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NUMERICAL APPROXIMATION OF AN INCO”DRESSIBLE
BIPHASIC FPLOW IN A POROUS MEDIUN
by

Mioara MELICESCU—RECEANU,and Anca RADOSLOVESCU

Abstract. This paper presents the numericai”approiima-
tion of an one-dimensional parabolic degenerated non-linear
diffusion-transport equation, which models the ndn~stationary
flow of twc imiscible, incompressible fluids through porous
homogeneous media. In order 'to obtain the discrete solution
of the problem, finite differences in time and finite eléments
in space are being used.

1. INTRODUCTION

In the Oenéral framework of the mecaanlcs of o0il recove-
ry, the problem to dlslocate oLl by water from a deposit has
known various approacnes. Omeor thege s due Lo &: Chavent, has
been .to consider the g lobal pressur@ and tue moblllty of each
fiuid starﬁn  from the hypotneoes of relative permeability and
capillafity pressure, which leads to a parabolic diffusion-
fransport equation in order to describe the phenomenon [11

Juie¢LCdllj, the problem was approached [2 3] by means
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of‘discontjnuous appfoximations for the-:saturation. The reason
of such a choice was that for high water injecfion rate the
parabolic diffusion-transport equation behaves like a first
order hyperbolic equation, which can be solved following the
ideas of Lesaint[4]. The way for solving the discrete problem
obtained by the discontinuous finite elements, was to use a
mixed. Tormuliation ag in the paper of.Raviart and Thomas[5].

In our paper we employ & numerical approximation methnd
tfor first order parapollic degengratea non-linear<diffusion -
transport eduation with unilateral boundary condition. In or-
der to obtain the discrete solution of the problem we meke use
of "finite differences in time and finite elements in space.

In the second section ofithe paper-we give the mathe-
matioal‘modél of *the flow of two imiscihkle, incompressible
fluids through porous homogeneous media.

womThe “thirdesection details the numerical approximation
of the problem. PFirst, we.construct a semi-discrete Galerkin
approzimatien of the problem by using the shape functions as
a system of test functions. Thén we discuss a number of pro-
blems connected with the numerical technigues employed, such
as the type of finite elements-and the numerical integration
scheme.'For time discretization we use-semi-implicit scheme,
which is described at the end of the section together with
Richardson's scheme for automatic monitorihg of “the time.step.

The.lastlsection is ¢oncernedzwith nqmérical results
 which are compared‘torexpefimental data available in the

literature.
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0. THE PHYSICAL PROBLEM

Let us consider a core sample of ﬁomogenedus porous
material, with porosityi), permeability K., length L and secr
tion.G} which we suppose to be initially filled with oil. We
Lugjecd a-Q(t) flow of water through its left—hand side and we
observe the flow of oil and water recovered thrdugh the Tight -

hand side of the sample. The lateral walls are supposed water-

proefs
5t e
Q(t) | : i oil
z , il EE— -
water ey Bl 0il + water
4 >
=0 = Xl
Fig. 1

' ﬁGfavity effects are ignored, The axis of the sample .is
chosen as x-axis, while the variations. of the saturation per-
pendicular}y ta thie axis are neglgoted.

Denote by u(x,t) the water saturation at a point xézi:
EO,L} a% time téfO,Tj, where T is.the maximumvtime lapse du-
ring which-the flow is being studied. Let q(t)=Q(%)/(20) be.
the arithmetic mean of the seepa;e velocities of the two fluids.

The displacement of two imiscible fluids through the
pbrous mediuwm 1s 5overne@uby Darcy's law, which leads, by
considéring the hypotheses of relative pérmeabilities and
oéppillarity pressure and the continuity equation F), to e

following equation:

(1) SR L Bk a(u) ) + ¢ 2 oo in Q.

Hére, the two real functigns of saturation a and b are

due to the relative mobility of each "Tluid aﬁd the capillgeity



are o
pressure, thé?vg%perimentally determined.

By definition the saturaiion satisfies the inequality:
0 LUl D) e VieTr +amieneBosndi:

lMoreover, experimental data show that the saturation remains,
as long as the displacement phenomencn is considered, between
two values U, and %Mf U being the resicual saturation in »
water (for_u<:u¢ there is.so 1ittle water that;ii Big " raippedty
within the pores and it cannot be displaced), while 15%M’is tﬁe

residual saturation in.oil. Hence:

'um é ulx,t) € Uy, VXjS; and té[O,?] =
At the right-hand side end «of the sample the water does
2 not-appear ("well effect™) as long as u(L,t)< Upye The first
time t° for which u(L,fﬁ:qM‘is intérpreted as the water

® break-throuzh time.

Let ¥ be the seepage velocity oL ﬁater, which may be

expressed [3] as:
P (x,8) = (T+b(u))q - K a(w) $2 .

- With these preliminary notations the initial and

boundary conditions are:

u(x;o) = u_ ’ Ve el o
- ulo,t) = uy ; Vi e(o,T9 ;
el = 0 o e (s
O @) —oEe vyt e (t*,77 .



-

The mathematical investigatioﬁ'of the initiai and
boundary-value problem (1),(2) was made Dby Chavent {13, who
has proved an existence theorem For*asolution o ) in the.

- degenerated case (a(0)=a(l)=0) with homogeneous Dipichlet
boundary conditions and an unigueness theérem for the one .=
dimensional, degenerated case. Later on he has given [6] an
existence theorem Tor the solution of (1) for both the degene-
rated and mon-degenerated case.

‘One of the approsches used in the literature to nume-
fically solve this problem follows the ideas of Ravirt and
Thomas [ 5] concerning first ordef paraboli¢ degenerated non -
linear equations, the problem being. solved numerically [2,3]
by means of a mixed formulationahapecifically,“a new unknown

Panction Mis  dintreduced, while eguation (1) ~becomes:

r(u) = - K a(u) %%.’
<?%% + %%r(u) + qiL%g%l =0 i

Next the approximation is;realized_separatly.for these;two
equations. . Then, by using a»Lesaint-Raviant_soheme £4],‘th§
saturation w is approximated by discontimpons finite elements.
Thig approach leads to a non-linear systém both dn tthe Implicit
" diffusion case and in the explicit one. Obviously, to solve
suchma-non—lineaf system, one must make use of an iterative
method .and this secems to be the main disadyantaQe of this
apﬁroach._That is  why we shall adopt in thelfollowing B 0=
fferent solvin; method wiich will be~sh0wh to-have definite

advantages with respect to. this.approach.



3. NUMERICAL ANALYSIS OF THE PARABOLIC EQUATION

3.1 Semi-discrete Galerkin approximation.

j In this section we will obtain an approximation of
equation (1) by using finite elements in space and finite
differences in time. First we construct s semi-discrete
Galerkin approximation of (1) and then we make use of g
semi-implicit scheme for the time discretization, This approach
‘leads to a system of 1¥near al5¢brai§ equations that allows to
estimate the position of the saturation front and to determine
the water break-through time.

The finite element discretization in terms of spéce
elements "of problem (1) suppose the division of the interval
in ¥ fimite élements'and to seek the saturation ol ) 1o e
Torm:

N 4
(3) Uty = :E: ﬁ;(t) WJ(X) ’
J 2
: i |
where N 1= %he nunber ‘of global.nodes in finite element mesh.
The functions Wy g e ooy Wy form g Sysfem of N linearly independent

shape Tunctions, heving the pro rety:
e 9 =

Wi(Xj) = S

1 0 Bl l

where x4€£).is the absCissa of the glopal nede j. We suppose
< .

P

4

Wl?""W“ of,class &° in\fl.iThe partiouiar chdice of these
functions will be discussed 43,2,

Siﬁce a gontinuoﬁs dependence on t*is Stild assuued,
u(x,t) is referred to as a semi-discrete Galerkin approximation.
Note that the coefficients uj in (3) are functions of time t.

They are the nodal valuss of the saturation.



We will use the Galerkin method [7],'employing the
shape functions Wigees,W 8S & system of-test fumctions. Thus,
multiplying (1) by W £for 1=2, b, jhere P=N if te,[O,tf):

and: P=N-1 if te[ f‘,T], and integrating'overfl, we find

s T L
N
S @%%;wi dx - 3 %%(A a(u)aw)f dx + S q ﬁ%b(u)-wi dx = 0

@ 0] O

from which, inte.rating by parts, we: obtain:

S@%% Ax+ S Ka(u)%ﬁ %r% adx- S q b(u)ggi A
0 0 o}

(4)

Hj

+[(q b(u)—Ka(u>/%%)“”i]~ L = O 9 i:2,-.-v’

oW, introducineg «{3) inte (4)uand takirig “Anto account the
initial “condition (2)1, we obtain:

(

N
> hs(8) mys Zu VRO
BBl K=l
L‘ ui(O):qM, . uj(O)zum Eor. g=2;% .

where &j(t) denotes the time derivative of the nodal saturation

u. at time -t and

J
L
(63 mij:&i!'g wiwjdx ;
0 : :
- L5 Dwi\‘/
(7) S SlJ(t>: SK a(u) ,a—x—“;é"‘;zﬂ" dx -
o
(89 ﬁfcj(t)z S q b(u) 5—— dx- {fq blu) ha(u)EE:u (t)——i)w }
¥ 3 Y e x=1

It should™b&" al&o noticed that a and b depend on x and t through



the saturation.

Assume now that the nOdai saturatiog'are known at time
t and that we want to estimate their values at time t+At when
At is a small time step. We assume also that both t and t+At
- belong to the same interval [o,t] or [t ,0) and that -the
functions a, b and g preserve théir'values at time t during
the whole time intervél [t t+At). Consequently, the funciions

(t) BEnd ¢ (t) have the same proprety- :

For. the determi natlon of the nodal saturations at time

t+At ‘from system (5), we may use various schemes of time

integration. If we chose an explicit scheme:
woltaAt y=u, (t)+u. (£) At
= 3] <)

the time step required for the numerical stability (ses [ 701)
would be very smell. Therefore; we wiil use the semi-implicit

gcheme:

'(8) ﬁj(t+;eﬁt)

and we choose @ét%wlj for assuring an unceonditional numerical
stability. As shown in [ 7], taking =§, which correspons to
the Crank-Nicolson scHeme, leads to the highest accuracy of
the solution, blLean resulf in some spurious oscillatory
effects. On the other side, taking 9=1, which correspons to
the fully implicit scheme, reguires the use of smaller time
steps and hence increases the computing tinme. CO@geguently,'

il
we will choose 6e(5,1).

——— -
s ”

Writing system (5) at time t+€A4t, taking into account
the approximation (8) and using the linear approximation:

L]

uj(t+{}At)=(1~e)uj(t)+6uj(t+At) i



we obtain:

2
(9) }_ ey (t,88) ug(oras) = £,(8,86) , s
8} OFEEe ;
: ‘§=2 A ‘

where:

: = : W
(10) ey (h,00)=d +ho,5(8) K aluy(+)) D—img -

P
a1y f£6,88)= Y w, RO ICS At)-s, (tﬂ+c (5)mi
: {=2
“("Si.l*SiNg 5108y ,

d\’\l .
g b(u) ﬁ”“ dx +<481

3
1N

ci(t):

O¢—t"

Thus, at each time t we have to solve a system of linear

algepbraic equations (9). The indtial conditions at time =0 arcs:

uy (0) =uy ,

uj(O) =u_ Saealh

3.2 Détamils of the numerical teciniques employed

We use Lagrancian three-noded finite elements. Denoting

b8 s Jedsabs, Lie finite elements into which the dmterval

-] 2

[O L1 9s QlJlQed Hld by L%, =102, 3, the-Toeeil’ nodeg, of the

'eleuent eJ we can write:

where Xk’ k=1, 2L+l are the global nodes of the finite element.. .

mesh.,



Let T =( -1,1) be the canonical interval. Then, the
interval Ij, occupied by the element ej, is represented.by:
h - : =
= 5 f+ XZj ’ fcl i Ite,
where h=L/(M-1).
We chooge the local shape functions on the canonical
interval I as Lagrangian interpolation polynomials of second

agrder defined em+l:
(P /$~\__;L_ l\/? 1\ (A\”‘l ?2 (A\__
; lh;)'g TLE=) oy $02 =k ’ (107 T)=

Then, the local shape functions wg associated with the local

nodes k% may be written:

’ A h = : -
Wg(:’.') = ‘fi(3’> for T-”—"é‘f * ngs Sl g <l

end the global shape functions wk

*

gssociated” withy the global

nodes x, are:

wk(j) = Pi( Hj‘— H-XQJ) for =125y J:l,XL,/ ;fgili,//ﬂ/f’f’//’
where k=2j-2+1. Consequently; we have:

%23+1 . 1

' i Lo & &

Ej . sz’_zd}_i(r> Cfg,— 2 S (Pl(:f> GT ‘)
and '

. B T R T e

2j-2+1i¥7" T h jDi h iR e Leaeh. JE1e e

from which we obtain:



= e

2j+1 ;
j w'J L1(3) dr = S‘y lsdl -, 11,0 3, s A

e

X2~;+1 - iak::’—sz’}s

S LE RERG OLL Y q.k(x)dr Skf (30065048, J=T50,,
=

35 i i 365 i A RS e b

§ ‘The relations mentioned above will be employed for

\‘\*A“fssgmb71nh the matices Sij’ mij and Cye .
| Bl Wie shall also use the Gauss-Legendre numerical integraticnr

g formula for the canonical interval ‘I = Lnl,l] s namely:

L

- jf(S) ey - %[5 ( V— )+8F(0)+5 foJ§ )|

=]

whefe f is.ene of the fanctions Wl %b or(fé

«Appling the Gauss-Legendre scheme in (7) in order to
eaTeculate S5 (t), we need the nodal values of the function
a(u)-at the;lnuesration points, Unfortunately, we know from
the literature [3], only some tabulated values of the functions
A(u) and b(u), where «' (u)=a(u). Fbr this reason we make use

of the following formula of numerical derivations: =

n .
1 (=11 2y 5
(35 a(u)s ————or ( Uy )
- (iadyB gz: (i= l)‘(n—l)’ 2;4 T—I S

i=1 k=1
J#1 k#i, ]

Whrexre yizd(ui), i=1,n ; d(ul),...,a(u ) are the known discrete
values of the function‘d(u) for some equally spaced vaiues
ul,..;,u of tne 0aturatjon, whlle Ax= ul ul_lbfor i=2,n }
Theiyalues ofsthe functions b and a at the integration
points areswebtained by linear interpolation from their given
values, respectively from their values computed by (13) for

u e 0 o u () B s A Tl
e e
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3.3 Richardson's extrapolation

The system of the linear algebraic equetions (9) allows
the determination of the nedal: saturation at time t+At from
their values at time t. It is essential that at any given time

“the integration errors do not exteed.a preset 1imit. The =
‘ e

—

o

optimum choice of the time steps 1 is+an important pxﬂblmm.'lf
they are too large the results become erroneous becauge of the
inﬁebvatwon errors and if. the time step are too'small, then the

computing time becomes too large. For this reason an automated

()]

time step wonitoring i3 highly desirable. The Richardson's

v

scheme, which we will describe in the following, allows to
éutomatically'choose the optimum time steps 0% in functign ef 5
the admissible error per step (see e.g.[8].or [S]).

Tt 48 khown that the semi-implicit time integration
scheme (8) gives an error ofi;erder (At)? per-step. Let u(t+At) :

be the exact solution of system (5) at time t+4t and derote -

)

P
\O

11

o

3l oI ; ; : ' 3 :
by u (t+At) -and u“(t+At)-the estimations obtained by us

ul

for u(t+4At) proceeding from t to t¥0%=in one step of magnitude
At and, respectively, in two steps, each of magnitude B4/ 2,
Let={At)- A he the computation error-of ui(t+At), i=1,N,
in passing from ¥ to t+At in one step. We assume thatlﬁi
varies slowly with time and is nearly independent of At when BEEN L s

At is sufficiently small. Then we can write approximately:

(14) u; (t+4t) = u}L(tﬂLAt) + (m)%i :
u ( t+0L) = ui(mgt_) + g(é}i ?‘Aj_-——4~'

‘from which it follows that:
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Sl

b e @ (4 At)11 (t40t) ;
i <At>2’[ : \ ]

(25)

The advancement of the solution from t to t+0T dgi
considered successful if the relative error, corresponding to

the step At, does not exceed a prescribed e T oen

(16) 1ol cas)? ()l ;!
where ('l is an adequate norm on &Y. Tn our computations we
choose:
4B s
1 2y e
(17) All= (f Z_Jzﬁ / T

which corresponds to a global caracterization of the error.

The-largest value A¥ of "t satisfying (16) iss”

o ( gﬁa(tw>? :
hall

If At > AT (the advancement of the solutiorn from t to

t+At-does not satisfy the error requirement), then we repeat

: ; 5 i . NI
the estimations for uy and.uz with t=A%t t may also be

desirable to reduce the number of tentatives by shortening

with § e[0.6,1].

t=84%,

At or when a prescribed

~4ie TiewW “tdde interval, taking

The process stops when At <
number of tentatives is reached. 'Thﬂn; the Richardson's
eytrapoldtlon Py | (t+At) can be updqte by (14) and (15).
)

Tl |

5 ( tep it = ui(t+ﬂt) ;

ui(t+At)

Therefore, the time integration algorithm can be

described as follows:

Thiass



C f < .
I. Choose E’Q’Y’nmax’kmax’zf

—~

Assemble the glcbal matrix mij by using (6) and take t=0.

Initialize the nodal saturations:

Bl b)susry g 152,00

\t) fﬁg’
IT. Compute  du(t)l by (17).

III. Assemble the global matrix sy \*), by ”“1ng (T )and (13)5
Take At={AT.
Compute < (t At) and fi(t,At} by,usiﬁ; (10) .end (13):

Solve the syst;n.

ri- ' ; , |
) eij&t,éx ) up (t+4AL) = 1i(t,At) B D

Compute'eij(t,ﬂt/2) and fi(t,At/Z) also by (26) and

(11), and solve the system:’

4 _
}Zj (t at/2) ul't+AL/ =ef.(t,48/2) GoisETT |
J=2 '

Compute s_aftﬂAt/Z), e (t+AT/2 NEAo) et £ (t+At/2,uv/2)
' from u (1+Lt/2), by ugdng Lk (10\ and (11). Solve the system:

P 3
P .
}_, ey (4+84/2,0¢/2) us (t+0b) = £, telt/2, 00/ 2); 127F .

j=2 A

Compute I Al by:

N a
1A= —— (%— (w2 (+0t)-ul (5+08))2]
1 (At)° LN Z;é 1y ul ¢ _J

-
—_————

g = L L
and take BF =[glult)|/1Ml) .

IV, Repe&t step III until At!; AT or:the number of tentatives
reaches k o

V. Take u. (t+At) DS (t+At) -uy (t+At\ Al R, and “t2tNt.
1 f = 1 w5 g
uN(t) gMgthen take t e



b

VI. Repeat steps II to'V until t> T or the number of time

g aches n .
steps reaches n .

4. NUMERICAL RESULTS

The numerical method has been applied using the

following values of the parameters: L=24 cm, P=2400:8,

$-0.156  K=1.3 107 E, =18 S I AR 10 %em/s.

These data are the same as those used by Chavent and
Coheh.[Z] and, Forges [3] and correspond to the rather high
water injection rate of 1 cmB/min, and a stiff water saturation
front is expected.

The minimum and the maximum values of the saturation
are: u _=0. 15 and Upe= G631

We take into account for « and. b tho estimations

‘given i B3] For 14 arbitrary vaiues of saturation between

0. and 0.63. In order.to obtain the values of a(u) we have

vapplled the ap\fOleatlon (13 )4

Uglnb approximations by po]ynomldLS of second order
the discrete sclution leaves the intervel Lum,gmj, so that,
it was.neccesary to extrapolate the functions a and b outside

of this interval. Ve take:
(

-1 if uéliﬂ
b(u): i 4
: e Tl Uy, -

For ugu,, gl 1) =0 ahd Fom. P Uyps a(u) was linearly extrapolated.
rFig;Z shows ‘succesive positions of the saturatién
front. ThHe two curves at time t=1882 s and t=1880 s correspond
respeotiﬁély to the water break-through time and to the last

curve plotted before that timen.:,

fhe break-through time t =1882 s was obtained for



the following-echbice of the parameters:{)= %,X‘: O8isf = 10—2.

The use of Richardson's extrapolation assures to
;0btain the break-through time by a relatively small number
of steps, the computing error per step being smaller than &.

A numerical analysis of the results obtained shows also
that estimation obtained for the break-through time is
approximativeiy -independent of the choice of 2 .and rx unlike
the estimation obtained by discoatinuous finite elements [2],
which depends on the time: step.:Table Igives the number of
iterations (IT) and the estimated break-through time (BT),

o

corresponding to wvarious selectiong of £ ;8 andt. .

g - ¥ IT BT
o
2L 5t 0.6 O Bif22 451 880
0.6 542 1880
52 0.8 | 413 }1882
107° | 0.6 5
0.9 364 11882
1 324 |1882 \
80 0.8 0.8 41753 1881
10 '
O mds 08 416 | 1881 B
i : 0.9 | 106 | 1891
10 0.6 :
1 94 | 1944
Table 1.
-2

It comes out that for €=10 the minimum number of
iterations, IT=324, is obtained "for9#=0.6 and T'=1. That seems
to be the optimum selection for € and ¥ as far-asothe computation

time is concerned.

= -
—_————

The numerical results are in good:agreement with those

obtained by Chavent and Cohen [ 2] and Ferges [3]. These
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authors have shown tnat by using a dlscontlnuous flnlte element
method onec obtains good results for break-through time and
front of saturation, but only for the transport equation. for
the complete eguation however they conclude that therimpiicit
approximetion for the diffusion is practically unapplicable
bécause of the. great computation teiine (18 min.ofor ap bime

gtep 30 gec. Yy and an explicit- epproximatiqn requires to

~chooge & Very sna 21l %ime step in order to assure the nunerical

stability.

fhe analysis of our results shows that the drawbacks
6f the discontinuous finite element or finite differences
methoed in the complete equation-(diffusion+transpeyt) axre
removed by using the present metnoq.

TE eéneluéioﬁ I san be Said that by using the semi -
disarete Oalerkin method together with the unilateral

gondition at the right=hand side of the sample, gives a good

apxr@ﬂlzei'on of the Uﬂturatlon front and of the water

break=through time.

A@anle -ements, We are much indebted. uovDr.Hgl.EFﬂ

el W aor W . e o F o e
fer su*ge mné nk,?mﬂﬁm and for his interest and help in

realize 1it.
We &ré aise deeply grateéeful .to Dr.E.S00S and Dr.C.
TEODOSIV - e | oy s engoen Whoge
-é&gg@“ti@bé were extremely ﬂelpIUl in preparing the

final versiol eg %huae@xav : 3
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