1in a neighbourhood of KX {Oksag is
any harmonic function in ki and A is the Laplace operator.

1

: s T n+ : .
The function h -~ h. - is harmonic in R .and it vanishes
Sl “ 5

identically if and only if hé?}fo(:lx) .
Details concerning the préof of this statement can be found
in [9];Propositions 9.1.3 and 9.1.5. )
v 2;§} .REMARKj The spaces A;(K) . ?Ko(llK) R ?ZI(ILK) and
?C(jlxiﬁfare nuclear.Indeed, the fact that A'(X) and ?f(SlK)
are nuclear is well known-(see [16] and resp. [11]).The épace

?fl(_Q_K) is nuclear as a closed subspace of Z () .



Since (2.6) is a Fréchet space isomorphism,the space Efo(glK)
is also nuclear.in-particular,if F is-any of the above spaces,
then the compleiion of the algebraic tensor product - F ® X' with
respect to either the injective topology or witn the rrojective
one is the same,and it will be denoted by F & x .

Let ﬁf(le,X) be the Fré&het space - of all X--valued
harxonic functions in.JﬂLK .We denote by l?fc(ﬁlgyx) (ﬁfg(flK;X))
the subspace of those funetions nf'afL(‘K,A) chat satisfy (2{3)

and {2.4) (resp.(2.3)).

2.4. LEMMA. We have the foliowing iden*ifications :

X Q0 = T8 ,
(2:8)  HyQ0 =X 008  (j=0,1) -

S(AK),X) = &' (K)BX . w«),

Proof. According to [7},Theorem I1I.%. 13,if: oF (8)inds &
nuclear Fréchet space of 'scalar functiong Qefined on the set. .S ,
whose topology is stronger:then the pointwise ccenvergence, then
we Lave the identification

(2.9) F(s)BX = ftis—x 5 xoTeF(s) , xex }
where X' 1is the:strong dual of ﬁ . The equa}ities 8?(£1K,X)==
x}f(ﬂK)@X and ?fl(ﬁK,X)"—‘—' ?fl(.CZK)GE)X are simple consequences
of (2.9). |

Let us prove the equality @7 LCLK,X)"gf LEL 3A X .From
w2 9y it follows that '3{ (L )@XD?}’{ (.Q.K,X) Conversely,we
con31der the locally compact space S=.Q \J{ 3 ywith its " f%@
‘natural topology (the neighbourhoods of ©© are the sets {“sﬂ;)-r}
for large r>0).If C(S,X) is the space of all X-valued

contlnuous functlons on 8 ,then we have



H (B X <o(5,0)8, X =c(8,%)

(see [2],8ection 1.3),where ‘6"“designates thebinjective tensor
product.In particular,the functions from ﬁfoLfLK)éiX have a.
limit at infinity,which must be null by (2.5).
Let us obtain the last equality from (2,8).The space: A'(X)
is precisely the dual of A(K) [16].Therefdre, A'(X) can be
‘regarded as a space of functions on the set S =A(K),andsits
\\\\E—\*\““\\\igpolagy is stronger than the poingwise convergence.From (2.9)
we then deduce that A‘(K)égxfinﬁ A(K),X) .Conversely,if u
- belongs to A'(K)®X,then we fix a seminorm Hxﬁm on: ¢¥y- and an
neighbourhood: Neiof sk IL Xm is the normed space thgt,is
associated with the seminorm | x| ~and j :X—=X  is the
canonical mapping,we derive from (2.9) that

sup {] xtej ou(f)| ; f€4A , ”f”v<l} < oo

for each x'EEXé .By the uniform boundedness principle-(applied ..
on the Banach space X&),there exists a constant C_ VJ>O such

5 L,
that (2.1) is fulfilled.Hence u&€ L(A(K);X).

We can now give the vector version of Theorem 2.2.

2.5. THEOREM. There exists a linear and continuous mapping

L(A(K),X)Du—>h EF(€2,,X) that is given by (2.6)

“*Eonversely, to every hEEE%HLCLKQX) there corresponds a

unique u&£(A(K),X) such that (2.7) holds.The function h - h,

n+l

is harmonic in R ‘and it vanishes identically if andsonly if

i. e\. y
he# (2 ,.X) .
Proof. Theorem 2.2 provides.the exact sequence of nuclear
Fréchet spaces

_.‘;50¢—+>g{l(mp+l)_£;ﬂ.?gl(sz).ﬁ;é.A.(K)__ﬁbo S



where § is the restriction and M is the mapping (2.7),which
is continuous (see the proof of Proposition 9.1.5 from [9]).
In virtue of (2.8) and [2],Section 3.3,the sequence

0— 7 (&, x) S8 % (0, 1) 220 L(AK) ,X)—>0

is also sxect.Let X Dbe the mappiﬁg_ngé)zin the scalar case.

- Then X is an isomorphisms of A'(K) onto Efo(llK) fby Theorerr 1
2.2.Hence the mapping x,é51 is-aﬁ isomerphism of ;f(A(R),X)
dnt0~iﬁfo(flx,x),by (QaS} and [2] ;Sinée Al?foiéix} is,ﬁbﬁ;ﬁ,///-"f”*/¥;/
inverse of X ,and ’X,@l 5 ?\.@l are the vector versions of

(2.6) and {2.7),our assertions hold.

. From thig technical result,we obtain (as in [9]) the ex-

istence of the support for analytic operators that are carried by

real compact‘sets (see {12] for a-different ‘approach).

2.6. THEOREM. Let %RH(A,#}C),b_e,-the.set, of &ll analytic

) ' e : n
operators that are carried by compact sets in [R: .For every

“bﬁéééfﬂn(A,X) there exists = smallest compact set <r(u)CImn

such that 1u5§€6(u)(A,X) .One has o{n)=¢g if and only if u=0.

The set .o (u) will be called the support of wu .

The proof is similar to that of Theorem 9.1.6 fromu[9] »80
that we omit it,(The only difference is that one uses Theorem 2.5
instead of Theorem 2.2.) We just note that if s{u)=¢ ,then hu‘
is harmonic in Bn+l and bounded.Therefore hu==o y80 that u=0.
In other words,one has ;fﬁ(A,X)IZO for every.Frébhet'spgce ,X &

From this theorem we also derive the equality ‘so

(2.10) - a‘gK('A,X)"::{uE_“*Q‘,KRn(A,X) —s(uj<x]} ,

for each Kc<R" .

2.7. THEOREM. Let 'K ..gKm be "arbitrary compact subsets

4 gl




in R and let K be their union.Then we have the decomposition

el (i) £ £K1(A,X')+ ...+£K (A,X)
m

Proof. It is sufficient to prove the assertion for m=2 .

The general case then follows by induction.Note that the mapping

St UL, E AT (K)

A’(Kl)@fx'(KZ)B‘ul@u 1 5

e

is surjective,by (1.1).Using (2.8),ve obtain that the mapping -
P

Kl

(4,8 L, (5,X)Pu,@n,~>u) +u,E Ly (A X)
2

is al;o surjective [2],and thoAproof is complete.

Theorems 2.6 and 2.7 provide a wider range of examples for
our spectral theory.In addition,they will effectively be used
in connection with other aspects of our work.

Finally,let us remark that for a suitably defined concept
of vector-valued hyperfunction (as”an element éf the guobient, .

Ls(aX) /L5y

derive from Theorems 2.6 and 2.7 other more specific. conse-

(A,X) ,where UeR® is a bounded open'set) one can..

quences,as in [9].Chapter IX . . /
3. ANALYTIC FUNCTIONAL CALCULUS

We need soﬁe facts cogcerning the»analytic functional
calculus for commuting systems' . of linear operators on Fré%het
spaces [20](see also [17],[18], [19], 3], [141).

Let 0‘:(63).,.,5h) be a system of indeterminates.If L

"is_a linear space,we denote by AP[s,1] the space of all
hoﬁogeneous I-valued exterior forms of degree p. c 1 Ape—

Syyerer & (O pgn).If o= @xl,...ﬁxn) is a systenm of»yommuting

endomorphlgms of L ,then we can consider the Koszul COMplex

B e Foh 32‘
K(L,x) : 0— NNo, L] —>>... —> AwLyao




o] Qom

where é"f’}“ o<1® Tyt et x @G /\f for a1l . f&e/Nl,1]=
:;I,Q@l&?@r,¢] .The cohomology spaces of. the Koszul complex
K(L,*) will be dencted by KP(L,x) (0<p¥na).

The system of endomorphisms o« is said to be nonzingular

(or singular) on L if the cohomology of the complex K(I,x)
ig trivial {(or non-trivial).
) 4 .
How,let X be a Frechet space.We shall work with regular

2zl 5 Mekinpie: Vil

. .commuting systems of operators .aﬁ=(a19,,,,a Y

commuting n-tuples of operaters whose spectrum & (a_.,X) (in the -

4

sense of [22]) is a compact subset of ¢ for all j=1,... 2.

The joint spectrum of the regular commuting system

a::(al,..;;an)czgﬁ(x) is the complement in ¢n of the set of
those points wéi@n for which there exiets an open polydisc.
D=w. such thal the system S is nonsingular on A(D,X) ,where

o(a(z,):: (zl-al,...,zn—a.n) y z:(zl,..,,zh)é’.@n

and A(U,X) is the space of all X~va1uéd analytic functicas
in the open set UCE" .ve note that this definition of the joint
spectrum in Fréchet spaces is equivalent-to that from [20](or [13})
via some sheaf theory argunents (see the nroof of Theorem 1.2
from [4]).

For every regular commutingvsystem a::(al,a..,an)C:;f(X)
there exists a unital algebra homomorphism

(3.1)  4((a,X))2f—>1(a) € £(X)
suéhfthat /Mj<a)::éi~,where /Mj(z)zzzj are the C§ordinate
functions and 6{a,X) is the joint spectrum of the system a .
In addition,for every integer m21 and each m-tuple

f=(fl,...,

fm)c:AGr(a,X)) one has : P



~functional calculus of the regular commuting system ~a::(al,...,a

(3:2) - = (Ela)X) = & (a,2))
where 'f(a)z.(fl(a),...,fm(a))
The mapping (2.1) is continuous in the following senses= .-
The bilinear mapping

(C) Ao (a, X) )X X3(L,x) — (a)x&EX

B

ie continuous;in other words, for every integer m-=21 and each,

neighbourhood V of o (&,X) there are a constant C=Cys 20
117 ¥

and an integer m'>1 such that ‘Hf(a)x” &L

N 1f %*\* ”}; Hmv

(This property of continuity follows,from instance,from [20],

n

Proposition ITI.8%13.)
The homomorphism (3.1) with the properties (3.2) {the!

"spectral mapping theorem") and (C) is called the analytic

=)

Moreover, the 'analytic funciional calculus is uniquely-determined.
by these properties,as shown in [15].(There are at least two

ways.to construct the analytic functional calculus,originating

.in [18] and [19],but they lead to the same homomorphism [15].)

“The set & (a;X) .is.not necessarily the minimal”casrier of .

the  analytic functional calculus.It follows from [4] and [5] that

- there exist a Banach space X and a commuting system

a= (al,.'..,an)c;;{(x) (n>2) such that the analytic functional

‘ealculus naturally extends to a continuocus homomorphism of A(K)

into £(X) ,where K 1is a proper subset of 05 (B gL )
3;1.  PROBLEM. TLet K bve a family of compact subsets of
¢n and:slet {Kj}jeJC:gZ have the following property: For every

jEJ there exists a unital algebra homomorphism uj:A(Kj)—ﬁﬁf(X)

satisfying (C) (written for uj)*such that uj,(f)::uj"(f)

for alks f&A and j',j”&J .Find conditions on H  which



ihsure the existence of an algebrs homomorphism W A(K) —> LX) cornin
satisfying (C) (written for wu) such that uIA(Kj)zzuj for
all jEEJh,where K is the intersection.of the family {Kj}jEJ“;
for every such a family {Kj?jsJ in 36 .

v X is the family of all compact subsets of % ,ther-
the answer to Problem 3.1 is négativé,as~shown by an example due
to M.Putinar (with whom the author had many discussicns on tne 9

subject).Namely,congider the compact sets in 32

f 2 re )
o {(zl,zz) ; 1/2gmaxilzl,lz,15€2}). ,

}{2“;{(21,22) ;2= 2, |zl!\§l}
We define the+character v =£{e)” on*beth A(Kl) (where it
makes sense by canonical extension) and *A(KZ) sbut- we do not
have uéEA'(KlrSKZ) 2
We think that an exhaustive.tréatment“ofuProblem 3.1 (or
rather a version of it) should take'into consi&eration compact
'suﬁsets in Steig manifclds. ' '

320 PROPOSITION. The family A of all compact ‘subsets |

of R ~ provides a soluticon to Problem 3.1.

e

: ; = : /
Proof. Since &Z(X) is not,in general,a Fréchet space,

the -assertion is not a direct consequence of Theorem 2.6...
We shall constantly use- the dengity of " A in ' A(X) ,as
well as the fact that the vector version of (2.6) is an isomoprhism
(Theorem 2.5). .
For every x&€X we define the mapping. uj%&f}=fuj(f)x -
feA .From the assumed continuity of. uj}s~7i ~follows that
, ujxézjf(A(Kj),X) for each x‘.Sinceﬁthafmembers of the family

{uj}j agree on A ,there exists u &(A(K),X) which extends



e

every . ,on account of Theorem 2.6&Moreover,~u£(f) makes
sense for every f&A(K) and the. mapping fe>u (f) Leserveprs
continuous on A(K) for each x€X .We want to show that the
mapping u(f)x==ux(f) (x€X) 1is linear and continuous for. each.
feA(K) ,and that the assignment (f,x)—u(f)x of A(K)XX
inbto X “is conbtinuous.:

‘Let hj & ;’fo(.o.Kj
given by (2.6) for ujx- and u, srespectively.Then we have s

o 55) hXG?"L'O(J‘LK,X) be the funetions

hy(s')::hjx{s') whenever s'é_ﬂy_ .In particular,the mapping
A .J

k-ﬁ>hx is linear,so that the mapping X —=>u, is linear.

Let us deal with the contiﬁuity of the mapping (f,zse)—=u(f)x.
Let L “be a compact subset of ;ClK.Therefore LN(kx {o])=¢ , -
-and we, can find a finite family Sp= ijx{o} (p"-;,l':’,...,v) such
that LS N ...NS =@ .It follows easily that we have a '
decomposition L= I"lu .+«.UL, such that each Lp ig compact

and L NS =¢ .If s'€L  then h (s')= hjpx(s') -Consequently

sﬁp“ ”h (s') <. anax sup h. ol ]
s'E1 X ”m \1€p$v S'ELP n JPX "m

tfor every integer m2» 1 .Using this estimate and the isomorphism
(2.6),we deduce that for every integer m» 1. and each neighbour-
hood..V of K there are integers mp>/1 yneighbourhoods Vp

of Kj (p=1yvovy)-and-a constant —€ >0~ such that
p .

“#x'im,\l" ¢ 12;29 ﬁugpx”m s V ‘

From thei assumed continuity of the assignments (f,x)—-—»uj(f)x
from- #&;(KJ)XX into X j;wesdnfer the existence of some integers

mi))l and constants Cp}O guch that if €A ,then™ .=



[EIES IR LN P

lcea
< e s | ap gty
Yepev e g1 - dp PME S
s

< C( max "&C |f¥| )“f" 2

From this calculation we deduce that u(f) & £(X) for each

feA(K) and that the mapping - (f,x)—>u(f)x is:continuous.
Finally,tﬁe fact that u is an algebra hngéorphism

follows from the corresponding property of u restricted to.. A ,

the above continuity and the density of:.A in A(K)

We shail present another connection.between the analytic
functional éalculus and analytic operators.Let us note that. .-
the Spacé gék(ﬁ,x) (KCZ¢n a pompact,set) is both an Z(X)-module:
and an Afmsdule)in a natural way.In.particular;the sysivem of

the coordinate functions ./Azgﬁla,;., induces inlvﬁgi(A,x) o E558

&)

‘a (commuting) system of multiplication operatorsg,also denoted::

by = 9“1""Dﬂn) .« Ew =z

3.3. PROPOSITION. Let K<(" be:a compact subset .Ther

for every regular commuting system a::(al,...,an)c:;f(x) with

o{a,X)cK the space X can be identified with a closed subspace

X of X

¢ & K

(A,X) , which has a natural ‘A-module structure.

Moreover,in this identification,the commuting system (al;;,.,an)

is the restriction of the commuting system /M_?ﬁﬂl’:"’{n) tc

‘the space Xa

Proof. We define Xa={ux ; X€X} ,where u (F)=fla)x -

for all feA and x&X .Since o(a,X)CK yit ig clear that

uXGEﬁfK(A,X) and  that X—a—ux is linear,injective (because of .«us

the equality ux(l)::x) and continuous.The equality ux(l)==x %



=15=

also implies that the mapping xe;>ux has ciosed range.Hence
X and ”Xa are isomorphic as Frééhet_spaces.Lét us show that
Xa has an A-module structure .Iadeed, if ge&A ,then 'gdxtfk=f

=lix(gf)=(gf)(a)x=g(a)f(a)x=u () for all *FEA Yoo that

g(a)x
Xa isran A-module.In particular, /Mjux(f)zzajux(f) for-every
f&A ,and hence the commuting system j&u:Q/*l,,..}nn) extends’

the commuting system aﬁ=(a1,...,an),when acting on Ka g
3.4. DEFINITION. ‘The pair (%K(A,X)yw is called the

universal extension of the regular commuting systems

a=(ay,...5a ) S LX) with o (a,X)SK .

As one might expect,the universal extension has some:
interesting properties for compact sets Ker" yand therefore
“for commuting systems of operators:with real joint:spectrum
(see the fifth section).

In.the remainder of this section we shall gﬁve some technical:
results ;oncerning.the analytic functional calculus,vhich are
needed in the next sections.

“Let wk e & fixed”FréChet space andnlet 5pO(X) be:the
family: of "all subspaces YCX such.that Y has a Frébhet space
structure of its own and the inclusion Y&X is continuous.

et arr(al,...,an)C:;g(X) be a regular commuting system.
- We denote by Lat(a) the family‘of those subspaces YéE‘yg(X)
that are invariant under the action of Byyecesdy s such that
'-the.réstriction aY::(allY,...,anlY)~ is also regular.

IfwY¥eslat(a) and Z&ELlat(a ,then the system a acts

Y).
naturally in the quotient Y/Z .We denote by ay/z the system

of endomorphisms of Y/Z that is induced by a .We also set———
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o(a;Y¥,2) = o(a,Y)vo(a,2) .
We shall be interested to give some resulfs concerning the o .
"spectral theory“of systems;of'enddmorphiémS'induced by regular
commuting systems of operators in guotients of the previous type,
- when no topology is involved.(The importance of such quotients
is pointed out,for inétance,in E23].)w

3.5. - LEMMA. et a'Z(al,\..._.,a e X) beareguﬁlar

“ecommuting syctem,let YEELat(a) ané let Zelatla . then

the quotient Y/Z has a natural A(e(a;Y,Z2) )-module’ structure.

Proof. et ©w: Z-=>Y Dbe the inclusion,which is continuous.

'If bjzajIY ‘énd‘ cj=aj|Z‘3'(j=1,...,n),then 'zr,cj:bj‘c for

2ll j .Therefore %f(c)=f(b)® bysvirtue of Corollary III.9.11 -
from [20},where fei{o(a;¥,2)) , b:(b_}l,f..;,,bvn) $ c:(cl,...,cﬁ')’.
In particular, f(aY)(Z)CZZ ,80 that Y/Z ‘hasian: Alo(a;Y,2)) -

-module structure that is defined in fhe“following way

n.
¥

(3.3) oy, )y +2) = £(ay)y+2., £EAE(5Y,2))

For“the next proof we need some.details concerning the
construction of ‘the analytic fﬁnctional calculus by means of the
Cauchy-Weil integral [18),[13],[20].Let a:{Lal,@L,,anLF:éf(X)
be a regular commuting system.Let U3¢ (a,X) be an open set
in ¢%, let f=A(U) (=4(U,{)) and let x=X .We consider the
exterior form '1(z)==f(7)x o3 A ... ASy ,which satisfies the
equation (5 +'B)Q =8 anell (for tie notatlon,oee the beglnnlng
of “this section)If V=lNe(a8,%X) % then there exighs an exterlor
form }‘é/\rl'l[(c’,f),c”(v,x)] _such uhat‘x:zf’.ﬁ;j‘a)f)'f:'l in ¥ ;
 where g: is the systenm of differentiaLg@~Qdii,.},,dih) sppen. .

consider a function 9&C%*(U) such that ¥ =0 in a neighbour-
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hood of <®(a,;X) and the support of 1 -% is compact.If P .- ig
the mapping that annihilates every:monomial that contains one of

R ERRRE L and leaves the cother .terms invariant,thén we have
(5.4)  flax=q, | (G225 (2)A0

where dz =dz A .../\dzn and qﬁfz(—l)n+l(2?fi)’n .The integral
(3.4) does not depend on the particular wchoice of Y and “§ =
and defines the homomorphism (3.1) witn‘ﬁhe properties (3.2)

and (C) (details can be found in [20],Chapter III).

5.6. PROPOSITION. Let a=(aj....,a )<H(X) be a regular

commuting system and-:let «¥,;Z,Welat(a) be.such that X=Y+7Z

and Yﬁ&ZEELat(aY)/\Lat(aZ) .Then’ there exists a natural-mapping

8 : W—>2/(YAZ) such that

for every fe€Alo(a,W))vwo(a;Z,YNZ))=. " Mip = kY g i 4

Proof. Every x&X has a decomposition of the .form

- 3 ; L and - —_ ! [ 1 -

- x..XY-fxz ywith XYEEY and xze;z o i A AYf+XZ is "another
decomposition of the same type;then Xy - x&::xé - XZEEYI\Z ’
so that the mapping

(S0 o MR, Y adeE 2/ T D)

Z

is correctly defined.Let 8 1be the restriction df (3.6) to the

space W .Notice that the equafion (3.5) is not a “direct

consequence of Qorollary 111.9.11 frow [20],since the quotient
"Z/(Yr\Z). is not,in general,é Fré@het spaoe}rherefore we need. oRE?
a direct argument. ‘

Let UDo(a,W)Uo(a;Z,YNZ) be an open set,let . f=a(U)

and let xeW be fixed, x==xY+-xZ as above.Then the'fémmﬂ

'l( z)=flz)x 3N ...Ac, satisfies the eqﬁation (go(a'i" B)Yt =0
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in U .Then we can find a form e/\n 1" ,f,, (Vl,w‘)] such

that (5, -M)f " in V;=UN\e(a,W).Since X=Y+Z  and

Yn/C’Lat(aY)mLat \az) ywe deduce that ths sequence of Fr dohet i

spaces . o “
O—=>YNL —>IDHZL ——> 7-——>O -

‘1s exact,where u(x)=x®(-x) and Vv(x@®y)= x+y .Since CQOCV‘)"

is nuclear,the sequence

o ;.
i C°°(VJ_,Y)GBCM(V1,Z)-——>

0—> ¢~ (Vl,Y/\Z)

N

1®@v oa(

b EN

Vl,X)~—9O

iz also exact {2] .In particular,the mapping
KD, 0, 1] @ AHED 0™ el
o Ak _/\f}“‘l[(r,f),c""(vl,x)']——z—o
given by;fglfﬁﬂéz“—ﬁ>§l‘F§% is surjective (the latter Sequéhce
is a direct sum of the last .spaces of the former).Thus we can’
deeoﬁpose “f"fvﬁwsz swhere the coefficients of '§Y are *Y-valued

e coefficients of '§ are Z-valued.

Now,cousider the form

(So(a_*_ 3) ‘}‘? 72 Iy - ( g‘;—a‘*’ 2 )gY : ' s

where 1, =1x, 3 A ... Asy  and YZY:f?(Y sri/'\ +++ N, .Note that
the coefficients of the form A have values in‘ Yr\Z .Indeed,
the space Cdo(Vl,Y)r\COO(Vl,Z) is (algebraically) isomorphic

to the kernel of 1®v sand the l_attezj is isomorphic to
°?(V1,Yr\2) Morecver;,: %%} ;¢#7})X==O- in vy .Then there exists

a forn PV 1[(6",3’) ‘V2,Yr\z)] such that (5«;3)3’:)‘ in

V2‘:U\(0’(a,W)U5(a,Y/\Z)).Take a function <= C*°(U) such that

¥=0. in a neighbourhood of o(a,W)Vo(as;Z,YAZ) and the support

of 1 -¢% is compact.Then,by (3.4) we have
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f(aw)}(:: g S (B‘P rf {2) ANdz =
(3.7) = qnj(-g‘f? Pw(fz - S,))(z)/\dz ¥
+ay JAOR 8+ P nas

Notice that QZ::(S '+ 5}(¢z mr?) vin V, ,and hence

P(a,)x, = c §(9¢P<§ ~f (=) Adz

by (3.4) .We 2lso note that

5(5“? % f z)/\dzezY

-

In this way (3.7) is a decom position of the element f(aw)x
into a sum from Z+Y ,and thexfirst term of this sum is

f(az)xz .Consequently,according to (3.3),

6 r¢ a.w)x_. £(a)x, +1NZ = £(a, Dx +v

2/(Y~z))
and the proof is complete.
We need also a version of lemma IV.2.2 from [20].

B d ot L EMMA Leﬁw_g;:(al,..;,an)CtgﬂX) ke a regular

comnuting system,let Y&Lat(a) and let Dc:¢:n be an:open

- polydisc such that DDe¢(a;X,Y) .Then we have

BP(A(D,X)/4(D,Y), x_)=0 , O<pgn-1 .

Proof. We apply Lemma I.2.6 from 2ok fek c&p(z)::z - aP

el TR . d D

(p=1,...,n) and let C=A(D,X)/A(D,Y) .Also set Xs=0 .The

kernel of s (p){l)v in C/(d1€~+...<+ap~lc) is null iff from
_every relation of the form ‘prp=C{lFl+'"f*'dp—le—l ywith

..,FpEEC ywe deduce that Fp::leI+ "'4"“p—1Gp—l ,wﬁ@;e

.,Gp__leC Let fjeFj (j=1,...,n).Then we have

DBy

Gl,.o

<*pfp-cxlfl+-...44xp_lfp~l4-hp‘,yhere hpeEA(D,Y) .We now. proceed

~——"—~a§ "in the proof of Lemma IV.2.2 from [20].Namely,we get -@irc:



representation of the form fp::dlgl+ .;;Ard?_lgb_lq:vp.,where
Mz =
8;(z.

A S I ' -1 -1 \
s = (29T 1) Sr (wpwz?) (wp-ap) fj(zl,...,wp,...,zn) dwp p

ol

V. {2) =
,(2)
PRERT. T.g = | i Sl (
._‘(2If1)_ S (wp—zp) (wp»ap) hp(zl,ez;,wp,,..,zn) dwp
N stea,
Here fb is a smooth contour that surrounds <T(ap,X)bWT(ap,Y)
in the corresponding projection of D .Plainly,the functions

gj and Vp can be extended to the whole - D .Moreoverysinece -

(w_-a )—1y::(wp-—ap|Y)—ly “forall wpefp., and yE€Y ,we deduce: " = -

P P

ﬁhat;avneEA(D,Y) .Therefore,if we put AGi::g.—+A(D,Y) , then

J
= . G- : L -di % W ; 20,
Fp_clel+ "'+“xp«1Gp—l JAccording to Lewmua 152,6 from [40],.J

ve then have Hp(c,ua):(} for 0g<pg&n-1 .

Lemma 3.7 gives no informacion abouﬁ the last cohomology
space.lt “happens that this space also has a notable property.
To state it,let us remark that.the integral (3.4) makes sense
for every f<A(U,X) .By abuse of notation,the symbol f(a)
will designate the valuz of the integral £{3.4) for such a

funetion: . T ,whiech 1s a®veckePsof "X

~ 3.8. LEMMA. Let a::(al,...,an)C:;f(X) be a regular

commvting system,let Y&Lat(a) ,let DDe(a;X,Y) be an open

polydisc and let f&A(D,¥) .The form 1::(f4—A(D7Y))<Ti/\.../\€%
ig%in the rangé of the operator ‘

5.+ /N e A(D,X) /A(D,Y)] — N[5, A(D,X)/(D,1)]
a

if and only if f(a)E€Y .

Since this result is not needed for further development,
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we omit its proof (see [6],Theorem 1.3.3 for a particular case).
4, SPECTRAL CAPACITIES

As in the previous seotion,ﬁe denoté by ‘9%(X) the family
of all Fréchet spaces YCX for which the inclusion is:
continuous.

Let <€) be a topological space and-let . C£(LL) be the
family of all closed subsets of O . .

4.1. DEFINITIOK. A mapping CZ(Q)BF————‘»X(F)Eng(X} is

gaid to be a spectral capacity @.f it has the properties:

(1) X(@)=0 , X(2)=X ;« |
ke IT {Fj};:lccfi’(.(l) ‘and ‘F:/\{Fj i 321} ,then
ME)=n{X(F;) 5 331} ana X(F)E F(X(F,)) ‘for all j ;...
(3) For each finite open covering:-{ck}ﬁil of (2 we
have the decomposition x::x(ai)+-...-+x(65);au
_ Definition 4.1 extends the usual concept (see [1], [6],[20]
etc.) to the case when the values’éf the mapping are not
necessarily closed subspéces of the given space .Besides the

customary examples [Zoj,itniS'easily seen that the mapping

CZ(K)SF — L (4,X)E Spo(é'fk.(A,X))

; and,in particular,the mapping
CUK)DF—=a'(F)EF (A" (X))
are spectral capacities in the sense of Definition 4.1,where X
‘is a fixed compaét set in R" , 0y virtue of the decomposifions
;(2.11) and (1.1),respectively.
Using Definition 4.1 we can introduce a correspondingi: -
concept of decomposability (see also [3),[6] ,[20] etc.) weuds

4.2. DEFINITION. A regular commuting system a::(aT;...,an)C

C£(X) is said to be decomposable if there exists a spectral




--capacnty CllocGa; X)) DF —»X(F)c.—;jp (X) -stuch-that X(Fy=lat(a)
and o(a,X(F))F for all closed sets Fco(a,X)

“Let us mentiocn that spectral decompos.tions with respeczi tow: -
subspaces that are ranges of operators have been propeosed many “i#
years ago by C.F01as (for single operators in Banach opacn s) but.
the lack of significant examples has preventedtthe-development
of such a theory.We shall see ir. the next seciion that the systen
of multiplication operators /“?9“1};"y“n) is“decgmppsable
on the space éfK(A,X) (K- compact in R"),in the sense of

Definition 4.2

4.%. LEMMA. Let a=(a.,...,a )C&Z(X) be a decomposablei.s
— s n

¥ v)

where F—>X(F) 1is a spectral capdcity of the system .a:.:-

system and let ¢¥Ye&Llat{a) .If" Pi=o(a,Y)Ne(a,X) ,then YCX(F

be open setsin ¢n stich that G,=27F, ,

_g;oof. u\t G 1 Y

1+ 6o

EzﬁiFYzaf and GlUGQDO“(a,X) 1T F, GJINU‘(a X)) then

1+ X5 ,where Xj::X(Fj) (j=1,2) ,by the decompasqblllfy of

the system a .Let € ©be the matural mapping /from Y into:

XZ/X siven by Proposition 3.6,with X

127 5)

Let us remarx that

(T PR (R, AT
(2, 1)N(a; Ky, Xy ) T2, 1) N (F,0 (R A )= 0
so that there-existe a function fEZA( (aiT)@o(a; Xz,qu)) such

that £f=1 in a neighbourhood of ¢ (a,Y) and f=0 in a

neighbourhood of 6 (a; 52,k 0= e 0 e 3

12) Then .f(ax

and hence ef(aY)z6,V91Y:-'E}f:(-with 1

o/ %15
y the identity on Y),in
virtue of (3.5)iFrom the definition of the mapping 0 ,we then
derive that YCX1=X(F1) i

" Now,we can?§onsider a seguence {Fi,k};21 such that every

"C‘,:b < i F 3 > = °
set Fl,k has ‘the properties of F, and f\{rl,k sk 1}_.FY
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Then,by Definition 4.1,

Y < = k '
Q X.(Fl’k) X(Fy)

and the proof of the lemma is complete.
.'As’in the usual cage (sée Theorem IV.1.G from [20]),the

previous lemma leads easily to the following uniqueness result. -

4.4, THEOREM. Let a::(al,...,aq)C:gf(X) be a decomposable

system.Then there exists only one spectral capacity corresponding.

to this system.

‘“Theorem 4.4 insures the uniqueness of the spaces that form
the spactral capacity but it doesn't say anything about their
topologies.A natural question whose answer is not knownwby the
author of this text is the following : Are the iopologiés of the
spaces that“form the spectral capacity‘of.a given decomposabie”,ﬂ
system uniquely determined?

Anyhay,ﬁe can speak zbout Egg spectral capacity dssociated
with a decompcsable system a::(al,...,an)C:;f(X) ,which will
be denoted by Xa(F)-for eéch closed F<o(a,X) .

: An important consequence of the decomposability of a system
of operators is the so—calléd single valued extension prpp@rty
(see,for instance,[20],Chapt.IV,Section,2).We still have this
property with our more general cénditions.

We recall that a regular commuling system a::(al,...;an)c:

C#(x) is said to have the single valued extension property
if for every point wea¢n theretexists\an'open polydisc DD w

such that Hp(A(D,X),aa):O for: 0pgKn-1 .

4.5, ‘THEOREM.. If a::(alx;..,an)C:;f(X) is a decogposable

system,then it has the single valued extension property.
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Proof. Let 'D, and D Dbe open polydiscs such that

0
DOCBOCD .From tne decompossbility of thel.system a we infer
the existence of two closed s2ts Fl"? ~in ts{a,X)- such that
. <D, F,ND, =g and X= =X, +X, ywhere! ;{ =X (F) (,]—'l o)

In particular, the sequence of Fréchet spaces

0 — le\ Xz-u—“s» Xl@Xz—-—é X —=0 -

is exact,where u(x)= x@(-x) and v(xlgaxg):-xi}-x2 .Since
A(D) 1is nuclear,the tensor multiplication of the above sequence
with 4(D) 1leads to the exact sequence

o-——>A(D X, AX 1&u

o) == A(D, X, )EB A(Dy }’2)'——3‘

(453
By g KED, X —Lah

Consequently,there exists a natural mapping

€ ¢ A(DX)—=A(D,X,)/A(D. XA X,)

given by 9f=‘fl+ A(D,le\X2) ywhere f=f +f, ,with:?ifj’EA(D,Xj

1
(which corresponds to (3.6)),because the kernel of 1®v is
isomorphic to A(D,Xlr\xz) |

Now,let vleﬁ/\p[o—,A(D,X)] ,where 0pn-i , p fixed,be
such. that 30%;L=O in .D .From (4.1) we deduce that A
with 1 ej\fg,',A(D,.Xj)] .Let us observe that 0= 6 “Sda‘yl,:
=3, 81=5, 07, -Since o(a,X)CFSD and o (a,X;NX,) &
C:Fl/\cmzD saccording to Lenma 3;7 the}e exigts a form

F€ N7, (D, %) /A(D, X, '\XZ)J-

such” fhat 9"11 % ‘5’ .Hence YU"‘S ‘§1+Q ,where ‘516
e NP~ 1ﬂr JA(D, X )] and nlc:j\[cr,n(D X NX,)
”1—?1 'Qfg«a?l* 72 ywith 1 2=Y,+17e A, A(D,%,)] .
§iwn»gg_m§“a?2;‘::0‘ and F2r\DO:¢ ,by Proposition III.8.3% from

.In this way, B

8
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: i v -1 : :
[20] we infer that 72—-Sda.>2 ,wheﬁe Afzéij\P‘ @r,A(DO,XZ)] ;
Thus the equation go( g-:"L hag a solution fzf +i5 <.
: a ' 1 2
OC‘.‘DOCD.
Finally,we either proceed-as in the last part of. the:proof

EEJ\P"iDY»A(DO9X)] for every pblydisc D

of “Proposition IV.2.5 from [20] to get a global solution,or
apply-Theoren 1,2 from [4] .Both ways imply that the'system a
has the single valued extension:property.

The analytic local spectrum-of a regular commuting system +#;

a::(al,...,an)<:c%KX) ‘at fhe point x€X is the complement in
¢n of the set of those points we5¢n for which there: exist

an open set U3w and functions Upyeoesy in AU, X)susuch

that (zj-a;)u (z)+ ... +(z -a Ju (z)=x for all 2z&U (see e,
Chapter IV,Section 2 for other details).If a::(al,...,an)C:;f(X)
is a decomposable system and xa(x) is the analytic local o

spectrum of the system a at x: ,then we have the equality

(4.2) 4. (x)= nirectc(a,x)) wxex (P} .

Indeed,if o (x) is the right hand side of (4.2),then
xEEXaﬁ@é(x)) ,and hence WEKX)C:GBKX) .The converse inclusion
follows from an argument that is similar to the proof of Proposi-
tion %.6,s0 that we only outline-it.Let {Gl’GE} be an open -
covering of s(a,X) such that G; Dy (x) and ‘52(1Wa(x)z:¢ 5
Let Fj:Gjﬂ(f(a,X) =i and set Y= Xa(Fl) . Z:Xa(}?‘2) :

Thus X=Y+2Z .let also Uy 5T be open sets such that FQ(X)C:

,

C:Ul‘; F2C2U2 »andf‘Ulr\U2::¢ .We now proceed as in the proof
of Propsition 3.6,with U=0,vU, ,

and equal to zero in U, ,and s(a,W) replaced by Yal(x) .The

f&A(U) equal to one in Uy

other notation is similar.We observe that if 1(2)::f(z)x IA"’AQ
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then there is a form gégﬂe—l [@rgf),c°°(vl,x)] such that
(ada+~3)§ :’l in 1::U\\3E(X) ,where ff'Ul is given by Lemma
1V.2.7 from [20] and ‘g‘Uh::O by'hypothésis;with‘the symbols ag

in the proof of Proposition 3.6,equation (3.7) has the form
X =.q/ S(E%’Pﬁfﬁ)(z) Adz =
= 95} (34 Bl - §)) (=) Adm A
46%5K542ng+§)ﬂz)Adz

see also Lemma IV.2.9,especially formula (2.5),1rrom [ 20
b /| i 3 L

‘Since *12:;(§;;ﬁ—3)(f7 - g) is equal t¢ zero in a neighbourhood
a T

of 6(a,2)CF, ,it follows that
N (O - =
[@ar(t, - gNtna =0,
by (3.4) (since f(az)::o ). Therefore
X =-q, S (}¢P¢(§Y+§))(z)Ad?ay:xa(f‘l) =
Finally,we have Flz:Ejrur(a,x)tax}ﬁx):,where G, is arbitrary.
s [V} P

Therefore XGEXa(Qra(X)) yi.e. the desired conclusion.

The. last reswlt of this section is a version,valid for

Fréchet spaces,of Proposition IV.2.11 from [20] (see:alsc™ [21])

4.6. THEOREM. Let a:(al,...,an)cx(x‘;)_”'be a regular

commubting system with the single valued extension property.

. Then the subset {xéEX ; va(x):ff(a,x)} is of the. second

category in X .

Proof. We first prove the following: statements :

e

Let DC¢™ be an open polydisc such that Dno(a,X)#¢ .

a
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Then the subset (alA(D,X)4-...r+dnA(D,X))r\X is of the first’

category in X ,where aj(z)::zu-a. 5T W e

d_ J
Indeed,let us consider the .continuous and linear mapping.

; n

n n
T s @D AD, Xy —aAlBg) , TA® f.)=wy  o:f:

e

Since X can be regarded as a closed subspace of A(D,X) ,then

s el
=T, (

¥ X) is a closed subspace of A(DX)® ... ®DA(D,X) .

Let Si: TalYa .Then we have

Sa(Ya): (oclA(,D,x)qL ...+O<nA(D,X));"\}( .

.Assume now that Sa(Ya) s a set of the second category
, : % i
in "X .8ince Ya and X ‘are‘Frechet spaces,then Sa is

surjective.Thus the mapping

s 81
A
Y, @a(D) —2—= x&A(D) = A(D,X)

is also surjective.Since Ya is a closed subspace .of
A(D,X)® ... ®A(D,X) and A(D) is nuclear,then Y_®A(D)
can be identified with a closed subspace of the Spabe

n A n
(D A(D,X))®a(D)= @ A(DXD,X) 7.
=i - j=1

Moreover, the mapping Saé§l is the restriction to the previous
subspace of the mapping (with values in A(DXD,X))

e n '
(1,80(@, )2 =

i
wiod i 2)8 . Gag) 2o, Ta3pMED .

= J

3...

Since 83651 is surjective,every element f&A(D,X) can be

written as

f(w) = % (2)gy(z,w)+ .o+ (2)eg (2,%)  2z,W&ED., -
with gy,...,8, in A(DXD,X) .This shows,for w=z ,thaggthe
‘mapping Ta is surjective.However,such a conclusion isg=a

—— -~ -~ ~"gcontradiction.Indeed,in this case Hn(A(Dvx),Na)ZZO ywhereas, ..
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automatically, I{p(A(b,X),oc )=0 for 0<pg¢n-1 (sinco the
system a has the single valued extension proPerty) Then
Dno(a,X)=¢ ,which contradicts our assumption.:

Now,leﬁ- {wk}gj; be a dense subéet of o(a,X) .Let
tbkéié*; be a family of open pclydiscs such that the c§nter
of Dkq is LN and the polyradius of Dkn tends Fo ZETC

i

as. 'q—>°0 ,for each q .Then the set .

XO:: &5")1 (’<1A(D ,‘. .._.+c<ﬁA(DW:<;;)nx
b2

of the first category in X ,by the statement at the beginning

-]
0

of this proof.Let x0§éx0 and assume that G“(a,X)\\ga(XG);fg :
By the density of the set {"“’k}k in o (a,X) ,the fact that: the. !
~peiyradius~ofw»Dkq tends to zero as q—soo and the definition
of 'Ka(xo),we can find a pair (k,q) such that

XG::.wl(z)ul(z)+~q°.+4xn(z)un(z) : zesDkq :

06=A0 ;which is

o(a,X) ,socthat. the sete

_ where quEA(Dkq*X) for =1, +0 0 Then &%

a contradiction.Clonsequently ' (\O)m
R B (R DAL

is of the second category in X ,and the proof is complete:

It is beyond ocur scope to recapture here all of the
properties that are known for decomposable systems,aé in [20],
Chapt.IV.¥We only mention that one might consider spectral
capacities on pseudorings of closed sets‘and gev the corresponding

assertions for«ﬁhem.
5% CONSEQUENCES FOR THE UNIVERSAT, EXTENSiON

In this-section we shall derive some:consequences of the

previous results. in the case of the universal extensions {(see
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Definition 3.4).
Let:- X be a Frééhet space and let Sc:mn be a fixed .d .=

compact set.For the sake of simplicity,the space cgé(A,X) will

be dencted by XA(S).We shall show that the system of multipli-

cation operators /&:9&1,..,”pn) is decomposable on XA(S) :

5.1. LEMMA. Let K<R® be a compact set and let

i

G l,u.yf%\)i‘ii‘;(K) .Then for .every WOGQZm\f(K) there are open

by

i

. . o NN vt ' X L
neighbourhcods U:awo in -~ BRSO KT dn. . L% an@ifunetions

Byreees8y in A(UX V) such that

m
(%) (wj-wfj(z))gj(w,z):l y WEU , z&V .

=1

 Proof. Let Usw, be an open polydisc such that BNL(K)=¢.
Since KCZRD',by a well known theorem of Grauer% the set- K has
a fundamentdl system of neighbourhoods which are Stein manifoids;
Therefore we'can-chOOSe‘a neighbourhood VvV of X , V a Stein
manifold,such that f(V)AU=¢ .The exisbtence of the functions

8yr--+18; then follows frqm Theorem B of Cartan (see [8] for .=

details).

5.2. THEOREM. The analytic functional calculus of the

: A ) .
It > gyste A= (M ee g M s give ,
commuting system > 9/1, }/n> on X*(8) is given by

(5.2) (£(Mu)(g)=u(fg) , £SA(S) , s&A , wE XM 8) .
‘ |

Moreover, c’(//M,}( (&)= 8 .

Proof. The right side of (5.2) makes sense for fe&A(S) ,

since every uEEXA(S) can be éxtended"byléontinuity‘tb A(S)
(because of the density of A - dim A(S)).It is plain that (5.2)
is a unital algebra hoiomorphismﬁsatisfying the condition (C)
from the third section.Thereforeyit is the functional caleculus

of M provided that (3.2) is fulfilled.



Let us prove that G‘(f(/\),XA-,(S))zf(S) for all m-tuples
f:(fl,...,fm‘)CA{S) .Indeed,if wofﬁf(s).ﬁgin virtue of Lemma 5.3
there _are open sets U‘ano 2 vjs andlf,unc'tio_ns 8ys 018y 5, o S
“A{UXV) such that (5.1) holdsili\ ,ue’-.A(vU,XA(S)‘)' ,then we can
“S3efind the continuous endomorphrism »«./\jof A{U,XA(S)) by
the equations

' (gfﬁu)(W)){h)r:‘u(W3Z(gj(W;Z)hQZ)) y WEUL, BEA

for 211 j=1,...,n :Similarly,if we defire the:endom T
((C«J]‘}(W))(h) = wju(w")(h) o u(\,/)(f;ih) ‘

then (5.1) ‘shows that O{lf;‘l‘}"-’”};dmf’m‘:l .Therefdre,by virtue
%f Lemma I.2.5 form {20],the system of endomorphisms & f(/")(w) =
= (wl-—flg/ﬂ),. ..,wm—fm(/«l)) ig nonsin'gfllarl on A(D,,XA(S_)) » 80 that
wogfo(£(x),x4(8)) .Hence o(£fm),xM(8))SL(S)
Assume now that ‘(S)\\G(f/M X2(8))£¢ .Then we can. find
a compact nonempty subset K& &.- such that f(K)f\G‘(f/) ok (3))-',
= By the first part of the proof,we have o‘(f(u: XA(K))%"{(.&()
(vhere " xA(K)= &L, (4,%)),and hence c‘(f}/w),XA(K), does not
intersect o( fy\A),XA(S)) .We shall apply Proposition 3.6 with
X'—‘?Z-’-:‘XA(S) ; Y=0 snd W:XA(K)_.Then 6 bis just the inclusion
XA(K)CXA(S)“‘”.If tﬁe function from (3.5) is supposed to be egual
to 1 in a neighbourhood of W(f(u),,«.A(K)) and equal t/o 0
in a neighbourhood of cr"(f/'%) X (b)) then (3.5) shows that
A(K\ = A' (K)@X 0 ,which is a contradiction.when X0 (which
is the case that interests us).Consequently, O'(f(/u) XA(S))—- e
| ’In particular,if f is just the n-tuple of the coordinate;:
functions, the above result shows that F(/‘A,XA(S)):S .We have i

__shown_in this way that (3.2) holds,and the proof is complete,
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5.3. THEOREM. The commuting system/M:ng,f..,'n) is

decomposable on XA(S) and its .spectral capacity is given by

cl(8) 2F —x}F) = £ (4,X)={ucx(s) ; o(u)cr}

iy

Proof. As we have already noticed in the previous section,-

the mapping F-—~vXA(F) (F&CL(8)) 1s a spectral capacity.
Moreover, G@M,XA(F))==F yas follows from the preceding theoren.
Hence the systenm Jﬂ- is deco&posable (in the sensge of Definition-
4.2)sThe last equality of the statement folloews from (2.10).
5;4. REMARK. The commuting system /#U:gﬁiyw..,vi) on
-XA(S) -is a little bit more than decomposable.Namely,it has the-
property that its restriction to each subspace Xé(E)-éFzzﬁkzs)
ié still decomposable.Therefore,we can say that the system Pt

is strongly decomposable on ‘XA(S) yextending naturally the

corresponding one-dimensional concept [1] .
5.5. COROLLARY. ; Eor .every uEEXA(S) one has cr(u)::g}&u)

Proof. Indeed,

s(w=nirer" ; vext(n},
and the equality follows via Théorems 4.5, 5.3 and the eguality
(4.2).
5.6. COROLLARY.. The set~of those u&& (#4,X) such that
o(u)= 8 Hs-of the second category in é?S(A,X) 2

Proof. We have c*&M,XA(S))::S ,by Theorem 5.2.Therefore

the set {uEEXA(S) o = S}' is of the second category,in
" virtue of Theoren 4.6~ and Corollary 5.5.

5.7. THEOREM. Let a=(ay,...,a )= Z(X) Dbe a regular

commuting system such thatucr(a,x)czﬁn .Then this system is the

restriction of a (strongly) decomposable systenm. e




—

Froof. Indeed,the universal extension of the system a
- (see Definition 3.4) is a (®strongly) deconposable system,by
virtue of Theorem 5.3 {and Remark.5.4).

We close this section with an application of Theorem 5.7.

5.8. THEOREM. Let az(al,...,an)c:%(x) be a regular

N 5 o
commuting system such that o{a,X)<R" .Then the system a has

the single valued extension property.

Brogfs Lets eB=osla,X) By Proposition 3.3%,the space X

&

can be identified with a closed subspace Xy of X%(8) .Then

we have the exact seguence of Fréchet syaces
0 —=x ——>34(8)—> xM(8)/x_—>0 ,

from which we derive the exactness'of the long cohomology

sequence

: B
...ﬁ}zp(A(D,J{a);u,g‘,) -~ HP(A(D, X (S’)"“’}%)_‘*

(5.3 - o
T DL X (s)/xa),oc/k)~—~> ok P

for every open polydisc pe¢h (see [20],Th-orem 1.2.1):9ince “the
system‘/i has the single valued extensgion property,we have
(5.4)  EP(A(D,%%(8)),%)=0 ( 0gpgn-1 .
We shall show by induction that

(1)) HP(A(D,X), )=0 , 0gp<n-1

whenever <f(a,X)C:Rn (for arbitrary X and a ).
The property (IO) is an easy consequence of (5.3).If we
adm;t that (Ip) holds for a certain p<n-1 ,tnen‘%%félédlhéve
(5.5) HP(a(D,x"(8) /x ) ) =0 for. .

A . i
~ Indeed, X (S)/Xa is a Frechet space-and LS s

o—(/vt,XA(S)/Xa) & o*j}M,XA(S)) o 6’9@&5);3 (g



(see Remark IV.1.7 from {[20]).Then (5.5) holds by (Ip),From
(5.3 il Gad)aand (5.5) we then obtain that Hp+1(A(D,Xa),«a)::O :
80 that the system has the single -valwed extension property.-

The proof of the theorem is complete.
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