INSTITUTUL INSTITUTUL NATIONAL
Dk~ ‘ — PENTRU CREATIE
MATEMATICA _ , STIINTIFICA SI TEHNICA

ISSN 0250 3638

S S i e S R S S R R S S S A R ST

INCOMPRESSIBLE FLUID FLOW THROUGH A
NON HOMOGENEOUS AND ANISOTROPIC DAM

by

Ruxandra STAVRE and Bogdan VERNESCU i ool

PREPRINT SERIES IN MATHEMATICS

No.l/1984

1,5 BUCURESTI ——

i 400
)&JWL’LJ






INCOMPRESSIBLE FLUID FLOW THROUGH A NON-

HOMOGENEOUS AND ANISOTROPIC DAM

by |

*
Ruxandra STAVRE and Bogdan VERNESCU ).

Januany 1984

s )

—_— T

+) The National Institute for Scientific and Technical Creation,
Deparntment o4 Mathematics, BdiPacidi 220, 79622 Bucharest,Romantd






S o e

IMCOMPRESSIBLE FLUID FLGY THROUGH A NON-HOMOGENEGUS
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and
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INTRODUCTION

Tn this paper we study the flow of an incompressible fluid
through a non-homogenecus dam. e

The probiem for:the homogeneous, recﬁangular dam was first
ccnsidereé by Baiocechi [lj*and extended to-the non-homogeneous case,
in which the permeability cQ&ffi@iemt.hasgthe form k(x,y)zkl(x).
ko (y) by Benci [ZJ and”by Baiocchi, Friedman [3 1. The existence and
regularity of a solution for the:non-homogeneous rectanéﬁlar dam we-~
réfﬁroved by Baiocchi [4 li- In all of theh the so called "Baiocchi
transformation" was used.

The homogeneous dam problem was also studied using another
formulation by Brezis, Kinderlehrer, Stampacchia [5] that have pro-
ved the existence andbregularity.of a solution. In the same setting
the uniqueness was studied-by Carrillo, Chipot [6].

For the general form of k(x,y) we empléy non-linear varia-
“tional inegualities using some ideas of‘[SJ;;

In the second paragraph wé§s¢udy thewvariatiénal formula-

T

tion of the physical problem.
The next two paragraphs contain the proof of the existence

and uniqueness of the solution using:the additional assumption that



a—14--20'(if this condition is not fulfiled some other flow models can

QY
occur e.g. Alt{7]).

In the fifth paragraph we extend the results to the non-
homogeneous and anisctropic dam.

In the last paragraph we consider a layered dem, We prove

that the free bouedary is a subgraph in each of the layerss even if
. - i :

the condition Z= 20 is satisfied in every layer and not in the.who-:

J2
le dam.

1, THE PHYSICAL PROBLEM

We dencte by D the cross section of the dam, by QgD the
wet region and by y=Y(x) the free boundary.

s : The boundary of D is formed by feur disjoint parts: Sl

the impervious paré,szi the parts in contact with -the reservoirs;
S3xthe wet part and S4 the-part in eonfact with the ‘air.
We suppcse that the projection of D on the x-axis is con~

tained in the rprojection .of Sq-.

Let p Be the pressure of the fluid and k{x,y) the permea-

e

bility coefficient, which is assumed to be a function bounded from
below by a positive constant &,
'By Darxcy’s law, the continuity equation and the boundary

conditions, we obtain the following problem:

Physical Problem (P.P)

a4y (kVp) == i st ity

Y :
pEHC=y ons5o. s p=0%on S.;
- al i - (113
“pP =
_k(Dn'+,nY) 0 on 5,

= .a_E = ‘ =Y :
P O, k(an o ny) 0 on y=Yix),

where H; represents the water-level in the i-~-reservoir and n(nxfn

fk

the exterior wunitary .pormal.

Other boundary condition on 83 leads to another
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variational formﬁlation (e.g.[S],{&]). ¢ ikl
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2, VARIATIONAL FORMULATION

Lets
[] =3D"Sl ; (201)
and £: [ —Redefined by:
Hiwy on S2i =
f:'.' ; : $7 (2 .2)
&) on S3L}84. ;
We assume that:
g - . :
keHT 10)A) L500) and.%§w;0 on ‘D, * (2.3)

"We extend p by zerc in T~{2 and we denote the extended
function by palso.
Let H be the Heaviside function:

dec o i £ 50

Hi{x)= ; (2.4)
, 0 sl snal)

1o):

We define the ' following -convex, closed subset of H
K=[ven (0) /v=¢ on T} e (2.5)
Let's consider the following yaiiational formulation:

Variétional Problem (V.P)'

[ Find pek, (2.6)
- r

IJkVp.V(v*p)dde +jkn(p)424v-pﬁxdy30, e

D D <



THEOREM 2.1, If p is a solution of (V.P) then p is a weak

solution of P,P) and pGCO(D). - ~

Proof. By observing that p+€K and by making v=p+ in (2.6
we obtain Vs =l and nence p™=0 a.e. in D, thus p?0 a.e. in D.

If we choose Y¢€P (D) we can obtain also that :
div(kVp)+[kH(p)}y = 0 in §° (D), (2.7)

and by regularity .results. [8 ] we deduce that peCo'(D) .

We deifine the following set:
29! -—={(x,y)€ D/p(x,y)>0}. (2.8)

If£Ye8(Q), by taking v=p*'¥ in (Z2.6) we obtain (.8 4n
the weak sense.
resife i), $=0 a.e. in'D-0, f=0 on 2-s; by making

0

=p=f in (206) we get (1;“1")'3 in (S )

Let the f.fee boundary be defined by:
Y(x)—su)fy/(x,y\c!Z}PD TEREOIR - K,V 1 E H2,9)

Considering 7€ (D) and vEp i din (2 06), (1.1), reézilts\.
Finally taking into account the definition (2.8) of {1 we conclude
that p=0 on y=Y(x).

»

5 CXI STENCE OF A SOLUTION

For. proving the existence of a solgtion"cf’the variational
formulation we shall employ :the same method as in [5]): we
thall consider a sequence of variational inequalities Qith unique
solutions, that will approximate the solution of {2:6)..c

Let £€>0 and for each € we definé the function

= -
—— T

e e

H, )= LE0sxed, w0 (3.1)

X
é-' ?
0, L R0
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One can observe that H£ is Lipschitz:

; : : 1 : 2
lu, )-a_ (vl € = llu-vll ., * for all u,veL‘(D) (3.2)
! 13 Sy L2(D) & ‘ LZ(D) ’ _

We consider the following approximate problem:
Penalized Variational Froblem (P.VE)

{Flnd pseK, (3.3)

J){%% ;V(v—pf)dxdy+.ijE(ps)§§(v-pe)dxdy;O Yvek.
D : D

THEOREM 3,.,1. There existsg P, a solution of (P;Vé) and

_p€>0 a.2. ia D,

Proof, We define an- operator T:K —K so that for all geK,
T(q)=p; where p, is the unique solution of the following variatio-

nal inequality: P

Find p,€K, (3.4)

1 jka€.V(v-pe)dxdy-+ £kH€(q)5§(v-p£)dxdy;0, Y veK,

The previous variational inequality has-a unigue :splution,
due tc standard existence-aﬁd uniqueneés.resulté for variatienal
inequalities of the first type.

Let qi,qzeK and p}:T(qi), §3=T(q2). By adding‘the corres=—-

! ; A 2 ; :
- ponding inequalities with v=p€,and~va1 resperntively and using

3
{(3.2), the Friedrichs’inequality and the definition of I, we get:

n. A1 7 ; c ' §

loe =y < =llag-a,l 2 (3.%)

£ £ Hl(D) £ i ~2 LZ(D) (

and hence T is continuous in the weak topology of Hi(D). Kk isia
closed, convex set and hence compact in the weak topology. Thus by
Schauder's theorem T has a fjxed*point'which is a solution of (33w

For proving that p,20 a.e. we use the same method .as in

the first part of Theorem 2l

__THEOREM 3.2, (P¢Vé) has a unique solution. P



Proof. Let us denote by:
K ={veul (p)[v=0 on T}
5 P£ K and '§=p—p0 it results that ﬁeKo.'From (3.3) we get:

p; €K
a0 (3.6)

| | L [k, .Vvaxdy + fk Halp, o )nminy fop Vvdxdy,Vvex
D D
f 4

| : et p~, p2 be two solutionsof (3.3) and,q=p =D =p‘-p ool

Lence: "
ka@ Vvdxdyﬁf- jquVV!&xoy Yvek, 13.7)

1f for d>0 we substitute v in (3. 7) by «fi—uwe K , we have

(g=-5)"y12 c?
(‘th [i+ = ]l dxdyv ¢ = mes (D) , (3.8)
D . ;
By Friedrichs’ ‘ineguality it follows
honfin S, co nbm, G
Hedp) &

the constant being independent of d . when J tends to zero we obtain

i Y2
a.e. in, D, and hence'ptupt,

qse
LEMMA 3,3. The sequence {g¢}€ 1is boundedrin H" (D).
Proot, "From (3.3) we get:
B p \.¢Kn = et vl + mes (D) (Iv +
“ulo) W e ) o 1t (D)

+“ ) ’ Vvex
Hl(D) ]

and the conclusion is easely obtained.
THEOREM§3.4;-There exists a solution of the variational
‘problem (V.P).

Proof. The sequence {pfh being -bounded, there exists a sub-

sequence, denoted also by {pih weakly convergent to pekX.



=g
The se&uence {HE(pE)}g is also bounded in L2(D) and therefore there
exists Her? (D) so that: s =
H, (p, )— H weakly in L(D). 3.10)

and moreover H=1l when p>0.

We define:
.= { (X',y)eD/pg(x,y)d}. (3e11Y

which is an open set since we use a similar regularity result as
in Theorem 2.1,
In order to ‘pass to the inferior limit in {3.3) when £

tends to zeroé we must compute the follcocwing term:

2
& a 1 pE dRi ok .
Jk(-—»— - i)-m-dxdy J[zf ay( pg) —oikE = s e +P§M]dxdy =
0, ﬂf 2
k j s
- = ds m(p d‘{dy.
. 2 o
We obtaine
lim P, 9B T
¢
Thus when ¢ tends to zero:
vl kVp.V(v-p)dxdy +.}kH Sij—p)dxdyzo Vwvek. (3.:12)
D 3
By‘taking v=pif o with YeD(D) in #3.12) we obtdin
div(?£7p7+(kﬁ)" =0 in 9’ (D), {3133
and for v—p+m1n(p,5V), where yF:ﬁ(D),‘f¢U >0
J kVp.V¥dxdy + %~ j k (Vp) dxay— j gk Ydxdy ~
[Prev) [pPsevt] : {p>€?} y
' = j iﬂpdxdy =04
{0<p<€?j33

Since the second term is strictly positive and the last

——— T

one tynds to Zero when & Lends to:zero we get

[ kVp.ifaxaye | 2Ly axay, #fed ), Y20 (3.14) -
D b Y 2



From. (3.13) and (3.14) we obtain

55 [x@-0]<0 4027 D) isss o8 1ei3415),
We have to prove next that H=0 when p=0.

LEMMA 3.5, Let p be a solution of (3.12). Then:

1 pdx )>0 implies that p(x,,y)>0 for all YsYor (x50¥) €D,

o'¥o

2 p(xo,y0)=0 implies that p(xc,y)=0 for all VoY (xo,y)eD.

& ;. 4

= Proof.~If p(xo,y0)>0, since from (3.13) p is continuous on’
D, there exists an open ball B,'Ceﬁtered in (xo,ya) in which p is
strictly pGSiti?é‘;nd hence §=l a.e;

Frofm(3515) k(ﬁwl) is & decreasing distribution of y.
Because k(ﬁ-l) is negutive in D and zerc in B it results that
k(ﬁwl)‘is zerc:in the set Sﬁ{(x,y)QD/(x,yé)eB, ysyo} and thus by

.(3.13):

1
Aiv(kVp)=-2Xc0 fn §7US).  (3316)
5%

If we suprose thatAp(zOpy)=OqfOfVSOme Y<YO"(XO'Y)€D' by
the minimum principle {[8]) we obtain p=0 on S, bt ‘this cohtra@icts
the fact that Befp>oe ).
The second statement of the lemma is a simple consequénce of
the fifst.one.
It can be proved as in [6] that'thé free boundary defined

by (2.9) is lower semicontinuous and hence measurable.

LEMMA 3.6, If p is a solution of (3.12) then H=X({p>0}).

Proof, Let (x,,y,)eD-{p >0}. This yields that thcre exists

a square
%:z[(x,y)/lx-koi<§, |y~yoi<éfc(D44p:>0]7; :

in which p=0. By using the previous lermima we get that p=0 in



=l
B ={tx,y) 1x-x_l<&, Y(x)<y<y +€]<(D-fp>0}).

We denote by Y} a smooth function depending on x only

which satisfies :
ﬁg(x)zi for xé[xc-f+J, xo+€-<fj
%}(x)zo for x¢[xo—€, xO+EJm

Oé‘G(x)sl,

and by:
R£ ={(x,y)r§D/ Ix-xoic:é', y<yo+£}’-P£

Hence p:X(QJJRf)*ﬁ(yO+g~y) is a test function for (V.P)

and it follows:

. - “2. ; - 02 [ @ (v wemoy]
0= f kVs. [ Y, (yots v ]+ f = Z(yo+f )] +~[kh3§[~g¢yo*§ V)
: RZ’ R{ Pé‘

The sum of the first two terms beihg zero we obtain,

jh =0
Fe

Making d ~—0 we get:
ij: e,

and theicfore =0 on Pe and hence on S¢

= ~ . 4
We have proved that H=0 in a neighbourhood of every point

of D -{p>0] and thus H=0 in D -{p>0} (e.q.[9]).

UNIQUENESS OF THE SOLUTION

For proving - the uniqueness we shall use a result similar

rto lerma 5.1 of [6]:
LEMMA 4.1, If Py and-p2 are.two solutions of (V.P) then
Jk[V(pl-po) DT+ (H;-H )jy]dxdy<_f k(x,¥;(x)), j(x Yy (x))dx (4.1)

D _ B, e

for all TeH (D)@ c (B, jzo, and i=1,2, where



p0=min (plrpz) ¢ Ho=min (HiiHZ) ’ H1=H (Pl)_t HzmH (Pz) ’

»Yo=min(Yl,Y2), AO={pO>O}, Di=[L/YC(x)<Yi(x)}

Proof. Let ¢->0 and ?=min(pi~po, g]), then‘pj'f is a tes%

funetion: for “V.pP) arﬁ thus

' J k(V(P B ) + & .J kV(pi—po)-VJ' -+
(B | (BB e
+Jk(Hi~Ho)[min(pi~po,zj)}y=0

D .
The first integral is pousitive and by (2.3) it follows that-

J kV(pinpO) .Vj +ék(n. f k(}'—-m)+j

P3P 2]} o0 v, bore yox o) 7

By making £—~0 we obtain (4.1).

THEOREM 4.2, There exists only-one solution b of (V.P) so
that the boundary of each cornected component of’{1>>»0} is in

contact with at least a reservoir.

Proof, Let Py and p24be two solutionsof (V.P) and Ab‘deﬁéu
ned .as in the previous lemma. We cdnsidef (xo,yo) belonging to%a
connected component A of AO and (xl;yl%xon the part of 82 in'é6n~
tact with this componert. There exists a pclygonial line & that
connects the two points considered. We denoﬁe by P an open set
that contains the point‘(xo,yo) and satisfies Lc¢PcA, :

Next consider a function UG}HTP)H.C(ﬁ) that is a solution
of div(kV0)=0 in P, T=1 on AMP, 0¢0%1 on 2aMIp, T %1 s (#,2)
and extend it by 1 in D-P, the function obtaihed, dénoted alsq by'U,
belongs to Hi(D)OC(ﬁ). : A

Integrating by parts for i=1,2 and.taking into account
that 9;=9, =1 in P we get:: .
| 1]

J k(py-p)z= = | X[V (p —p).V<f+(g.-f<f’if‘)0“y]. (4.3)
sy P 1{[ - e,



=

We-'denote by (xg ,yp )=[(x.y)/y=¥, (x)}nID for i=1,2, by
S

ScdD the set of points between (x Y ) and (xf Y )} and by
1 1 2 2

Sg -—{(x,y) .p/d ((%py) s (xg,yg))< €, (x,-,yf)e‘S]
Let Y} be a smooth function, 0< Y <1, Y =] in A L}b 7 =0
outside the ¢ -neighbourhood of AUS; .
Brom (3.13) written for Py + i=1,2 we ¢get:

J{ v[(l“ 7‘})0] + (kH,) [(1_«&, (I-ii, L
D

i 6 =
fk(—S_HJrgn)(]«- s = 0.

Since in D either p =0 or 1-% =0 it follows that

. ) 5
Jxfip- Pla- 4200 m [11-%) o }= o (4.5)
D . .

Subtracting (4.5) from (4.4) =

J [V(p =D ) VO+ (1 -H )U'y} JkrV(pl—p TH0) +

~

L2

H(H ~E R CT)YJ

and usiuy Lemma 4.1 we obtain:

[ x[7o;-po) w0+ =) Tv] s [ G, vy ) % (e, 00
D B
T (x,Y, (x})dx (4.6)
When ¢ — 0 the right member of the above inequality wva-
nishes and therefore by (4.3):

5 k(pj~po)§g ds<0 for i=1,2 (4.7)
2(DnP) - ;

20
From the maximum prlncinTC é->o on DAY P and thus

P;=P, On DﬁDP for 1=1,2.
4 This yields that p,=p, in P and hence in (x_,y,}.
The equality of Py and p, in A, and Lemma 3.5 imp1ﬁ$that

{p } 02>0} and therefore the uniqueness of the soluti@n of (V.P)

has been proved.



REMBRK 4,3, If

use the same arguments

REMARK 4,4, If
connected component of

servoirs the (V.P) may

- 12 -~
keC*®(D) the proof of the uniqueness can

&s in Theorem 5.2[6}.

we do not impose the condition that each:
the wet set is in contact with water re-

have more snlutions ([6]g[loj).

®

5., THE CASE OF THE *AI'HSOTROPEC MEDTUM

If the porous medium is also tanisotropic, Darcy’s law is
written by means of a permeability tensor kij(xx,xz) wihich is sym-
i pe
metric and positively defineds

Thus the physical problem is:

| dkep 9 kyy
(div(kVp)zu(:Dx + o Yo P20 inK?,
g 1 2
p=H, =%, on Szi ;» p=0 on"S3 : :
{ ; =)
op e =
= 3! .g..Rw s § s o=
p O § a'{ij 6’ % J.di }{i 2ni on }L2 Y (X,l )
\ J

whaere we have used the summation convention for repeated indices

and we have denoted x,y by Xg1Xge

If (x4,x,) are the principal directions of k then
e & ¥

k12=k21=0 and hence the variational formulation of the problem

(4.1) is
Find pé€K,
' : {5.2)
dp - 2(v-p) = dlu=ph
[x; 4522 Wfﬂ(p)hzz D) 5 0 Yvex,
D J i, 2

in which we suppose that kij€H1(D)n e ) for'iqui,Z}

THEOREM 5.1, There exists. a uniqiie solutién peHl(D)ﬂ CD).
of “(5.2) .,

The proof uses similar argumentsswith those of paragraphs
2k
22

9 Xy

3 and 4 if we suppose that 20

©
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6. NON-HOMOGENEOUS DAM DISCOMTINOUSLY STRATIFIED

1ln- this paragraph we consider a dam formed by two layers
Dis'Dzuwith permeability coefficients k1=k1(x,y), k2=k2(x,y)

respectively, where:

K€ ul (D) N L ”’(Di) , k€ al (DINLZ (D),

(6.1)
5 k
k- ke Zidh =0 e iﬁl 0 2m370
1752 e
Therefore.if we . denote by
kix,y)= (6.2)

we observe that the assumptionsiof the first four paragraphs that
keHY(D) is not fulfiled.
977 The variational formulation of the mechanical problem is

given by (2.6) also.

Following the first part of the proof of Theorem 3.3 we obtain the existence
of a solution of a weaker problem: :

fFind pek, Hel (D), 0<H<l, L :
' (6.3)

jkVp,V(v—p)+‘fkﬁma(v—p)ao, Yvek.,
oY
b D :
From (6.3) we get:
div(k,Pp)+(k,H)y = 0 inn@'(D,) (6.4)
daiv (k,Vp)+ (k) y=0 in §(D,) (6.5)

Using the same argumerits as in Lemma 3.5 we obtain that
p(xo,yo)>0, (xo,yo)eDi inplies p(xo,y)>0 for all Y& o (x,y)éDi.v
Thus the free boundary is a subgreph iin each of the two
¢ layers Dl,D2 and hence a free boundary configuration as the oue g
obtained by Comineieli in [3] is not theoretically justified.

"The results can be extended to the case of more -layers.
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