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Tntroduction

e [ :
It is known (gﬁj,ﬂéj,wwﬁ) thatiany ;topological vector bundie
on the projective space jP, has an algebraic structure.On the
o > 5

other hand; %n @4} it is shown thst any topological vector bundle

a rational surface (complex,projective,nonsingular) has an
algebfZTB\atructure,

in [2Z]one ciéssij}es the topoloéical vector bundles on
complex rational BMfOiag[uaing ideas From“ﬂﬁj,and one proves

that the rank 2 topological vector bundles on homogeneous

rational 3-folds (IP,sthe guadmi® .0

@ 3‘3’ z

,the f}ag manifolth(l,Q),‘
%Pgﬂ?l and&?fﬂpfﬁpl) have alqebraié 9~3i"r'u<:tf.).r'€zs‘7

‘In this paper we prove the following:

Theorem Any rank 3 topological vector bundle on a homogeneous
ratiocnal 3-fold X has an algebraic strygcture.

Consequently,any topological vectdr bundle-on a homogeneous
rational 3-fold has an algebraic structure.

In Y44} Vogelaar proves his. theorem on the existence of algebra-

ic structures on rank 3 topological vector bundles on [P Dy

constiucting algebraic vector bundles as extensions:

0> 20, ——7 (1) ——>2.J, ()= 0
. ‘

.

where Y is a union of disjoint global complete intersection

: curves in [P, and the extension is determined by two global
sections of det N

i vhich generates this bundles
’Y“P:fs@ G)UJB( k) which g les
Then,by number theoretical arguments,he shows that one can _ Y«
choose Y,t and k such that the Chern classes of E are equal-to
given Chern classes (Cl'c°'c3) satisfying the topologicaly.
C 2S5 -
Ob???g?}lOﬁ CyCo=Cy Emad 2 -3 <

In order to prove our theorem we use Vogelaar’s extensions



o m2m
but we do it in their general form: extensions of ideals of
curves by arbitrary rank 2 -vector bundles.In particular we
obtain a short proof of Vogelaar'arfheorem fage 2.)).

As the method of extensions is .the wmain tocl in proving the..;
existence of algebraic structures on topological vector bundles,
we take this sppertunity to make some remarks about iﬁoSOhe of
them are given only for the coherence of the discussion and are

not intended to be published.

——————
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l1.Preliminaries

G |

1.1, Let X be a connected,nonsingular,projective 3-fold

over € and YC X a locally complete intersection (=l.c.i.) sub-
scheme of codimension 2.Let L be an invertible i@xmmodule,
s theorem dus essentially to Serre ( U] and fiol,ch.1, ¢5)

=~ ly and HZ(X;L"l

asserts that 1§  ‘det NY(X y=0,then therey
exists an algebraic rank 2 vector pundle F.on X appearing as
an extension:

(L) o fred é}x —eP oD Y @ L =P O

The Chern classes of F are given by 2
2} e, (F)=c (L), c (F)=LY_
(2) ey(F)=cq(L), stFy=Ly ]
Serre‘s construction has been extended by Vogelaar to rank 3
vector bundles.As stated in @ﬁl, Vogelaar’s construction can
be described as it follows. Suppose det NYtyéﬁL*l is generated
AN

-1

oy 2 global sections t,.,t, and that Hd(XGL Y20, sThen. there

=2

exists an algebraic rank 3 vector bundle E . on X which. .appears.a

as an extension :

0 =g 2(9

: » E p Y &L ~— 0
X ud

we shall use this construction in its general form.We start
with X,Y,L as above and with a rank 2 vector bundle F on: e

: 2 ;
Suppose H™{X,F)=C and that det N XéﬁF,considered as a rank 2

v
vector bundle on Y,has a global.section vanishing nowhere.Then
there exists an algebraic rank 3 vector bundle E on X given by

an extension:

() 2 0 et F e B e > 0
Indeed,as'det i @’Fﬁf%xaif(,yqu) a global section t of

det N

: ; {
le@ F determines an element of HO(X,‘%xf'ﬁh”F)) and this

one lifts to an element e .of Extl(ffY,F),because HZ(X,F)zD.

If (3) is“the extension determined by e then: E is locally



iy
free ifiamd only if' t vanishes nowhere (the problem is locai,
hence one can apply ﬁ@ﬂ.ﬁﬁhI,Lemma_ﬁeAeB.),
The Chern classes of E are given: by:
! i =
iul(E)wcl(F)
7
¢

(4) s E}=c (Fy+1y]

where c.(Xl=ec. 5. ),
: Spbalmey Ty

The first relation in (4) is.a consequence of the fact that
c?mO for a coherent sheaf of dimension&£l (or,alternatively,
restrict the extension (3) to X~Y and observe that the map
o 2 :
Ho(X,Z) ~—» H (X~ Y ,Z) is injective).The second relaticn
. results from Porteous’ formula %] and the third one using the

Theorem ot Riemann~-Roch. If Xﬂﬁg,on@ can derive. the formulae (4)

using the Hilbert polynomials and identifying coefficients.

l1.2.Let E ‘etan algebraic rank 3 vector bundle on X.It
resul'ts from the Theorems-of Riemann=Roech that the Chern classes
of E must satisfy the relation

(59 (cl+cl(x)).023§,03 _(mod 2

(one identifies H6(xpﬁ) with Z in the usual manner).

On the other hand,in E@]it ie shown that the systemwms (61‘C?903>

which verify the congruence (5) parametrise the isomorphism.
classes of topological rank 3 vector bundles on X (X being here
a connected,complex manifold of dimension 3).

Tt

m

is an algebraic vector bundle of ramk r on X and L an

invertible {9 ~module,then:

X
cl(EéﬁL)mcl(E)+rcl(Ly

b~ -t

(6) < Co(E@L)=c,(E)+(r=1)cy(Ed.cq(L)+ (F)e (L)

™

+ \g)cl(l,):s

2
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recall now the

method of Ferrand E%jg

o3 en “doubling”

Let X ¥ beids n lai, and L an invertible é)Ywmodule»
Suppose we have an epimorphism gl/ fyé Sk »0.Let Z
be the closed subscheme of X devermined by the ideal:

Y =ker( f‘fY e T A | :: B

Then Z' 4s a lu.c.i. subscheme ofiX of codimension 2 having
the properties:

(1) izl =]v]

(ii) det Nzgx%\" o det MYix®L"1,

As ;?Y/~3Zcﬁ L we have an exact sequence:

(7) 0-51 — 0, > ., —= 0
frém which we deduce that

{148) "’3{;{,( ﬁz)= %(@Y)-+»'}<, ke

We also have:

(+vyolzl =2yl

Let F be a rank 2 vector bundle on X.If de NYgxé§Lm1@3F has

i :
a global section vanishing at no pdint and if Hl(Y,ﬁet'NYéxﬁﬂ:)mO
then det NZQX@}F has a global section vanishing nowhere (one
tensors (7) with det N7§£®F ,one uses (ii) and so an ).

rational 3-folds

1.4. One knows that the only homogeneous

e

are:

Q3P

iPﬁﬁiPl and

“D

Py IPyRIPy . We prove the theorem

4ol )T oy
~inspecting each case.Here we shall make some general
conC@rn1ng the proof .

"Let- X be a homogenaou% ratiomal 3-fold. We identi
with Z,using the orientation induced by the complex

and HZ(X,ZQ with Pic X by taking the Chern class Cy

In each case the cup-product:

B ) A RN T) e 2

is a perfect pailring,that is,identifies HA(X,ZJ with

remarks

fy - ()" .z'w)

structure,



D
Hom., (H(X,Z),Z) .
e
One can choose a Z-~basis P fa £330 of H (X,Z) such
% ] 2 <@
i

that there are disjoint nonsingular rational curves C( )c; X

il , o onp @it
it T :
{p( 5 =e,, i=l,...,s.

Moreover,e],“e,eﬁ can be choosen such that if nelN there

ped

5

i e ; 3 ) 4 a:
existsidisjoint nonsingular raticnal curves Cg ),3ml,..a,8,
Ja=l, swieyl WILRE

g () :
LCS )j =€, S SRR R, R

et Ll,ﬁ.g,LP be invertible Qﬁxwmodules such “that f]ncl(Ll),

ace,fazcl(Ls) is the dual basis of el,,..,eS,(Im fact,frs,,a,fs

3)

can be realized as fundamental classes of nonsingular rational

surfaces).

¥ Ec e 18 a monsingular cunye and L an dnverctible (?V«

N

module then:
(o) g foy=e Ly L) % @ e

It follows from (8) (or from the geometric realization of the

dual basis) that if CCX is a nonsingular rational curve with

[C]=e, ther,identifying C with (P, ,we have:
- i .

Liic = d . gij);j:l““,s.

We a2lso have:
det Npjy == (det T, {C)® T (-2).
1 5

! o . o o~ ior ' 1 % S 5
Tf tyoeeoty are'lntcgerg > 1 @hen L1 ®... B Ly is ample.

-2

Firstly,we construct,using Serre’s method,an algebraic rank 2

vector bundle F on X as an extension:

0 —3» O, > F > J,BL——> 0

- das i ; > : o
where Y is a union of disjoint nonsingular rational curves Cg )

~ - e e =2
1x1,...,s,3ul,a..,ni with {pj l ~ei,ano L=det Txﬁ Ll@g,m é@hs :



e " oem
Me have:

( (F)sey (X)=2f - o~2f

\P“ €‘+s.«+ﬂ0
\ 4 1}

We construct then an algebraic rank 3 wvector bundle E on X
as & Vogelaar extension:

E ; n S
U mw.mm.-.-mi; = €7j“ I commmen a2 {g}; 1 mmmn% Qg o et O

QY

with Z union of disjoint monsimgular rational curves,some of

i g iy = : 4 . L

them doubled & la Ferrand and such that ZzZAY=% ,with T=L. & .. @L
L

k] K
= &h o & > g
tivm 0 and |} Li,ng@ @QLS ,kL = O

In each case we have to verify the coaditions:
o w '
(2) H (X ,F®&K)=0

(10)det N?{xﬁﬁFéﬁK has a section vanishing nowhere.

In order to verify (9),firstly we deduce »hw isomorphisms

2

H2 (X, F@ K) & W7 (,\,,; ®L®K) 2 gyt

(Y,L&KlY)

from vanishing theorems for ample invertible sheaves ., If CcX
is one of the rational curves contained in Y the choice of

= S z ¢ Emor =~ D 5 ﬁ Sl
kTp‘,,,kﬂ will inply that Lufkgc-wvgbc(k) with k20 and thus

B bl

1
i*(c,L® K{C)20.Consequently ,H 2(X,F® K)=0.

In ofder to verify (10) we notice that if Cc.X is a non=
sinqular rational curve such that C/\Ymgﬁ-then we have an exact
sequence :

0—» @ —— FlC — L{C i

Suppose L!C:’l‘i@c(a)eif sl ]l then F e (J (5% (9 If-az
then FEC ﬂif@ (u)%ﬁ(} with uz0,vz 0. The choice of kl,qo,kg
will imply that det C§ BOF@K has a segtion vanishing nowhere,

If C is doubled we apply the last remark in l.3.

2 Proof of the theorem

S, 1. axXsthe projective spaceéPB,



e

HZ(X,Z) has a2 basis consisting of the element hch(GQX(l)),

: 4 o ;

the dual basis of H*(X,Z) is h- and
36/* £ ‘ 3

of M (X2 1f LG X 18 5 curve theq

‘the Chern classes as

and that the normal bundle NF%V of
=3 N\

generated by global secticns.

We have to show:that if cl,c?,czﬁaz satisfy ¢ c.

is the canonical generator

iCEm(deg C).h?“e

integers.Recall that cy(X)=4.

a nonsingular curve CC X 1is

O

= Cq (mod 2)

then there exists an algebreic rank 3 vector bundle E on X with

S Gl R
Ci(L)»Ci,.L ]_, -5

Firstly,we construct,by Serre’s method, a rank 2 vector bundle
F on X as. an extension:
: TR o
C)__,,_,,,_,f‘} @x 2 = 2 . J ‘T“‘( ) D e O

+

where Y is a

Then we construct,by Vogelaar’s
0 oy F(K) e E( ) s
where L 1s @

PhRat s

union of d disjoint lines. We

method,E

as gxtension:

an

rational curves. such

for!<3fh We have:

R "":; S P
z -2 (0 5)
We have to choose dgﬂwz,t aﬂdi<3f)such that:
cl(&(t))mcl+3f
o
62(:(f))ﬂ02f201t+Jf
s, 0 Sk
.93(ﬁ(t>)=cg+cthclt +t
In other words,we have to solve the system:
Cl(E(t)):2k+2
; D

CQ(E(t)):d+2k+k‘+deg £

o, (E(t))=(2k+6)deg z-2%(0,)
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o D n

b
where we denote by c,(E(t)) the expression cy+3t etc,
1 :
We choose the class of t {mod 2) such that tg&cl(mod 2N

Then we define k by the formula:

1 5 . Sl :
km‘;‘CL(E( D =m§(cl+5t)m6

If tA@sthen k25> 0, The relation Ci1C, ugcg(mod 2) implies

(E(t)) = c,(E(t))(mod 2 ) (recall that ci(E{t))

£

As c](E(t))x 2k+2 we seeé that c%(E(t))EgO (mod 2).The last

equation of the system can be written:
3
4 = L e gt
~§’c3(m(t))_&k+5)deg il wtu((Q
From this moment we can solve the system by several methods.

a

The first method. We divide m%CB(E(t)) by k+3 :

L : A
= C (B(t))=(k+3)g ~r,with 1 &rLks+3.

& 5
TP 1 15 5 el L2
If t30, qcp(t( fu~§«t y k+3mb51t hence QHJ§°YA» It resulis

e issein f/

that for t>>» 0 we have r£q. Now let Z be 9/Gﬁlon of r-1 lines

and a nonsingular rational curve of degree q«r+l° Ther

(deg z=q, K (@,)=r.

~ ©y ’ - >
If t30,then c,(E(*t))-(2k+krq)n3t- (2 2 12y 2o (2,

It results that if we define d by the formula

d=cp(E(t))=(2k+k+q)

then d 21l for t 0.

The 'second method,We use two elementary lemmas:
Lemma l.lLet a,b be coprime natural number sl e ab then there

o S e

exist natural numbers x,y such that n=xa+vbhs.
Proof. a and b being coprime the.numbers a,2a,...,ba have
distinct classes (mod b).It follows that there exists xe%;,o..,b}\

such that nzxa(mod b).Then n-xa=ybi:and the condition neab

implies that Y20.



Sl

Lemma 2.Let M and N22 be natural numbers such that M

'».‘(‘s:
D
Z

Then there exist natural numbers x,Yy such that:

N

Me=N{2x+y )= X+Y ] .

V

™. Moreover,we have wmm/ 2x+y & Wigp?

=

.
B

Proofs~The asserted equality can be written as:

e AR A

e ' . i Py 2 :
Now,the existence of x and y{afwws from Lemma 1 since 2N~1 and N-1
: o A : : ey g 2 :
are coprime and M2 2N ;r(Zle)(le); The inequalities are the
consequence. of the fact that Oé:x+yg:2x+v,

s 5 1 3 .
If =20 lhEﬂ“ﬁﬁz(g(L))$ QKw;¢) ,hence there exist x,ye&lN

5

ﬁmC3<g( DRETE. (Ox+y)=(X+Y ).

)
~
B
(Al

iz

sl

Let Z Bé a union of x conics and y lines.We have :

deg Z=2x+y ,7&(»,w) X +Y .

If t»> 0 then deg Z=2x+y~ - and one continues as in the
first method.
Alternatively,we can use lines and conics degenerated to double

lines.This suggests.a method which works in all cases: one uses

ek
only cunrves L< ) and Ferrand double structures on them.

Gt

2,2, X= the quadric hypersurface ”3¢;JP4.

The re QL(LL?IOH morphism bicipé —egrPie X 1g . an isomorpﬁism,
hence H?(\,w) is generated Dy f“cl((gx(l))a «

If LeX is a line ‘than EL} is the dual generator of Hékx,&).
We denot@ this generator by e. Weﬁmwg L3 m?e and fe is the canonical
~generator of HE (X,Z)o 1f CeX iswa uwvc then LC} (deg C)«e
(where deg C is computed iniPA).de consider the Chern classes as
imtegersoWe have det Ty :i(@X(B) therefore cl(x)sh

We have-to show that if cl,c?,csﬁaz satisfy (Cl+1)62£ic3(m0d 2)

“then there exists an algebraic rank 3 vector bundles E ofgi with

ci(E) mci,1=1,2,5¢
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Firstly we make some remarks. If.L&X is a line then: 17 -

Nt = (9L B (91_(1).We~double L'%é"tartfinwg with an epimorpitism

EL X%

»

:‘)‘L/jE =@L@ (QL(-l)”““""?(QL(«l)'. Let D be the curve obtained..

Then deg D =2 and X (G)D)=l. <

~J
"-_'

TJf CC X is a nonsingular retional curve then det NC[X

& (det TXIC)EQ QDC is very ampleion C. We also notice thats
there-exist: such curves on X of apy degree.(it is enough to &
consider nonsingular curves of type (l,a),a2 0,on nonsingular

hyperplane sections Q,=HMNX).

2
We shall éonstruct a rank 2 vector bundle F on X as an

3

\

ektension:
0 -——-—9<9X-_**._; F—>3 (1)

where Y is a' wnion' oféd.disjoint.lines.We have

2.5

cl(F)zl,cz(F)=d.
“"Then we construct E &s an extension: o
Qe F(k)——-—§\E(t)F~———9hZfz -—~———§ 0]

"“"where Z is a union of disjoint nounsingular rational curves,some
of them'doubled,and such that;Zf\Y=95.The construction is poséible
for k;;o.we have to solve the system: : g ‘aa

cy(E(t))=2k+1
cZ(E(t))=d¥2k+2k2+deg z
co(E(t))=(2k+a)deg z- 2%(0) ) L

where:

cl(E(t))=cl+3t
‘CQ(E(t))=02+4clt+6t?

| ot g m
.L?S(E(t))_C3+62t+201t+2t
We can solve the system by any of the methods used in the
case X=P._.

2.3. H=the flag manifolle(l'é)j

We consider X as the incidency manifold in)PZx[Pg o Lek
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* :
E:XM&-'—Q:{P?, SJ :X——>31P_ be the'projection maps. A-bahis

2

of H(X,Z) consists of the elements f:ClUE#(QW,(l)) an e
5

g=c1(§* G)F%(l)).The dual basis of HA(X,ZQ is 92,f2, We have
2 , o

the relations:
fg=f2+92 ,f3=g3=0

end fznggz‘ is the canonical 'gemerator of H6(X,z).

1f zélPé than [‘TC”l(z)}:“fZ and if {elf’g then [5? 'a‘l({"j’;)l;z

\\\QEQ de have cl(x)=2f+2g. Let CC X be a curve of the form k?’l(z)
=k . : :
-~} & | i ' { -
or 'f ( ‘?? NC\X *.2t9C.We double C starting with an,ap; i

If D is the curve

morphism 30/ jC =

obtained then zD]=2 EC] and ?b((90)=3.

If K 1L (,}P (k)@f”‘@ ,w () Hhise Hi(x,n§)=o for izl,kz0,
£ o 0.We have to show that 1f o éki( JZ) ,i=1,2,3 satisfy
ciCé;acs(mOd 2 ) then there exists-an-algebraic rank.3 vegtor
bundle E on X with ci(E)=ci,i=Iﬁ2,3.

Firstly,we construct a rank 2 vector bundle F on X as an

extension:

0o — @, > F Y, —> 0

with Y ‘& «disjoint union of p curves of type ﬁf”l(z), zedpz
i
and g curves of type 53 *(—8), {elpg.We get:
2 2
¢ (F)=0, e, (F)=pf +ag
We construct E as an extension:

where K= 75*(9“3 ) & S)%@tp}é e E’?(_in t) & 59 2 ¢( ) .and
2

Z is a union of disjoint curves @f type 7 (z) o ‘y'l(e),
some of them doubled (ac above) and such that ZNnY = gﬁ.ﬂIhe.

construction is possible for kzl.and m>1. O

Ne have to solve the system: ..



1 (E ®T)=2kf+2mg

S 2(F§§T‘”(u4k +7 km"?+\qrm r2km)92+ £z]
4{ (E@T)=2((k+1)fs(mel)g) [2] -2%K( O,)
where:
‘Cl(E@JT):clH’;cl(T)
czua@qu:2+2cl.cl(T>+3c1<T)2

cB(E@T):cBJrCZ

2 &
,C]_(T)-%—Clocl(v‘) +C1“,T)
Vie have
cw(T) =(t2+2tu)f2+(uz+2tu)92

l(T) st il

Suppose?cl=cif+ci’g¢We choosethe class of t(mod 2) such that
=cq(mod 2 ) and the class of u(mod 2 ) such that uﬁgcif(mcd 2) .

Then we put:

From cl(E®T) °:<f+2mg and c.f'E®T),c @T')§C3(5®T) (mod 2)

it follows that CB(ECET)EEO(mod 2 ). The last equation of the

system can be written:

1 P g 1 | "/‘ 2
S04 (E®T)=( ((kel)fe(mel)g) ] +x (@)
Let Z be'a disjoint union of x curves of type Eiml(z) doubled

'(as above)},y curves of type ﬂf'l(z),x curves of type §>_1b€ )

doubled and y curves of type gﬁl(f) such that ZF\Y=§§,W@ get

£Z}=(2x+v)f2+(2X+Y)92

A (@) =2(3x+y) .

we must find x and y such that:

o B —]'2* CB(E@T)=(k+m+Z)(2>§+y)-2(3x+y)

-~ -Tog do this,we use:

Lemma 3. Let M and N> 3 be natural numbers such that N.is odd



o P
= f 2
and MZ2N" .Then there exist natural numbers x,y so that .-

M=N{2x+y)=2(3x+y) .- "

Moreove: ,we have &%}5 < 2x+y _{:’_ﬁ%g s

Choosing the class of t(mod 4) such that tgﬁci+2(mod 4) and

o

the class ‘of u{mod 4) such that ugicl”(mod 4) we have that
3

k+m+2 is 'odd. If t =0 arid:uz=> O thenl-?cg(EébT);;Z(k+m+2)2.
Hence we can find x and y such that (1) bolds.

-~

!\g"wr“f’f"”‘* CHERT)=c (E@T)F+e) " (E ®T)g".

If tp» 0 and wp>» 0 then: .

'c;;(5@T)-(1<2+;;'r<m)~_¢;;2x+y)ruz( t%r2tu)- 2(t52tu)-tu= % =5 tu
cé’(Eé&T)~(m2+2km)«(2x+y)mt3(u2+2tu)—-%(u2+2tu)-tu= %-u2+u%-tu¢

~Tt~follows that if we define p and g by the formulae:
p=cé(E®T)~(k2+?_km)«(2x+\/) )

. o
q:cé'(&6§T)«(m“+2km)—(2x+y)
then for t=>» 0 and us>0 we have px O-,q;,-,o."

: isdnd = iF i X=P w i 3
2.4, The remaining cases Xdpzqul‘ and xirlxlplﬂ Pl are

analogous and we omit the details.

'2,1. Let X be a nonsingular variety,r2, -¥CX a closed sub-
scheme of codimension 2 which is ‘Cohen-Macaulay and such that
3} is locally generated by r elements,F a vector bundle on X

5 l{ j- = 5
of rankir-l.Let %, be an element of Ext /- Y,F) and let

0 ey [ >Eg—w-effy-——-——:a.o

be the extension determined by ’ggﬂ‘The proof of (EﬁﬁﬁChapfl,

Lemma 6.4.3.)shows that E§ is«lecally free if and only if .the

morphism F*%&Ca Y ——> &)Y asdogiated to E via the map

x|



‘*\\ Lf HZ(X,F)zo then every epimorphism Few

i 1 5 D o o :
Bxt o o Y,d*)“““mﬁk* X, ‘&zt (|3Y;§9)) and the isomorphisms
1 : it
Bal (I F)-—~ Gl (@Y;C 22 Jbom ( F"%@CDXV, )., ) is surjective.

X\Y —2 @, defines

a fank r bundle as an extensioh of . the. form considered above.

We alsg iremark that ZfY is locally generated by r elements .if

and only if a)Y is_locally generated by r-1 elémeﬂts
Now,subpose that Y is l.c.i. To-give an epimorphism

F*@wxg'\’w—% W, is equivalent to giving a global section of the

vector bundle FgYéﬁ det NYfX vanishing at no point. If dim Yz r-1

this is always possible after tensoring F with a power‘of an

ample invertible sheaf.On.the cdntrary,if dim‘Yzl%J;this condi=-

tion is fullfiled only in exceptional cases.However,one- can

construct in this situation,starting with sections in FlYé@det Nﬁxg

rank 3 refléexive sheaves which appear as extensions of the form
considersd above and whose singular sets correspond to the zeroes

of the sections we have started with.

3.2, Conversely,any rank 2 vector bundle E on X can bq
realized as an extension. One tensors & with a power of. an ample
invertible sheaf and one consider the extension' determined by

“the qeneric section,or,in the césenXAPn,one considers the least
integer k such that H ( (k))#A0 and one takes the extension
determined by a nonzero section of Efk) .

The same is true for any rank:

Proposition 1. Let X be a nonsingular projective variety of

dimension n z2, L an ample invertible gheaf on X E.and. F vector
bundles on X of rank r and rfl,réspectivelyx
THen for k2> 0 there exists an extension: v i o
G E e e Y, OR —>0
whére Ywié a Cohen-Macaulay subsgheme oif: H=oh codimensiqnxz and

R is an invertible sheaf.



sl

Moreover,if'dim X &5 and r=3% one-can find such extensions
with ? nonsingular.,

Proof l.Firstly,suppose ?ﬁwn(F,E) is“generated by giohﬁl
sections.We show that.for the generic morphism U:F ——sp E,iﬁ}u
‘vanishes along & Cohen-Macaulay suoscheme of codimension 2.

We use,as in ([8], Prop.l.4 or &% {Elgproof pf B.l.) e
incidency set: -

Z= {(u,x) [ u &Hom(F,E),xeX, ('":ji;}u)(x):o } .

We consider the morphism of varieties:

L
5

dom (F ,E) M’Z}%@rﬁ,(g,det F@det F¥ ). e
defined by u mem~ga(22}u) . We denote by Q the .inverse image
of the zero section by this morphism.Q is a fiber ‘bundie over X.
with fiber the subscheme of M(rx(f~l),@) determiﬁed by thke.ideal
generated by the (r-l)-miners. A ‘tlassical result in commutative
”élgebra asseris that this sdbscheme is Cohen-Macaulay .of co-
dimension .2 .

Coﬁééqﬁently, Qidis a éohen-Macaulay subscheme of g@mn(F,E)
of codimension 2. Z is the inyverse image of Q by the morphism
of evaluation:

BoilE Bt Ko B

which is a submersion. Therefore Z is a Cohen==Macaulay subs+
scheme of Hom(F,E)» X of codimensicn,2.Consider the projection,

map 27 = HonlF  E)Fer-ucHon(E E), ?2:""1

scheme of zeroes Y = of ;{lu b L A Ronl B EY thens ror

(uy=is just the

generic u,we have Yu,z @& Now,suﬁpose % surjective.From the
generic flatness of A it fgllows that‘Yg is Cohen-<Macaulay of
codimensionlz‘.for»generic u.Let K be the kernel of the epi-
morphish:

E —> ¥, © det E@det g A
u

K is iééally free of rank r-l1 and there exists a natural

morohism/Flmmwﬁ>K which is isomorphism on X*&YU,Therefore F ot K

¥



= 7

and we have an extension:

0 > F D E—> Y @det E @ det F¥ 0
where Y is empty or is a Cohen-Macaulay subscheme.- of X of co-

B3
»

dimension 2.

&
2. Now,suppoge: that we are in the:igeneral case.Using Libfor. E

k ; E
and F& L, k> 0,we find extensions:

0 s F > E@Lkmﬂ,‘,gj\{®‘? e B
where Y is empty or is a Cohen-Macaulay subscheme of codimension
2 and R is an invertible sheaf.
We show that if k3»»0 then it necessarily follows Y # ?ﬁo
Indeed,suppose we have extensions:

0 » F 3E @ L" 5 R 2 0

for k arbitrarily large. Then an easy computation shows that:

e (EY aey (L) 0 50 K2 [(‘”;}HV-( r-—l)?‘_] Rl
which: is a contradiction.
‘3. Recall the arguments in 1. and suppose r=3. The subscheme. .
of M(3x2,¢) defined by the 2-minors has nc.singular point,except O.
“0n the other hand, 7if dim X£L5 and if the rank 6 vactor bundle
ﬁ%w%(Fjﬁ) is generated by global éections, the generic mérphism
F i E vanishes nowhere. Now the last statement in.propositien .
is glear.
Corfolary Let X be a nonsingular projective variety of timensien
smaller than 5 and F a rank 2 vector bundle on X.Then . there
exists a nonsingular‘subscheme Yélx of codimeﬁsion Z-sueh that
FiY is an extension of invertible»d@Ynmodules.
Proof.baerl be am.ample‘invertible sheaf on X.We use Proposition
1. for F and_ﬁa3(px.For k2> 0 there exiéts an extension:

-0 = F >3L_k >jY®R ey ()

with Y nonéingular subscheme of X of codimension 2 and R an ;
invertibile ‘$heaf on X.This éxtension defines a section -of the

vector bundle det NYlX@>FéDR% vanishing at no point. el e

SED A RS



=l e
Remark.Using a2 recent result of Lazarsfeld L@;lone can make
more psecise-tlerassertions in Proposition l:namely,if
il F.& k~d b Ty X S
é;mm( ) @ L is generated kty: global sections then the

conclusions of Proposition 1 held,

3,3,H9W5&f P be the projective space P and E a rank r
vector bundle on P. We have 'm~E= E"(c.(E)),Put:
/N 1
d=-min § k | HO(("ATE) (k)40 }

Then there exist exact seqguences:

@’ :
O & - > Eaumung(cl(g)ad)n-—-w 0

where Y is a closed subscheme. of P of Codimension2>2 and SZ is

suh ,
a reflexive Bheaf.of rank r-Ilswith c1(€;)=d. For every rank r-1

: C . : : :
reflexive subsheaf JK of .E we have cl(gﬁ)ﬁgu and if the equality
holds then there exists an exact sequence as above.

'Y is - not necessarily Cohen-Macaulay of codimension 2 and the
set of " points:-where this fails is exagtly the singular set ofgg.

ey ; : = 3 %

If r=27then < 'is invertible and one obtains theveoastriction:

mentioned above.
+ e ;

If n=2 (and ri arbitrary) ‘then & -is locally freeybut if nz 3
and r» 3 then one can not avoid the reflexive sheawesunWe shall
““l1lustrate this assertion by an example from ol (CheIl Exal el

wiet E:ﬁ%D (1) The ccheme of ‘zeroes 'of @ nonzerwisection

i

h7 &
g QHG(nP (-1)) consist of »a simple'pqint x and we obtain an
3 .
exact sequence: :
' &
(e
O e \‘}f“‘“"""’)ﬂlé (1) = };fo e O
; 5

: : B el e % (o e :
.@K is reflexive,its singularzset is {x% ,Moreover,cl(gw) 1set e

maximal because HO(T,P (=2))=0.

3.4, The remarks above show that it is necessary to comsider
extensions in the frame of reflexive sheaves,i.e., to tompmect

by extensions rank r and r-1 reflexive sheaves with subshaces:



0.
of codimensionz2 . We restrict ourselves to the case of
extensions of ideals of curves and points by rank 2 reflekiveis
sheaves orn nonsingular 3~folds imténding to obtain vector
bundles as such extensions.
Before stating the result we need some considerations of local
algébra:

Proposition 2. Let (A,#M ) be a regular local ring of dimension

2, k=A/g4¢ its residue field,F a reflexive A-module of rans 2.
The following conditions on F .are -equivalent:

il Ext1

(F,A)e4ds" a nonzero A-module generated by a single:
element

(ii) dim F/44tF=3

- {(1i1)" There exists an exact sequence:

O F > A” D [ iy (),

with' I # ideal of height 3. Morgover,the isemorphism class
of F is uniquely determined by I.
Proef, (i) == (14} and (1ii]

e : i .
Let e be a generator of Exti(F,A). Consider the extension

determined by e:

(el 0 e A #= E » F - 0

We" assert that £ is free.Indeed,F being reflexive it is of
homological dimension4 1,hence E is of homological dimensiond 1.
It suffices to prove that Extl(E,A)zo,

Applying Hom(.,A) to (1) one gefs an exact sequence:

e 3 ;
> E > A Eth(F,A)“”“ﬂ?Eth(E,A)“Mﬁ?O

A

o

0t
P (1)=¢,hence @ is surjective.Consequently Extl(E,A)ﬁo, Thus
we have an exact sequence:

L &5 F 30

(2) 0 =i

'}

Suppose u is given by u(l):(aid4az,83). Put I=A31+A32¢A83.
Applying Hom(.,A) to the exact se@mepce (2) we derive that:

Bk (F A o2 ALT



4L i : :
Ext (F,A) is a nonzero A-module of dimension O,hence.l & &
and ht(1)=3. It follows that 81,8548, is an A-seqguence.

Applying GﬁAk to the exact sequence {2) we deduce that

ozmkF/éﬁFxSG On the other hand, frgm {(2):and from the Koszul

mplex associated to it follows that we have an _exact

B Pl
saquence

0 S 2 A3 > I == 0.

We ‘note ,for further reference,that F is isomorphic to the.

N

submodule of A° generated by (O,maz,a?;,(mav,o,al),(maa,al,g),
. ) “

(ii) = (i

Ry Nakayama“®s lemma there is an epimorphism e P Fommz O

Y
=

Ker p is a reflexive A-module of rank 1l,hence Ker p=o? A.Thus we

have an exact sequence:

0 > A 5 R3 Pz F

> 0.

Awolying Hom({ .,A) to this sequenbe we see that Extl(F,A) is
generated by a single element.

@b

Apllyid ngiHon( .545) to the exact sequence:

o e > A> Bl SRR

we find:
1 ot e g 4 :
Ext (F A olibxt ¢L,A) oL A/LT,
hence Extl(F,A) is generated by a single element.
Concerning the last as sertlo“ we observe that I= Ann\Exf (B4l

hence F2E® = I=E%

Conversely,suppose I=I{ There are exact sequences:

O o T ommmmeZy l\3 WME._.";. T30, 0O=——-pF%= 3 A3 - o T
Let L( A“ 7m¢>A3 be ‘a morphism such that p;cp =p.Applying
@Ay if follows that (F is isomorphism.Therefore F=F’.

Now,le¥ X be a nonsingular 3-fold, Z a rank 2 reflexive
sheaf on X;Suppose F verifies the condition:

(4%) ExL ay d)) is Cp;—module generated by a single element,



\

e

\\\\\\ Then there exists an extension:

a9t
for all x& X.Then Anntﬁgtl F. (?y ‘defines a closed suhbscheme

; _ e
S of X supported by the singular .set of & -such thattﬂ'gl @f ﬁ?

@ ' ' ‘ .

Tomd o
o)
Yc R/
Proposition 3. In the above hypothesis,let “be-a l.ciis closed

ubscheme of codimension 2 such that Yfi8:¢5°5uppose:
oy
(1) HO (X, F)=0

5 o T ; e -
(ii) det NYiXéﬁd' has a global section vanishing at no point.

5 e e
O &F — D E e J o — O
\\\ 2 J Y L S U
with E rank 3~vector—bundle on X.The Chern classes of E are

given by the formulae:
cl(E)=cl(§ﬁ)
cxlB)=e (s L]
e (E)=(cy (F ey ) .LY]: 2% )-c (F).
Proof. We have isomorphiems*

rJ 5

_‘ f e g,,} &

cand an exact seqguence :

1 41,y e e R e
5> Ext (Fyye F ) o HO(X ol (U g F )X F )e.
We start with extensions:

s A y
e L ey R b

§ L e
given by Proposition 2,and with a section of det NY{xﬁ?gt
vanishing at no point. These ones define an element of
HO(X,ﬁmff(i?Yas,ﬁﬁ)) which 1ifts to an allcin i eé&Extl(ijL]S, T .
The element e determines the ex@ension we are looking for.

One compute&the first two Chern classes by rewoving S and

the third one using Riemann-Roch (recall that 07( )=
SR %G ).
Following ([i] >4) one .can construct rank 2 reflexive sheaves

F on a nonsingular 3-fold X as extensions:



=P

5T > J 8L

A4

220

G «:’.9X

where L is an invertible sheaf and Y a Cohen—Macéulay subscheme:
of X of codimension 2, generically'l.c.i. The extension. &s

de W pli AR % ‘ (02 N i ; ;
eterminied by a global section § '@H (o @ W, ®L ) which

; A -1 : e
generates (J, @)@ﬁxé§L except at finitely -many points.

We have ”@?ﬁ?ﬁl( (\37:‘, (9) B {C‘DY & C{}.%J;( ® Lul)/(_@ | A

One sees immediately that if Y is loc.i. everywhere, then ﬁﬁ
verifies condition ($¢).

Conversely,ﬂe have:

. o d . .
Proposition 4. Let 3 be a rank 2 reflexive sheaf on a non-

singular 3-fold X and S the singular set of & .we assume S# ?ﬁ
EaNiie = 1O o . . :
For's & g ) let:Z(s) be the scheme of zeroes of s,determined
by the ideal:

e < :
3 - I m ( %ﬂ @ vam-yrv:u,gg {9

Then
ta) 5 < gz(s)g for everyfag§HQ(§:).:
(b) Suppose F vEFifies (M) .ITxes and_sé&Ho(gg) then:

s(x)#0 ==> Z(s) is l.c.i. pf codimension 2 at x.

74

“Moreover,if & is generated by global sections-then,for the
: e : e ; § : o
generic séction s in a finite dimensional subspace V of H dos)
which generates %5 Z058) derleted, of codimension 2.

Proof. (a).Let x be an element of S. Ker s is a reflexive

X X

¥ #4
ng—module of rank 1,hence Ker‘sfci{QX.Thus we have an.exact
sequence

4 3
0 ——3 Q@ ’*%ﬁ X 69
X FeW oy i

: O A ol
T.f xgé:’.(s) then s% is surjective,henge i @
% % X
contradicting the. fact that x is a.singular point of %r o
(b9 putc sl e : ‘
X X
The proof of Proposition 2 siiows that there exists an A-sequ-

ence 81,82,83-& Mt such that F is isomorphic to the sub-~



Zod
3 : e :
1 f/\ S H S D - E"'\ o - oy e (Y
module o gemerated by - (0, jz,zg),( 83‘0’81)’( az,drﬁw)é
syng has the form:

sxmtl(O,—a3,az)+t2(»aB,O,a1)+t3\wa2,altO),

Dualizing the exact sequence (IzAal+AaQ+Aa3):

1 “Z
G e T e
werdg et aneexact seguence
+
: i %
i i e
because Ext (I ,A)=0. Hence i¥ is surjective. It follows thate
J =1m(e* S +A )
x»&m(; 5M%?-)aﬁ(1233+t382)+A(tlaB»tzal)+A(tla2+t2al,,
If s{x)#0 then tigé‘%% for some i&%}g2,3%'96uppose,for examnple,
. ,,[ g, e 2 tl 2
t, & %t .Then H =A(a,= —==a_)+AlBs+ = a,). Therefaere Z(s) is
358 X i ty 3 2 z 2 - e

L.cid < of codimensiom 2.8t X

Now ,suppdse F  is generated by global sections. As %ﬁix NG
is a rank 2/"vector bundle generated by global sections it follows
that for .s€V generic Z(s) is' l.c. i cof. codimensicon 2 at eviepys
pbint of Zls)~ 5.

P :

The morohism V ———33(x) being surjective it follows that for
s€V gemeric s(x)#0. for every x€ S,hence Z(s)-igl.cei. 0f co-
dimension 2 at every point of S.

The method we have used in crder to prove Proposition 4 allows
us to answer affirmatively a question stated in ([4],Remark 4.1,1):

o cr A e
Proposition 5. Let #*& a rank 2 reflexive sheaf on a non-

singuldtr 3-fold X and S5 the singular set of Y- .we assume S# Qﬁ.
Suppose & verifies the condition:
o ﬂ : e Y, e {) ~ @ n -
For every point x in § Ext (:&xjé,x)ww X/(u,v,w Y for some
reqular system of parameters u,v,w of. "x and some nz 1.
C’A‘; i 1 .
1f F is generated by global sections then, for the generic

7 5 ; : 0 e
section s in a finite dimensional subspace V of H (55) which

generates g , Z(s) is nonsingular of codimension 2.



Proof. For generic s&V Z(s) is. nonsingular of codimension 2

v 4

at every point of Z(s)~S.

.

IOM%fEf %x be s point of S. We have to show that for generic
o€V, Z(s)iis nonsingular of codimension 2 at X,
4 e (o ue e a5 =
One identifies &=, with a submédule of @ . Then Sx%iﬁi
has the form:
~ o & n :n 1 ' s -f\
%x~tl(0,vw ,V)+f2(~w ,D,u)+t3(wv,u,0), tiéiaﬂx
{&i" {. . ” 2 . . -.., -
Let - J- be the ideal defining Z(s) at.x. Lf tgéiﬁﬁ, then
S v ts : : |
o £} , ot ] 2 n g ; 5
J = urvm=w )+ {/ (v+ == w ) hence Z(s) is nonsingular of
T K 0 % L .

codimension 2 at x. It follows that then there exists a
e Hlcas : P ) ogee O
2 ~dimensional subspace W cf w“(x)mgww/ﬁﬁxé%x suech that:
v N 5
f s : : 8
s(x) & W => Z(s) is nonsingular of codimension 2 at X.

i i o S mT»‘ y v 5 ‘. 3 .
Since the morphism Ve—s ¥~(x) 1A surjective 1it follows that

: 2 - i 7d
for the generic section s&V we have s(x)%gw.

3.5, The method of extensions stated as in l.l. or in 3.3

Proposition 3 might be useful in studying stable rank 3 vector

bundles on P%?B. we shall illustrate this by two examples:

Example 1. Let F be a stable rank 2 vector bundle .on P with

cl(F):»l.c F)=2d (dz1l) and minimal spectrun {=l, =L, 050500

5 (
we have HQ(P,F(~1)):O. et Y P be a J.cei. curye not contained
in a plan? and such«that det NYLPéﬁF(~l),considehed as a vector
bundle on Y, has a global section vanishimng at no point.

- Under these conditions there exists an extension

Qssmsta F émuwgk g —3 J (1) —20

with E rank 3 vector bundle on P w;th cl(E)ﬁo.
l ‘l; Suppose HO(F(I))=O,HO(F(2))%O (there exist such bunﬁles
for every dzﬁ?,ﬂglﬁx.A.B.Z),The first condition implies #that

E is stable and the second that we have an exact sequence:

03 O, (~2) > F—3 J (1) ——> 0




B

Let YCP*be a l.c.i. curve not c¢ontained in a plane such
that YN Z= ;ﬁ det NYiP(»E) is generated by global sections and
n (Y.det N, ‘)(uﬁl) =0.Then det NY;P(~3: is generated by gleobal
sections and cne can reﬂiize the above construction.

On- the other hand,for the generic line L wexhave detN

i
5 v

%) e N 2 & i = = .
o= (9 ’(ﬂ ( . Therefore if ¥ is & union of disjeint nonsi woular
curves of degree > 2 and of genericltines for F then the.censtrue

tion is possible.

2. Suppose hO(F(l))ml. There exist such: bundles for every 3%§1
They can be realizedi,for example, as extenaions:
B L 0yeer = 3 1 > 0
where Z is a union of d disjoimgt:lines douﬁled such. that
i
@, = 6}&(“
If ¥ is a union of disjoint nonsingular curves sweh that
YN Z= §§;then the generic 'section of det NY{P & r(~1) determines
a stable rank 3 vector bundle«E with Ll(L) =0 (“generic" ig . needed
to prove4that Ho(k%)no) .
Exdnnlec, - Let T be a stable rank 2 reflexive sheaf bn =
given by an - exact sequencen
03 O, 2y T (-1) — g -
where s is a nonzero section of Tp(nl), It follows that ho(tfﬁ):B

g ; 5 5
and if téiHo(Qﬁ?),t#O,then the scheme 6f zeroes Z(t) is a line

passing through the point x where s vanishes. Thé Chern classes,

o am cl(gf): 2‘(\, Y=1, 3({}“’) 1 and the singular set of
e

Let Yo P be g l.c.i. cirve siich ‘that QDY(Z) is generated

by global sections and such that x§§Y.

sIethat = W (3)®F iz ,

3 : = i oy i .
geriérated by global sections (because # (1) is) hencesis.has

2‘(F’,@yhl))xo and det N

- a global section vanishing at no point.By Proposition 3 there

exists an extension:

@;F(Ml)ﬁ



(1) 0 5 F ey B —D J (1) x 0

with® E rank 3 vector bundle on P.The Chern.classes..of E are:
) 3 ~ e N N N ¢
cl(&}mo, Lz(L)mueg Y., CabBlsldeg Y u27£(gQY).
f d N D e e 1O 'g
1f deg Y z2 then we may suppose - that K" (
; : Ter s
¥ in case of need. It follows that H (E)0.
‘Duslizing (1) we get an exact. sequence:
5 {’5‘ 4 %fiji“ - ) -
03 ﬁrﬁ} P( =1 ) ——3 E e 3 ?;L w.tmmg._..;; '{/’L} v ( 2 ) i 5 O

&€ beihg the epimorphism which determines the extension (1).
8]

HEfE A o del 0y

3

Yo.injeective,

Y. be' the connected. componentssaf Y, & 1s deters

£

Leﬁ Yl""’

¥
mined by epimorphisms éj_:gf iYiWWM? QJV (8= s w e
p” : ; L
det%@ Am:éDS(l) hence we have exact sequences:
I ¢
H ] €¢
¢ » & - .
O"""% I’L;“f (?)"“"‘““‘} QK !\('i ""”‘"""‘*'-"":’:j"? &}V (3)-—-——-} Oglx.’..,noc,na
= i e ‘
i o .

Cama WO E o, ™ A :
Fi@ morphiams. H(E®) —— s HU(F gYJ) are injective,because

b

£
X &é;\"la

s g o 4 i g .
TH HU(@: (2))=0 for at least one 1@5%L,,.,sn§ then Ho(g

<4 )

i - 1
is injective,hence H (&€ ) is injective.
o 0 Es o ', 2
If not,suppose h (QQY (2))=1 andsn>2 It follpwe: that itoe
1

kernel of the composite map:
5 ‘
B, e e o
J Sy Y (a)\(l(v‘))

HOEEE . SHPEP v )

: ; : O b | .
has dimensiongl.Let t&H (F %) bera generator of this kernel..

If t#0 we can choose the epimorbhism &1?:‘§%f Y?-wwg QJY (3)
> > 5

such that ﬁz (t\Yz)ﬁO.It follow§ that HO(S Jods dnjective.
Thus, in anyone of thGSG two cases HG(E%)=O and E is stable.
There are many families of curves Y satisfying the above

conditions ‘and one obtains in this way fam;lies of stable rank 3

vector bundles. : . »
We mention here only two extreme cases:

If Y*ehsanaunion of d;;z disjoint lines not passing through x

we obtain a stable rank 3 vector bundle € with Chern classes:



e by N

(&)
P
it
it
i
O
O

’)(g):d ] C-;,‘(E)xi),

If Y is"a nonsingular plane curve of degree dz 2 not passing

through x we obtain a stable rank 3 vector bundle E in the family

st

T

0

oo e
L,,E)s

g e £ ) S < -
idied by dﬁlndlargﬁ{@w1th Chern. clas

. .2
yedT=d.

FRE]

(E =g cudli

Z €z

3.6. We return to the general discussion fcr a final remark.

he precise,we want to find out,under the conditions. of 3.4.

what it nappens when SAaYZ & .

lLet X.be a nonsingular 3-folid and Sﬁ a rank 2 reflexive

: 5 Sog £ g ), e A ay £5 . ) :
sheaf with &aci g, Y& . where 3 is a O-dimensional
SN <2
5, ) r 8 % .
subschems of X. Let Z be a subscheme of X w1th,€Z€:§8§.
, : . - v l bt Pt
We want to describe the elements § af Ext (%ﬁYi}Zf o )

which determines extensions:

e 0

=, C;i: . o e ﬁ,
a 2 ke J vz
with Eg locally {ree and.to find conditions on 7,Y,Z under

which such extensions exist.

For the simplicity of the statements we assume tnhat Y.and.Z

are locally complete intersection.Firstly,we need a local result:
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Lemma Let A be a fegular leocal ring of dimension 3 and F a

lexive A-module such that Extl(F,A)ﬁfA/I with I ideal o

~

ght 3. Let IO and Iy be complete intersecticn ideals of

ght 3 and 2,respectively.Then there exists an extension:
3 :
0 » F 3 A7 e T 4 T e O

and onky-if 3 I,NI, is generated by 3 glements, Ty I,

wg(A/Io)seé(A/IO+Il)+=é(AK1}

Proof. Suppose there exists an extension as above. We obtain.-
isomorphism
X . B
Ext( F,AY &L EXt (Iof‘u‘l,A)° _ ,
On the other hand,we have:
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Ext (Iorxll,A)fy.Ext (Il/Lorail,A)_q mxt—(Io+Il/Iow3yﬂ
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and an exact sequence relating the dualizing modules

SNy } - B N /,‘\ ', ik X 4 3 . e S ——
0 3“”/T 4i_ ncg,/T d\,io —— EXtT(I +Il/IO,A) 0
" Furthecmore, & =l 03T, } and € ( e
urthermo . D A/T Ty A(O LI’A/IO and Q"&}A,10+Il’
= ﬁ?(A/IO+13), One hegfs easily the three conditions in tne

gtatement.

Now,wé& prove the converse. IO{}I1 is generated by 3 elements

hence we have ain exact sequerice :

O3 G > A I 0Ty >0
with G reflexive module of rank 2 .We have Extl(GJA) Ext® ( Onfi}A}“
ﬁiExt5(Io+Il/Iq,A)c The assumptions we macde implies that
3

> i &
(IO+¢§/I A) is an A/I-module of length £ (A/I) generated

et
. i
by a single element,hence Ext

(G, A)ZA/I. From Proposition 2 it

follows that GZ/F,
We go back to geometry. From the lemma it follows that ,in order

to solve our problem,it is necessary to assums that YU Z is
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locally generated by 3 elements, JS"EY'Q; ;yz; and
@gv(z,x 5 4 (Yf% Y+ ﬁ ( }, =for evwry X & X,
N
For every X &S we choose an extension:
/
£ 3 ey
(€0 00— —s @) —>F 28
X X X
and we consider the Yoneda manp &ssoci d to it
»
g 28 a < $ & n 1] @
b A Yy o .. % oF : P
@%@(‘MM’S) f’@%i(jYWT@X)xm 75, x

We denote by Ef(x): Extl(gvaz,@r)-wwﬁ k(x) the induced map.
‘On the other hand we choosexfor every x&Y three generators

o g 41 . Y )
1, T of gfxp wWe have wmﬁ (zhﬁgZ’ég, bﬁé (3\Y,ng)m@ﬁaf

As above,we can define morphisms

Tix) Ext (Y

P e Eix
Yuz"f) M
Now,let i be an element of Eﬂtl YUZ'ir) is locally
free if and only if &€(x)(¥)#0 for.every xS and C(X)(gu}j‘?{o

for every x&€Y. This assertion results analysing the long exact
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sequence of {xd (,,an) associated to the extension.
If xeY¥X'S the condition K‘(x)(%)%o is equivalent to the fact

»

that x is not a zero of the section of {F§Y\QS) & det N, .
Feod

exirres
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determined by §. We also observe that the morphisms &£ (x) and Tix)

are different from O because there exist extensions:

]

¥ . 3 , s
O O (}x —3J oz oy ————3 O

® L g K

. » 3 ‘~~ 52‘ B
Consequently,if X,%9 .,Y,Z are as above, H (X, ¥ )=0 and

o .2, s e : . 25
£ > (Qngj7,§”) is generated by giobal sections then thersz exist
s & Nl s = i .

extensions:
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with E locally free.
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