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ON VARIEITES WHOSE DEGREE IS SMALL WITH
RESPECT TO COﬁIMENSQQE

FPaltin IONESCU

INTRODUCTION

= T+8, : .
Let;xd{mzk be & gmaath connected, nanﬁegenerate, complex.

orojective variety of dimension r and ﬁéﬁrae s Paﬂtshonne (see
project] y of «

\Haiﬁ) and Barth and Van de Ven (see [Baﬂ nrovegd that if 4 i8
"small" with respect.to ryuX must be & complete intersection.

The main result of this note gives a (sharp) bound such that if

.4 is "small" with respect to sy*Both the abstract and the embedded
3 4 $

structure of X could be determined. More precisely we shall prove

the follewing:

TP ¢ e = 3 i ;
Theorem T. Assume Xdcfwﬂ 5 is as above, with r}?; let. H deno-

te its general hyf‘PDW ane section.

- If d¢2s+1, X is one of the 1)1'0V1ﬁ‘§

a) A (biretionally) ruled surface -
L kY ,

3 + v e
ly) ruled surface;

c) A hyperquadric fibrstion (see {025 )
d) A wariety with w_- ”Q; H)T™, these are completely classified
2e% . 3

(the hyperquadrjc), Hel 0(1)

f) There is a reduction_(X‘,H“) (see (1.1)) such that X‘ﬁWB;

welOl, or x=Q?, weld@), or x=p*, ureld2)l, or xis a

2 . e
P~ - bundle over a smooth curve such that(%;ﬁ(ﬁf) induces ' (2)

- on. each fibre;




*

- If d=2s+2 and X is not as sbove, then either:: : o

g) X is a K% surface, or

h) r33, X satisfies ﬁ)} Np (H}

Some additicnal information in case f) i& contained in (1.6}
a)Y.,The 2xdmple of hypersurfaces of Cegfee 5 shcws that the bound in
Theorem I ie sharp.

The above result "expl&ins" the possibility of listing varie-
tiea bf small degree. Ii [ @W we have treated in great detail the:
cases when d47.

The proof of Theorem I requires the study of -the adwunctiom

mapping (see [ sM, [vdav] ‘IO ), whose-roots are classical. The
1)’ j? g ; $ 2

following resuliy which is of interest in itself, is an important
< # [ ] ; )i

X

i

gtep in the proef of Theoram I

Theorem IT. Let X be a smooth, comnnected, complex projective™

-

three-fold.end H & smooth very ample divisor:on it. Then, H.is a

“(birationally) ﬁuled supface if .end only 1f X ds,.pf one of the

following types: -

o e

g) A scroll (see (0.1)) over a curve or.over a!(birationally)

riuled surface;

&) A hyperquadric fibration (see (0.2));

A1 . 2 ;
v 22U, (H)®; these are clasaified in LIs}

i) trlw ~fold with @

I

4%

&) o2, nelden

miasiine.

?i i E.g .
or Q”,HElU(2);

——

e) There is a reduction (X",B') (see (lol)) such that X'§§P3,

3)

5 Aoyl :
! 630(7)1 ol QB H*&!U(a;i yoor X Viie h @ m%un& over a smooth

curve smch that Cywﬁ(H“) Jﬁduceu\}xE} on each flbree

Theorem IT can be viewed as a refinement, in'case H is a very
ample divisor, of a result proved different iy by Sommese (see
ES3] M, (2 4))1n_ca e of ample divisors. See “Remark (1.5) for a

more precise discussion of the relation between Sommese's resuwlt -

and Theorem IT above. Besides the use of the adjunction mapping,



Bl
‘our proof of Theorem II depends an«the results about three-folds:
whose canonical bundles are not numerically effective due to S.Mori
(see [ Mo}), and on a theorem due to L.B#descu (see &Blﬁlgg\ LY} )
which describes all smooth projective three-folds supporting a
gaométrically ruled surface asyan ample divisor.

I am indebted to L.Bfdescu for some helpful conversation.

§0. In this section we fix our motation and terminology and
recall some useful results.

The notatiqnﬁ{XrgH} always means that X is a smooth,connected,
complex projective algebréic.varieﬁy-of dimension r)2 and H is a
smooth very ample diviser en it. We mentinn a few standard notatior

we shall employ:

§

”KX GF’QJX - canonical QJVISOF'QP sheaf
mq(xjwh (X3 jwwrregwlurwty

g*X} =h® (Xyﬁk}mgeometr c gernans
~-g{C)=genus of a curve C
”pmfh, =h%(x, o&m), m%) - m-th plurigenus
»%i. ;ﬁlL(A,«Alban@se‘mapﬁing

4 QF~smooth r-dimensional hyperquadric,

We use [Hazﬁ and {GMH} as general references,

£0u1] If‘(xrﬁH) ig as above we call sﬁch a pair a gggggi‘if there
ié a morphism f:X-—=Y onte a smaoth tmdimensieual variety Y, with
1¢t{r-1, such that all fibres of f are linear (r-t)-dimensional ve-
rieties via the restriction fC}X(H) (in {Io)] these were called
"linear fibration&",.the term ‘scroil™ Eeing reserved for the case

t=1).

(0-2) A p&ir (XP,H) as above is called a hyperquadric fibration

if there ds & morphism f:¥X--»C onto a smooth curve such that the
(closed) «fibres of f are hyperquadrics via @}(H), In this case the.
£N

gingular-fibres of f are ordinary cones, see {IO] , Lemma (0.6).



The following theorﬁr plays an 1mpnjvxnu role in thls paper:

) It (x*,8) is as above, the linear system ‘K+(r-1)Hﬁ is

base-points free . if and only if (X ,H) ie not one of the following:

e A o P o v
T, meldtul, orat,melOLil , or v, mellU(2y, or a seroll over a
curve.
For a proof in the case of surfaces (which is the msin one),

See [VdV] Th.TI cfirﬁlﬁ Pﬂ0p3(1;$§, The result follows by induce:

tion on r, starting with r=2, see | To) Th.{1.4).

The maptf“‘}vw(r Iyl e when defined, isycallwu the adjunction

m&ppjnno'

The follgwirg result is not difficult (see for imstance | Io)

=

Prop.(1l.11); see also \? "Tha(l.2) and-ThH.{1.3) for generaliza<

55

tions).

(0.4) Let (x,H) be as above. If the map Y 3Wir+(“ml)H\ is defined,

we have one of the following:

|
w3l O gjFs

b) dim Y(X)=1; in this case (XP,H) is aihypeyguadric fibra-

T
a) dim @ (X}=0, or oujvalénulv

- Gie o . > 1“["" 5 . .
e) 23, dim'P(X)=2; in this case (X ,H) is a.sercll over a

bvrface*

D e—

d) din ¥ (Xy=r.

We need the following elementary lemma (see for instance Gt !

[S.7] (0.10) or {T0] (0.7)). -
Dt ;

{0e5) IT. f+X—>P is a morphism and DcCX'an ample effective divisor,

wehave £(D)=Ff(X) or dim £(D)=dim D.
The following lemma was noticed by Sommese (see [51} (2.%.3 s

* Since the argument is simple, we include it for conveniencewiu:



®

‘ 2 .
(0.6) Let (X ,H) be as above., Assume the map Y= \kemy L is peneri-

cally finite. Then, any one-dimensional connected component ¢ of

a (closed) fibre of Y satisfies: (H:C)=1, (Ga)ﬂCCwK)ﬂnl,

Proof, We may replace Y by its Stein factorization. Let E
be an irreducible one~dimensional component of a fibre of ¢ Jeiven
thé reduced structure. We have:

O=(P+K«R}, so (K-BIL-1, and (E2)+(E9K}>m2 by genus formula@
Sinece (Fd" (see [ﬁu}) it follows: (E 1=(E-K )«~} aﬂd (H-E}=1.

gsume there would be another component.EF® (wmth reduced structu-

=

re) meeting E. Tt ;Silﬂiﬁ Q}{E+E*}2x«2+2( BsE*)20 - a contradie-
tion., Since Y factors through the contraction of E, it follows
that the fibre is alsc reduced and we are done,

The following result is a version of the-classical "sweeping-
outt.methed, In epee pr=Hit dpﬁé&? in LI X Prop.(5.1):.®ee also,

{551 mhi (1.2).

Tl AR ; iy R 2 S
(OeT}e Let (X ,H),» %3, be as above.and let f:X—>Y be a genericals

ly finite morphism. Let E C H be a connected component of. a fibre:

. g e PP R
of the restriction f|, end assume that Exp ?,C}F(b?ﬁ@(»l,p
- A
;{:}‘l"y- % LS "1"" v
ﬂ’fq} G pﬁktﬁi>. Then, there is a divisor ¥ € X such that F {\ H=E
oy e i S U

(so_that F2p"~t, O 2 0t-1), O, m®0, 20y, £(r)=one point).

We sketch the proof for reader‘'s convenience.

Proof. The normal bundle of E in X is given by an extension:.

O = _,%53 ;
g E(rl?“ﬁwaYX (i_f“?(h
Since Fl (o f=d) )= ‘i(g‘(L))—O WP~get H (R )=0 and hoN, ) =r-1.
ot : E/X E/‘(

B

Therefore, the connected component of the Hilbert scheme of X con-



?

taining E has dimension r-l, Let F € X be-the union of all defors

mations of E in X; we have F#X since daim f£(Xj=r. An essy dimen.

sion count shows that through a general point of,F"thQré passes
a (r-2)- dimensional family of linear varieties of dimension r-25
contained in F. It f cllows easily that Fe y r-1 and the rest is
cilears;

We will meed the following reéult of Bidescu, see_EBi} TheS?

FB?1 Th.1 and Th.%, and VBS

S

o

(0.8). If X is a smooth complex projective three-fold supporting

a _geometrically ruled surface D ag an ample diwisor, then: either

; o ? !\ o ° ’:}." 2 “
X 1s a P -bundle over a smooth curve and ( ’X( D} induces O+(1} on

4 oy 0 e pe 3 ;E. ,.:E,‘ r ‘ ; © o
each fibre, or, in case DEP™ x B, there are two further possibi=

o2 . '2) ey ':jl «-:.v“'g!"-»t ;
lities: X=PR7, Déhfpwi ngxﬂcfg‘D&HKi}\o

TSR g L : i
§1. Let (X ,H) be as in QQ@ Arr effective divisor ECX isical-
. ; 2 BN
led @zczntlpr*“ AP B 1} Gi( {-1) and é% (H;”\J (j( Yo Note

that the set of exceptional divisors contained in ¥ is finite and,

in case PZS?'aﬁv two exceptional divisors are disjoint.

(1.1} Following Sommese (s @@éqﬁzf
Yoo 2P

} we shall cgll a pair

s s T ; : h .
(X!,HY) the reduction of L ,H), ro2%,if there is a morphism

G:X —>X* which is the contraction of all sxceptional divisers
Elfe@*gEk,conﬁainaﬁ in X and H* is the (unique) divisor on X* such
; i P i , 3 . s 3 2

that H=G.(H )~Ej-ces~Fy; in this case H' is ample on X', see for

vimst&nce‘KFI], Lemma (5.7).

(1 2) lemma. jet (“J,H) b Al xn §0. Assume that the map

= {ﬂK+ "\ is generieally finite. Then, the reduction (X*,H") of

(X,H) has the property that %'zi?iK'+2H*l is a finite morphism o

(here K stand for Keedo Moreover, keep ing the notations of




(1.1), we have %’s(¢05'a

Proof. Assume there is some excéeptional divisor coptained in
X (otherwise, let (X*,H*)=(X,H))s Let G :X-—>X' be the contraction
‘of all such exceptional divisors Eysece;Epe It follews by-adjunc-
tion formula that ¥ contracts to a point any exceptional divisor.,
Therefore, we get a commutative diagram:
(p‘ U) -+ € i« E"“%‘ ¢ ; * £ ;
X—3»@(X}. If H* is such that Y={ {(H )mE] Teso=Ey, 1t follows 2a-~

Ui} /<£ﬂ ' sily that the map Y identifies te ﬁ{°~(ﬂw147”ei (whe

X

A re ¥° denotes KXQ)»‘Moreover,as we remarked-in (1.1),88¢
is ample on X'. We only béve'to prove that ¢ is finite. Assuming
the cOntrafy? there is some integrél curve C on X% suchithat
(2H*¢?ﬁ Q)=0. In particular (K*<C)$0. Replacing 4 by its Stein
factorization, we may apply {M@} Cor.(%.6) and Tho(353)-ﬁo;deduce
that.there is some integral divisor E on X' contracted by % *. Sup-
pose that<€'(E} is a curve. By [M@} Th.{%.3) it TPoliliswa that o fiu
bre F of. Y*contained in E.wouyld be isomprphic toxpl, with normal
bundle of degree -1. But the relation (24'+K's« F)=0 implies that the
degree ‘of the normal bundle of F‘ﬁust be even. This contradiction
shows that E is contracted to & peint. Lettﬁ be the ‘proper trans-

- form of E via @ . The restriction of ¥ +te H, which

s essentialily

}.Jo

o
the adjunction mepping of H, contracts ENH to a point. Therefore,
it follows by ( 5) and (0.6) that & is an exceptional divisor.

This is absurd. Thus ' is finite and (1.2) is proved.

(1.3) Remerk. The above lemma should be compared with {Sﬁﬁi Th, (1.4
; e e 44

Under hypotheses similar to that of (1.2), Sommese prov%d that

the restriction of the adjoint system of X' to a generic member of
itself is-ample. Thanks to the powerful results due to Mori, we
were able to deduce the ampleness of the adjoint system on X'

This will allow us to use B#descu's theorem quoted in 50.8).



- g s

(1.4) Lemma. Let (X?,H) be as in §0. Assume the map ¢ =fig+2m|

ig finite. IF Dl we have 7({D)=q(X). Moreover, if D is
e il e Lave O 5 L

smooth, it followse

a) (H ) RWVnB) P Py , (H)=0 |
b) p (D) =() 1«“1 7’)2(“} :(e . : ) : ¢

Proof. Since:D is arpje on X, we have q(D)=q(X) by Lefschefz's

R A

theorem. Assume that D is smooth (hence irreducible) and pg(H;«Oc

It follows by adjunction thdt we have:

e e e
(1) | Ky+H|=0.
By duality, 12 (0L (-1))=n (L (K+H) y=0. Together with Kodaira

vamishing this givés:

(2) % (G (-m))= c/“” (K+H) Y =0,

The exact sequences

(3) o-7C% (~uy— & «~$5ir —3 0

and (2) imply:

ROETCAEICAY

Noﬁ, use the exact sequences:
S (9‘"-_.4.5 { & —— (9‘) : @’» \.A}'
0>y , XCQ) « (DI D
'Ii follows:

G oR0)=xmn)-x

S s Ve RS



0
. By Riemann-Roch thgorem on D, we gets
(F):x»(* (038 Op) =3 (G (@ Oy @J(m@f}(;@m“l)m(ﬁ”
Next, the exact sequence: : : i
O“mﬁ% KaH) ~ >%(D;~~ A}(H\Jf?‘“g@ @H,w—w Oy

together with (2) imply:
{1y % @“ =X ® G- Q0 )
CORIEA <O N8 0,R6,).

Riemann-Roch theorem on H gives:

A vl e o Lol prnin (B G A e Y L f o
(E)}‘ X’ <L ( @‘é}{{@u’l{} “?k‘(rz}b(x{i)@ Vl{é QJI’I i \/Xcﬂ}““\ Q{)‘* 4 \\"},IJ’ o

pPutting together (5), (7), (8} and (4) it follows:

I .oy N, o :
(Q}'}\(a (v\\fy\(p)} é!;( ;ICH)G(/“} E\,f).‘ 3}{ f““»);vt )

This equality cupled with (6) gives:

<

£, n‘ ,“Jz-', \ &, WY A \.j' e " S )
(10} (& (RERR & (B )+ (& 018 Vi-mel@w,)= zﬂ@” )

3 H HE X Sl okl b
Since we have bv adganctlomfuh*éi(H#Kiuﬁz and &JDw@£(2H+2KX@@b :
; the relation (10) turns out to be equivalent to @QD)Z Sﬁ{ug),whlcﬁ
is a)° g
< Bl Assume now that nZ(Q) =0+ 1t followc that gEkX+2H§*ﬁ,.ﬂo we

get by duallty:

(11) H'fté};(wmzzzﬂr@ (2K+2H) ) =0.



2 ; ; :
Moreover, we haves prg(H)mH“(@%), This equality, the exact sequen-
2 :

ce () ard Kodaira vanmishing 1vew
oy
12y mw ¢ (Q’) I

Finally, we use the exact sequencc:

c % 3 : £ ’,i)%) iyt
G- é:} = 'L/.F ~—3 T D == i

3

P Y i ; ,..,,f.
it follows by  (Z1) and (12) that we have: O=H (@l) pp(ﬁ;e This
proves b} end we are done.
Proofd wf‘“hﬁo“e T

&

E

It is easy to :see that, in each of the situations described in
cases a) to e} of the theorem, H '“‘a rPuled s suriace, Convopsely.,

according to.(0.%) and (0.4), we only have to prove that if the

e

mapigmiﬁynﬁﬂw»:s generically finite, the pair (X,H) mist be as in

case e). We divide the rest.ofthe proofiints five ste‘se
I

Assume thatf =P a2 is 'generically finite and re-
1 E+all ] ’ . =

place (‘(W by its reduction (X*,BY): it follews by (1,2) thet the

N3 1 S 04 121 01 s 7l 3 + v 4 208 Pk vt vy oy "
adjoint system | Z+2H| is ample. We warn®t to ‘prove that a general

P T — i maestan s setceren

member Delr+2h

H
3

,.
s
e
4]
m
2]

geometrically ruled surface.

Step IT. Since H is ruled, we have Pg (H}mpﬁ(q}zo gnd itifpl=
lows by (1:4) that (w)) “8(1mq;, where we let q:=q(D)=q(X). There-

fore, to prove-step I, it is enough to prove tha&tiéd. is birationally

ru]ede W@ treat senaratelv the regular and the J*Iepular basc

-t
——————

Step ITT: Assuming that q=0, we shall see that D5 (D)=0. The-"

refore D is rational by Castelnuove's c¢riterion. We use first the

=
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. exact sequence:

s

)w*v(tj\ ('\ ,")TT,;««-?C/ LA (K+H) y— (A); L)

&

Sinece py (H)=0, it fellows !AfhwéHJ% 3, 80, to prove that

D~ (D)=0, it would be enough to know that H 56 C3n+?}ﬁ =20, or equie

; e 2 3! 5 s "
(I3)Y -1 Q{ (~2E=2H) }=0.

Next, look at the exact sequence:

A- A b
0= t-2x-311) — & (Lope2m)— 82— Q..
j A A H :
, ; LR SR
We shave by duality H (@) x;?(&) =0y s0,t0 prove (13%) it would be
: e ¥ $

sufflclent to prove:

. A
(14) pr&}(’ PK-BH) ) =0.

Cl?v‘; o— C;( +H} > X(ZK**"H}“*W)C (H C.x’@n@wnfm%ao@

By (0.%) applied to the pair (D C%(H &)C} ) , we may assume
that the linear sy: t fgy(ﬁ)@HJ thwihas no baseoﬁoinis (otherwise
g

D is rational!). Since ﬁé(uk(¥+ﬁ )=0 by Kodaira vanishing and D is

ample, the sequence (15) shows that vf2Y+3“ﬁ has only finitely many

e

bas eup01nts. We uh&Ll gee below that (2K+3 l)J>O, Therefore, the re-
lation (14) is a consequence othR}, Th.3. Suppose now that

x :
(2K+3H) "=0. Tt follows that E2K+BHﬂ'is base~points free. By (0.4)

we may assume that (é§( }@Jﬁaé% ¥ )O (otherwise D is rationall),



3

ref Sdiml Yy=2, If T 10k s ted co ki
Therefore, dim ?i2K+3Hi (X)=2., If F denotes a connected éomponent,

of a general fibre Ofﬂwlgﬁ%%gi , we have:

Fw@}}((’ IS (74 "'&*‘”®CT m@Y,

: g P ' - % X 3 oy o
Therefore F is a rational curve, seo 6ega¢Fam2 and 4=%- deg{}v(H)éiyﬁ
2 S 7N

which is absurd. Thus D is rational it qg=0.

Step IV. Assume g>0. We shall prove that D is ruled showing

that the (mon-smpty) fibres of the Albanese mapping of D are ratio-

nal curves. Consider the foll owiﬁp standard commutative diagram:

4

pe b Rl 'd -
i el ‘¥%; %~§-3‘1>
o, ’ oA

[
| i

!
¢
i i \d v
4+ A “ A= 1
imxﬁw,.miimﬁgnxdnd“Tz“”LW“ﬁ
{'% e~ 5 1%
— ol N ﬂ i
(‘

St e e K : A
2, AR (RYEEE AU (DY .

By Lefschetz's theorem Alb(i) and ATb(J) are isomorphisms. Since

A 0

<

R is ruled, dimylmdﬁmlg By (0.5) w-and v are alsc isomorphisms. As®
it is well-knouwn, the fibres of « 4, and GQD (hence also of Lo} are
connected. Iet ¥ be a general (hence smooth, irreducible) closed
fibre Gf'“lxa Since H is ruled, g(H N F}@G& Then, by a clessica
result (see for instanaa-ﬁwj), F must bé a rational surfsce satis-

fyings:
. (16) (MF) 29 orv 8.
By adjunction formla we gets

002 (%CH)@ Op O tmel00,).




’SinCGOGD‘haﬁACOHHQCteﬂ fibres, it follows:
o€ & 0 M= (DI® 0> o Bu ) 4120, <2H)<“)(“f@fip G (1) 0,@) -

»

Together with (17) this gives,

a

(18) 0¢e(D M FY=(d,) Fap QZ (B :’fi{:w

We want to prove thate
(19) &(D O F)=0.

3

Assume this wonld be false. Tt follows by (18) that (é%(HY09’ .

re

v * {{Q%}”«?;.this inequality cupled with-(16) implies that either:

N
X

. =9, SoF < innd @Y( 1Y% % 621?;0r

...J
bt

e L AVER By e ; = 4 A
(W) € =8, (mrz)@%;‘“md? S0 FRP % P and LJ’”‘,.{fu)i@fkﬁiﬁwﬁii-,‘fl)@

. ¥ Rrivols SAECRD TR i
In the first case we get ®/CK+:HEEL54GCWI) and in the second
Y e A i (O s : : f’\
A e BOth possibilities are absurd Q$nctxzy;ﬁwuh)
s 9,

is ample. Therefore the relation 19) igs true gnd D is ruled.
I =

Step V. By the first step we have a geometrically ruled surfa-

197

ce Drelxv+2H¢] which is an ample divisor on X'. We may &apply (0.8)
to deduce that (¥*,H*) is as stated in case €)s. The proof of Theo-

em BT digcomplet e,

(1.5} Remark. Sommese (seei_Sé}, Th. (2.4)) proved a result related
te Theorem IT, assuming only the ampleness of H. However, his conel:
. ’ 2 sy : pA .
_Sion, at least in case of P ~bundles over a curve and hyperquadric

e reie T 3 o 3 = ol : T -, il
fibrations, is (according to the point of view in \”5]) only of .



birational typet OGur interest in proving the above ferm of Theorem -

T1 was motivsted by its role in .the proof of Theorem I. On the

other side, since Theorem (2.4) inh{Sﬁj was not the main purpose

of that paper and its proef is rather involved, we took the oppor-

@

" tunity te gilve what we think is a ratural argument, in the version

formulated above,

1

Proof of Theoven

g . . ; e =
It is knoewn (see foriinstance &Bug) that afﬁo*a enerute,

: . L g . T ' :
swﬁﬁ,hjcomn?c%@d) surface Xﬁ61?@ © with d¢2s+l is ruled and if

d=2a+2 it is either ruled or ¥%. We offer below & simple argume nt

4\3
)

LSk

&
for the sake ¢f '‘completeness. Let CCP ' be a (smooth, chnecie@?
nondegenerate) curve of degree @ and genus g such that d¢{2s+2. Com-

bining Riemannwaoch and Qlifford's theorew it follows that either

.—«,—_’!

d>2g or C is.a canonical curve - see LC L 9‘pﬂ2550 Therefore, if

g4+2

XﬁCm is & surface asg gbove with d¢{2s+1 and H ﬁenot@s its gene-

ral hyperplane s

@

ction, we hﬁmﬁﬂd>zd<H}nﬂﬂﬁjuﬁtiiGQ fformula yields
{(H<K)<0. Thus p_ (X)=0 foreny m>l and X is ruled by }nrwgues"cri~
teryon., If d=2s+2 and H is embedded ss a canonical curve, it fol-

3 T ,1.-7 S o S 7 v;':i o 5 FN = S % S
lows via Noetherts theorem (see EGmng,90255} thet g (2)=9, Bg(éq{H)}~

e - £
; o d o o ¢ 93105 Fro $m& e - i’-? ,“é)'j

=0 and X is linesdrly normal. By adjunction (H»XK)=0 and H" y(q)%z

e

e : . 5 5
. =H €é7(R~H);"® alﬁ@@!ﬁ@i%ﬂiow We get by Riemann-3Roch theorem:
Saéf_%.’:mhg{_égé(ﬂ)}ﬂ( (H) y=8424p, (X}, so Py (“{’)

since (He¥)=C, we must have ooﬁféé& Thus ¥ is a'Kﬁ'surface. Case
hy of Theorem I follews by induction on r¢?ggingwgdjunction'formm»
la and lefschetz®*s theorem. Using (0.%) and (0.4) we get the cases
1b) to e). To:finish the pfoof, by (Osd)yil@e5) aﬁd Theorem II, it

is enough to check the following:



CX%,H) ig & pair such that the reduction of H is one of

those listed in case e) of Theorem IT, the reduction of (X4,H)_

» 2
is Xtap®, Href "( f, oreover, there is no (smooth, projective)

five-fold whose hyperplane section is X, with nmormal bundle U}fHY,

: A : : g T 5 : :
So, let (X ',H) be such that H has = reduction which one. of

1t

those listed in Theorem IT, case e}. In particular the adjunction

mapping (both for X and for H) is generically finite. By (0.7) and
-
2 e B o 5" } - b 5 4
L?l] ‘Lemms - (5.7), it f0¢lowa that P“ with normal bunﬂiefg(ﬁ}ﬁlor
oo g 2 : -
Q° with normal bundle H( }yoraP ~bundle over a smoothicurve with

nortmal bundle inducing 6(2} on each fibre, is an ample.divisor on
the reduction of X. Using lLef fschetds theorem one can prove (see

for instance B.}.Thgl and Theégiag Th.2 and p.20, or LFi}) that

!
s
ke 2 - .

thls 15 possible only for @7, and the reductdon (X' HY) of (X 9H)

si
4 ) - & : ol b x o [
must be X'sp ', H'e|O(2)] « Tt also Follows that, for r)5, there are

f*

no other possibilities and the proof of Theorem:I is complete.,

(1.6) Remarks. a) Concerning the pairs (X,H) with d¢2s+I Listed in
D R
¥ ] . ; S £y P 9, - Y g ¢ /;
Theorem I, case f) we remsrk that if X tvip” (respectively Xtxg or
o 4 : : 2 : ; d : S
Xiup )., X ids ocbtained by blowing-up at most 6 (respectively 5) e

-

points and this cases really occur.

b) Buium (see (Bw]) investigated the abstract structure. of
L A
2. S . :

surfaces X,v,“@ with dg2s+5.
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