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ABSTRACT

For f:{O,l}T‘—aR=(*mu+M), in $2 we-introduce and study "tight ex-
tensions T :[0,11" >R, defined on each n-simplex D. of a trian-
gulation & .of [0,1}”, with all vertices in {U,?}n, as the unique
affine function which interpolataes f at the vertices of D,. In §3 ~.
we study convexity of tight extensions. In %4 we show the'existen-
ce of polyhedral convex (generally, non-tight) extensions. As ap-
plications, in §5 we give some duality theorems for minimization

and maximization of submedular functions and in 86 (Appendix} we
obtain new insight into the 'greedy solutions'' of a certain linear
maximization proclem.

1. INTRODUCTION : : : s

A combinatorial optimization probleﬁ can be formulated (see
g ol as the problem of minimizing or maximizing a real-valued
function f definsd on the family 2{1,...:n} of all subsets of the
set {1,...,n} (where n<+eo); including the empty sst #. Since

there is a natural one-to-one mapping

S__y;:;:ei 3 3 (Sg‘{})-‘*)ﬁ}){ ("1)
€S
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‘in the sense of (91), defining

zs the convex hull of C

Our results can be also extended to functions with values

R=RUU{ -0 +uﬁ, with the usual methods, but here we shall consider

ia“face of Dg and Dj . Next, for each. snmplex D of«ﬁ s extend F

‘where e;={gli"’0’1?0f"”0}; (i=1,.;.,n)‘and N
i-1 e s n
is the "“incidence vector', or "charact ristlr vector»

S}, of the set 217e1 a0}

-1 cube” in Rn, i.e

onto the set Cn o+ all vertlces of the

«s onto

'0 1} ={x= i% } e pll !% 0 or 1 (l—y,;..,n)}

one can regard (see e.g. [10]; »p. 248) each Functlon f 2{"’{‘;Il

—R=(-00.,+00) as a function f: Coe R (a ”pseudo Box

f(zfe; f_(s ao Ee ,.{1,.{,,n})

in this.way, each cumbunatornal optlmlzatlon problem (ln the above

sense) is identified with a "0-1 optlmlzatlon problem :i.e.. a

problem of minimizing or maximizing a Functlon £:C f?hR

,s&on ext,nia

sivns of fnnct!ons i C — R to functions fico. C —*R where co Cn*'

In the present paper we shall obtaln some - resu;

s ewy the 0-1 cube

co € =[O0, 7" {x-{{ }eR |u<§.<: : (n— ,.-‘-,n)}k,w

and we shall givc some appllcatlons to mlnfmlzatl)n,an nmalehza’

iion of functions f: C — R which admit extensaona woth certaan“’

properties {(in partlcu]ar, of submodular functlor;) Thus, these

are ''non-Bonlean approaches < n the sense QF;L9],,p.1X,g»

extensicn prablems and some combinatoriai optimizét&dh_problems;e~

cnly R-valued Functlon<

In §2 we shall define and study ”tlght exten51ons” oF £ P

Wbl e described, roughly speaklng, as fo]]oWS' Take ally

wtrnangulatnon of co C Coles & subduvnslon<$ {D il } of
co C into S|mp1|ccs of ‘dimension n, with all vertices be‘onqnng

to C and such that the lnteraectlons D s DJ are elther empty, or’

i
*

‘to the unique affine function ?3 on Di . Wthh lnterpolates the ,f”,“,

,'of the seté _

Tl ,;.,

L

c-«*-—» i
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walues of frat the n&l vertices of Di , and then "glue together'
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;these pieces of extensions to a function ?:?”z:cc Cn —» R, which we
ﬁha’l call: the “tight e><1:=>nsion"l of f associated to the v-triangu-
]ation»{D}, ,D } of co C . We shall show that each such f is con-
gtinuouc and that, for a certaln extension f: R —F of a function

:F:Cn~+ R, defined by Lovész [10], f!co c coincides with the tight
2 T 2

‘extension of f associated to the "standard' v-triangulation of
 ¢* Cn into n! simplices, glvpﬁ bne (14, <
In §3, in order to study convex 9 s , to any tight exten-
doion B dco L. =R ofef: Cn->R we shall associate a po.yhcdrai :
convex function f'%:hn-—’R (namely, the maximum, at each x §B 5o of
the uﬁique interpolating affine functions ?i Gccuring_InvtEe der
finlEion of ?a ) siisuchi that ?$s ?g) on ¢o Cn' We snall .show b
?@\ is convex if and only if ?m =?2> on co Cn , or, equivalently,
f=?“$‘on C” , or, equivalently, each Qﬁ £ f on Cn : Fuftherhore,
for the ”Lovésziextension” ?'of f, mentioned above, we shall show
that these properties hold if and cnly if f is submodular; this
yields a sharpening (and a pnoof)‘of a result stated by vaési
i([10}; p.249), according to which f is convex if and only if f is
;submodular. Moreover, we shall show that the standard v-triangﬁ)a-f
‘ticn of co €, has a subset of cardinality f 21), such that if £ is
~ \3]
submedular, then it is the maximum of the unique affine functions
which interpolate f at the vertices of the simplices belonging.to‘
this subset. Finally. we shall sﬁow that other v-triangulations of
.cO C are also of interest, e.qg. When n=2, the tight extensiocn T
of if assoc1ated to the only non-standard v- truangu]atior‘ﬁ of co LZ
is (pquhcdral/ canvex -if and only if'f is supermodular. From our
results on submodular functions and'convex functions there follow,
mutatis muténdis, corresponding results on supermodular functions
ahd'bn_conCPve functions, and vice versa. de. shal! show that these
}esuits aiso throw some more light on an interesting phenomenon,

described by.lovdsz in.{10], p.249, in the following terms: "Are
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submodular set-functions more like convex of like concave func-:

Clons? fnithis section we diecuss some properties of them which

‘wer the questioh-abnve”

°

“are analogous to properties of zonvex functions; in the next sec-

“tion we shall survey some aspects of submodula:ity which relate it

to concavity. Th= reader riay then decide how he or she would ans-

ol §h we shail show that every function f: C — R admits a

polyhedral convex extension F:co e R (wh|c1 need not be txght)

.Furcthermore, we shall show that every supermodular function f:C,—

Actually, we'shal} express this exteqslon result in terms of a

"finite'" strengrhening of the concept of ''convexity of f with

respect to a'family W of functions', in the sense.of,[5], namely,

Jin our.cdse, the family W=J%n of all modular functions on Cn .

3

.—R can be represented as the maximum of two affine functions.

In §5 we shall give some results 'on minimization and maximi-

.zation of functnonﬁ f:Cn~—*R. First!y, we shall show that the mini-

mum (maxlmum) of f on C cclacides with that of any tloht exten-

7;3Q«>?=F:) on co C;; th|s wlll make it possible, . in some ‘case
to study, tu° problem of m1n|mi'5_ (m1x;maz&na§ f on Cn~wlth the
aid of the problem of minimizing ( imizing) f on the convex
'lset <0 Cn. Thus, using this result.and :an extension theorem of %3,

‘and “applying some of our results of [J6j~[18] on convex optimiza-

i on 1 e : " H ' "
tion, to f7 :R — R, we shall-obtain,sore new ''duality theorems

for minimization and marimization of functions f:Cn-—éR which ad-

mit a convex tight extension, e.g., of submodular functions (these

‘have the additional interest that the probiem of maximization of

‘submodular functions f:Cn-—>R is known to be NP-hard).

Finally, in §6 (Appendix), using some of the 'preceding re-
sults, we shall give a new geometric interpretation of the ''greedy

colutions" of the linear maximization problem on the paolyhedron

lassociated to a function f:Cn-+ R with 1(0)=0, studied in [10],J

and a result on greedy solutions {which yields also a new proof of

~their optimality in the submodular casejuwithout using the dual

.linear minimization problem).

= -~
———] -
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Let us recall now some terminology &nd notations which are !

‘tusea in this paper. A function f:Cn——aR is cailed a) submodular,

i f for all s, TieAl; ..',h} e

2 e e} <F(2 e el e ) (1.

e ST e SUT € S ieT

-
AW
~

b) subudmtivv,' Fiifor il S, T<dl, ...',n} with SAT#@, we ‘have

P e e i e : @6 =
1 6SUT e T i e

c) sur)orrodular, it foroall S,TQ{L,...',n} we have the oppdéite

'inequallty 2 to (‘i.S);‘d)' modular, > 1 fsit ls simuiltaneuousl‘y.sub--

“modular and éuperﬁwodular Clee it for any SaT & 4l..<. .0} the

‘eddality hol ds>in (1.8)9: A function g:R"—R (respectively,

J

(«-R —R, where R ~1x*{§ } [g],,.,, %n;.,o}) Heae i sy _S.;UE"':"

"acdltnvg, if for-allix yeR (respept_lveﬂy, all x,yéRZ) we have

glxry) < gt g ly) s (1. 7)

f : n :
b) positively homogeneous if for-allixeR  (respectively, xeRZ)

and >\>O

b o o i)

,;é)~iiné-ar,(4f Tor all x, veR the equa]nty sign holds in (1.7) dnd
if we ha\m (1 8) for aH xeR and Ne R; d) dffme, if q-(*>+r

twvth 436(. ) (the linear space of all linear functions,on R ") and

ceR, whers we |dent1ry R with the family of a!l constant functions®

on R and where + means pointwise addition on R i.e., g(x)= 8 (x)+

e (xeR"). For any functionsxfitRn——vR (iel), tHe function sup f.

el

iis defined pointwise on R"; i.e., (sup'fi){x)=sup f, (x) (xeR")

i€l .el

(and, simiiarly for inf, max and«min, where.max and min denote a

.sup, respectively inf, which are attained). We assume familiarity

with the terms and results of convexi't_y theory (of sets and func-

‘tion s), which we shall employ freely.

We shall denote by ng the restriction of a. function g to a

set A. For any set (\QR , co A denotes the convex hull of A. For

any: sef=S S| and 5" denote, reSpecti\}ely, the cardinality of S

‘and the cartesian product $X...XS. As usual, Z denotes the set

n
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lof all integers (so 2" is the set of all x= {ii}"éﬁn with "integer ',
n n! :

 coordinaféu 51"-~’,§n)}.( )= —— | where n!=1.2 ... (n—1hﬂ

Gk ki(n-ki ,
Eahd, for ary xeR, /[a] denotes the integer part of «. Finaily,:
Ewé shall denote by ﬂnffhé_family of all permutations m of the
iset Tl =l

2. TIGHT- EXTENSIONS OF A FUNCT ! ow . c =R

s
wrltgen un-qLely in the form

e J ; !
: : J i : o
when : X1 >\ >0 and S]C CSf C 11 ...sn}, and hence any.
functlon fiC —a-R with £(0)=0 can be extended to C:R: — R, by

f(O) -0 and

s

i ei (O#XZ\ Ze eR 1 (2._2'):»:'

k=1. e Sk

B
’\
V
l\
f\/]w;
>/
i
.h

- is well defined (due to the unlqdeness of (2.1)) and

o)
o
o
T
e
o

for akl % eCn'. The function f is called [8] the Lovasz
fxfen%ionugﬁ f. As has been stated by Lovisz ([l?}, propositicn

1), T is convex (concave) if and only if f is submodular (super-

modular) As a consequence [10], f is linear if and only if £ i

modu]ar Larversely, the restriction of & linear function to Cn is-

modular, but the restrncLlon of a convex function to C need not
be submodular [10]. '

In the present section we shall define and study piecewise
affnne “tight extensions' f:co C g o Functlon s C —s'R, which

.w111 encompass flco ¢ as a specual case and which will be useful

;in the sequel. To this end we shall use another approach, via
v tr'iangL)Iatl onske.0f "  co Cn and ante"polatlﬂg affine functio-"
:nals This will alsa yncld a new representation of the Lovdsz ex-

tension f.

L o lovasz (FT0] 58 3) Has observeA tPjL any xefl \\{0} can be

X-ij e e e

k=1 J€S, : : Ly



* Definition 2.1. A funnte fam:ly % iD }p of n-simplices

D C.COo Cn is Lchd

a) a triangulation (see e.g. [15]) of co Cq Cie-(liiee Cn=

=_J D. 3 (ii) for i#j, either Di(‘\Dj=ﬁ, or D;f\Dj is a face of

bath D an;’ DJ

i
_.b) a v~triangulation of co C if, in.addition, its .vertices

belong to( iles ieece {xl +1} with (affinely indepen-

dert) x s

In the sequel we shall consider only v-triangulations of
o C

Foo : ;
. The !'standard v-triangulation'' of co C ic given in

Lemma 2.1. The family B= {Bﬁjnen of the n! simplices of

the fo:m -

',r-»co {0 :’Tu)}ﬂ— | (wenn) 4 '- (2.3)

is a v-‘-_‘gij_e_zggule}_tlon ef co Cn'

Proof. We claiim that

B hef erlosg sty <) el @)

SO ?f) {8 }WCH coincides with the ''stendard triangulation'' of
co C_, glvnn (thhout oroof) in [11]. Indeed, for each x B, we
have X-—Z N ?:_;_e ) Z >\ Je *(k\ 7 >TT(k g where
n .
\ e n?/O,Z )xkgh which’ proves the inclusion < in (2.4).
_ k=1 :

k=1

]9

¢

.Co_nvers.ely, it x={§i} eR”, Oé%w(n) AL %ﬂ(l <y where

e ﬂn , then for sz i (k=1,...,n—1)., )\n=

(k) %w(kﬂ)
3 n 3
2 ; Wi ; 3
_~€Tr(n) s We ha\/e_Xl,...,xn?oyz.,\k—%W“)gl and xv
n n Kk

-Z i'n'(k w(L 2:; ;g—)*)emkf '\k. eﬁ(i)eBﬁ, proving (2.4).
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§ Now, cleariy, fo) satl e b; of 5 Inlthl’\ 2 1 and L_,J B
b ﬁéf]i\

=

e Cn. Conversely, if x= {E} e :leo il )'\ {0}, then for any
j | f _Nat < : o have \/
jretl, such that 0 < i"n(n : %ﬂ\]) ,mie have, by (2. 1),

;xeBw , which proves (i). F:Jr,thermo;'e, each Bweﬁ contains the_-

{ . . .
i'"main diagonal'' of co Cn o bise
¢

i

i}fm' s eqteB ' (Tfeﬂr‘]), (2.5)
and thus B_ M B il ) Also., for any ., T’ Elﬂn we 'ha-ve:
by (2.3) and since {e} fsea basie oF' B gy, ’
B
B MB,_, =co {0 Tevu)}kéM cmO Ze "(l)}keh 26

mme M= Jlke{i n} }? e 7 ’(i.\}' But, ‘syzﬂn_rc‘e‘ B, and

T
whlr' proves G

By of (0 3) are simplices; (2.8) .is @ face of both B ‘and Bty

Remark 2.1.a) For any x of .the form (2.1}, where )\1, 5\-2 >

i :
>0, Z,,/\ks1 and S i pe s

the

g:_{]”‘—._,n} o amed cany weﬂn such

i that § = {W(l) ...,'a'r(}S [) } olkal, i) ie have xeB_ . Con~

(49

;versely, for the unique representation (2.1) of any xeB,., see
(2.16) below. ;

: b) For 1 above, exp ressed m the ewwalewt language -of maxi-
imal chains (3.35), it has been ,tated in L8] lemma L.k, that 73
is a “simplicial subdivision' of co (‘ln 3 wx'thout any c.iefirnlition of

this term.

Lemma 2.2. For any F:Cn->R and any affinely independent

X

. : ; : ; n
yoeegX eR" there exists ¢ unique affine function Y=@ bciR >
1 nt1 ;

L >R (where ®e(r” )*, c €R),such that

Plx )= Blx Jrcmflx)  (kel,ooomelle, i oo Lo

Proof. Since X.;..:5X

- ; n
1 are affine .g_xndcpendent in R, each

n+ 1
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‘ n . + ”~ : - . ;
x €R can te written, uniquely (see e.g. V13 p.7), in the form

el e n+1 :
w-—Z,_ X ; whn,rc e )\ &Rk ? X, =1 {the "barvcentric
B K 1 +1 =1 k :
coordinates' of x}. Define P:R"—R by
pkdoo ] = n+1 : i
f S S| B, \\ =~ s o !
>.., k) | _(x %;f kakc R, kz.-_-] Ny b (2.8)

Then, it is easy to check that ¥ is affine and, cléarly, 2

satisfies (2.7} Rimally, f ‘l/ o +e R R (i=1,2) are two af-
fine functions satisfying (2.7) (whes‘e ‘?i e RM*, CiéR)’ then

n+1 “n+1-

for any x—Z‘_X x, eR", where o >\k=]’ we have
k=1

e -ntd ; : n+1 nt1
2;. N X +Z BN —Z N ‘P (x —2__ %ki’(x'k)‘f
: , fisiiz) '

whence' ‘P ‘I’? , which completes the proof.

Re'r‘drk 2.2 5 e dx }n+1 , then, by (2.7), c=f(0). Henceid if

also f(0)=0, then c=0, so0 ‘i’ $ e(n n)

s

~Definition 2.2. a) For any function 'f:Cn-—-—rR and any v-trian-

“gulation g):{Di}?“ of co C_, we define the tight extension F
- :

"_Q_ﬁ f associated to &, by-

?$up+gm "&ém;huuum, fwﬂf

vihere \I/;:" fb,‘_+c (with ‘b e @M, < €R) is the unique affine

function on R" which commdes wnth f at the VPFTICCS of D

Gl=1,. . pla thatels L oiF D.=co {x1,... ]} then

?.(xi)=f(x;) (k=1,..,,n¢p ol (2.10)

since D has n+1 vertices x. X g o We shall say that ‘I’i

fes

- : : [
.extends t:ghtl\/ £ ch D. , or that ‘i’i vﬁi_@tergolgg;s‘ fat xy,

i
s

n+1 - :

b) ‘«(e shall say that f:co C —R is a tight extension of f,
; . Y
if there exists a-v=triangulation d of co L. . such that f=f" .

1]
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b2 Remape 2.8 w8l Sinee co C "L_jD ; = is well defined at each

20 i=1

X € Co C which telongs to only one of the Di’s. On the other hand,

‘assume now that xeD, f\D , where i#j. Then, by (ii) of definition

j2 1, x is a convex comb! nahlon of the \ortlce? of D.f\D.", hence

‘of the common vertices of D, and D, gasayx=3 X Xk where
: o J = k.

1€ L gn+i, X],...; X£:>O, ZLv b —1 ano where each xk is a common
. k=i

e ; 5 L i Sl 2

Fv;ftex oF_D.—co {x ...,xnﬂ}‘gnd_DJ 0] 1x1,07.,xn+1} lhus,'by
S0 Qi\x )=f (x k)~ §j(xk) (k=1,...,1), whence,-writing 4}=
=, %c ; where ¢ € (R )k, c, €R (and similarly for %3), and

usnng ZZ )y —1, we nbtaln
K=l o

f P ¥ | g gl

| \%. (x)= é.(ZX sbresd 8 Vol =0 X Rl dR g B )=, (x )
s 14 kil i Ko isil k K* 2=t e

e - k=1 le=1 k=1 ,J ;

jwh ch nrovc;wﬁhat fJ) of (2;9\ is well defined on co C}. Note that;

e =D ;

by (229)} f g p:ecewnre aff!ne funrtton on co L : A]so,~by»

(2.9) ~and (7 10), we have f x)=f(x) (xe Cn), 50 f%. is indeed

= hir i
an.extension of f. Einally,; let us observe that some of the %}’s

pS——

in (2:9) may coincide (e.g.,'when'ngis affine).
" b) Geometrically, definition 2.2 a) means that the graph
(in Rn+]) f.f$ is obtained as follows; On each rlmplex D.=
=cc {5;,... +1} of tne V- tllanquiotlon 3 of <o C s Gxoph féD is
‘the portlo” of .the unlque hyperplane passing t;roug (x],f(x I,
e x;+],f( ;+1)) (which is, actuaily, their convex hull).
Some properties of tight extensions are given in

P

Theorem 2.1. a) For any f: Cn-—*R and énx v-triangulation D=

= b ‘ ST
{D } of co C 5 sayD. .=Co {x1, 'i’xn+1} =l s
/ R - 2o d
satlsf{es 'vhere k])..., Xn+1 20, § 1),
n+1 n+1

5% ()Zx F(x) (x~}__x i eo il s el (2.11)
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L b) Each tight extension f=f°‘z) is continuous on co Cn. 3
3 : Proof. a) follows from (2.9) and (2.8). : ‘
' 5, : “b): Lot xeco Cn . {xk}cco Cn ; x{‘-*x. Then, by eo Cn=
L} - there exists: < p. such that Di contains an infinite sub-
e : ;
Esen uence of p\k} say { k } then ka‘» e v'vhenc.e,‘slr.ce Di is
‘closed, we get xED;. Hencc, by (2.9) ‘and since each affine func-
. tion \Pi:Rn»»R is continuous, :
: = oy DS e e
B = R (K e (el
m m
Now we give a new representation of the Lovdsz extension.
Theorem 2.2. Let f: :C. —>R be a function with f(0)=0 and with
Lovasz extension f: R == R and let- P= {B }‘neﬂ be as in lemma
21 Then
— ¢ :
{ o e -
e (2.12)
: n
..iand, moreover, S |
f(x)= @n(x)r (xei\ {)xB | 0 A< too}, weﬂn), (2.13)
<wh§m[£ i) e(R i is the unique Hnear_f};_n‘ction such fhat - -
P e, :
‘@;} Gyt 2_ fatis o) s (z.14)
T 2 . "
=1 : :
Proof. By (2.3) and remark 2.2, for each ﬂéﬂp , the affine
'+ function ‘PT: occurring in the definition of ?B is nothing else
| than tie unique linear function o e(R s satlsfylng (2.14) «and,
' by d(,flﬂlthﬂZ? a), we have SHE] ‘ :
(>' <§> (y i (x‘B ,w€ﬂ> {(2.15)
Now, if 1T€ﬂ and x é/\B = Nco {0 ?;_:ew( )}k = where
‘Os_>\<+oav, then there exist >\],....>\_n70 such ‘that
s s LB e
X=2 . e R & poyty e _ 2.16
k=i 0= ““)‘E‘ETX e e .

“where Ixz{\ksn | Xk> 0}. Then, the second part of (2.16) is nothing



Selae than the unique representation (21 0f s with !=|lx‘ and :
%Sk«{ﬂ \U o w(k)}‘(§=f:;..;f). Henze, by (2.2)‘(for this case),

: . 1y % : |
(2.1h) and @Wﬁ(n') , we obtain %

i k Kk :
Bl P el I o S i ;
el N 0 g e ) '
.'Y - v is—*
= ’ \ = (j‘)
: : : 1 @T.'(idﬁ'e'r)ki:]en"(l)) 'XT(X) s

~which proves (2.13).

Remark 2.4, a) The function @Né(Rn)xAdcfincd by

S e - : g Il.. k-1
S i .éﬂT( )f(ew (1)%2 i St Lf(Ze lz‘“e'n’h) J
=2 ]gle csR”'}_, » : (2.17)
= = i= ; :

sat.sf!cs (2. 1&) (even when f(0)#0); its uniqueness follows also

frOn the faet that, for @ ¢ (R ) , the.equalities (2.1&)'are’equi¥

alent toe ; e~,:- o '
i etz k-] 2 : 7
\Tr(e,n,(k'))'r:‘rklz__ Tr(l\) f i 'Tl“)) (kz/,...,n). (2]9)

h) By (2.2) (or (2.13)), f is positively homogeneous. More-

:fGVér, if we use lemma 2.1 to subdivide R: into the cones K.
‘defined in (2.!3), then on eacih ctone K_, Graph f is obtained by
the ""continuations' of the portions of hyperplanes over B (which

:.ipass now th:bugh 0), described in remark 2.3'b). Also, f lﬁlllﬁl&l"

nuous on Rz (by (2.13) and the proof bf T b}

_ c) Although the restriction of a convex function g:R:->R to
gCn need not be submodular, cne can make the following observation,
honch implies the "only if'" part in the: result of Lovdsz on f

fmentloned above, in the part|cular case when n=2: lf iz R =R

- convex and positively homogeneous, then g C is subaddlttve (and



—

'hence, when n=2, éubmdddlar): Indééd?wf% S:T é{1;;.;;ﬁ} and SAT=

|
(=@, then ; co

(/Z’“””“":\ EE G E
i< SL'T ie=S i i € F'
.=~‘:29—2~ e 7 : Leial? e Hg( —jﬁi)
ies | 1eT : _,A_xec NeT

However, for n=3, gIC need not be submodular, as shown by the
- v
n

‘same counterexample o’f‘"'[iO];;;.ZSDj which is not only convex, but
‘al sitive omogeneous : g(x)=ma = ¢
‘also positively homogeneous: g(x)=max ( §1, §? >3) e >_E.e €
€ R3) ' ' =

i
¢

d) Theorem 2.2:permits to give the following proof of the t
Yonly i part in the result of Lovdsz, mentioned above: Let F
n

(:R_->R be convex and bets St vasnd If SOVTEG, then there

exists véfwn such that :
T (s A .
s {w(1), ..., wUsaTD} esut={w (1),..., w(|suTh}; (2. 20)
if SNT=, we shall consider any such that the second equal ity

ihO»JC and we shall use that >> e=0 (or, alternatively, one can

, : L€ 9 : ; ;
ghéé ) above). T Emujj: ; e ‘eie-Bﬁ , whence, ‘since HW'
e e reens ie SNT e SUT i :

! : 1 S : ’ :
lis convex, also =( .~ e+ 7 e.) € B, - Hence, using (@4,

_ ResAl deSUT o
o e(Qn)ﬁ , (2.13), the canvexity of 'f and the equality F=?]C , ‘we

& n

obtain
HHE e r e {rs (Z e+ & (5 oe)}-
S Ve e sy Lienal e SUT
o ‘l g — 3 :

= <bw(-2—(2_.ei-r'4,_e'))=f( (e +Z:el)

: ieS EEHT 2 i€S jiedT;
gjz— ?(Z_e.%%(mie.ﬂ(— f(Z e. )+f s .)}
i N iEa) i
i€ el WES et

e) The preceding geometric observations also suggest how to

‘remove the assumption £00)=0,"t.e., how 1o define the Lovdsz ex-
‘tension of an arbitrary function f:Cn~—?R (of "course, when f(0)#0,
this extension will no longer be positively hemogeacous): namely,

f=f-£(0) satisfies £ (0)=0 and the Lovisz extension f of f should



‘be defined by

i Gl B e bk A

i . S RN e O R b e B e T 5

e -~

: o, % :
where fo is the Lovdsz extension of fo. Ther

FO)=(0)4F G)=F (0047 (x)=F (x) Olely . o2

~

so f is indeed an extension of f. Furthermore, by

7

if L we have
0

fdslms 0 200 - (eb_ mell ), BY L (2.28)

_fwhere, for each 1Té,r7n,, @;.E<Rn)x corresponds to_fo=f—f(0) as -

& 3 Ot ’ : . ; .
iidn theorem 2,2, i.e., @ is the unique linear function satisfying

w
T o o e | 2
2 q)TT\i};;eTT’(i)):-f(geﬂ‘(i)'\—F(O) . (¢<=1,...,n). . (2.21“)

; : A n : :
Thus, the unique affine function {%:R = R interpolating. f

j’at thewertices "of Bﬂ, is

i
i

'éand formula (2.23) shows that (2.12) remainé,valid for any f:Cn~¢

3

{—>R (with f(0) anbitfarf); hence (see remark 2.3 b)), for any
?f:C“-W?R, on each simplex Bﬂg,'Graph f is obtained by ! 111ling in"

'gthe ordinates of f at the vertices of B+ by the portion of the

§Qnique hyperplane passing through them. Let us also note that, by

i (2.17), the functions @%6 R satisfying (2.14) (which do not
}ente}_fﬁfp the definition of f when f{0)#0) and @g-i(Rn)% are

‘related bf !

{ g e

‘ 500- R20=FO) E () e

2t vl
T 1 (1 Sped ’7rer1n)’ (2.26)

%' :

P v

; : i=1 L :

: ' S : L o
hence, for each wefjn and each ceR, the difference Qﬁ- @W is
constant on the inQerséction of the simplex Bﬂ, with the hyper-

b = =
shetsh S n 5 i ) |
;plane‘ x.~,i{_~_i %ieiéés\l %1T(1)_C} (this intersection may be also

'?empty or the singleton {0}).

i (x)”f(O)-&-f/;(X) - - . (:XE R:) 5 (221)

theorem 2.2 Fo}‘

Y=o+ (0) e (n‘éfﬁn), ' (2}25)_

apae



1% CONVEX}}CQNCAV&} TIGHT EXTENSIONS
' We recall (see [13], p.172) that a function g:D—R, where

De R, s called polyliedral convex, «if there exist aftine func-

Bk

= / S : :
‘tions ¥ 3’ R —=R (where v<+00) such that g(x)= max \I';'\x)

jreses ¥
: : Teiary
{x eD); clearly, every such functicn admits a natural extension to

1 . / n
the polyhedral convex functicn, = irax ?i:R =R A tseful tool

: T<igr
will be

Definition 3.1, For any flunction f:Cn~->R and any v-triangu-

lation é0={0i}?:1 of co Cn , we define the polyhedral convex func-

Ltﬂ_i_g_rl 'Fv‘ﬁ:an*rR associated to .].ng) {or, te-f and 9).. by

?'oé(x): max ¥ <) feime T (3..1)
: : 1€i<p :
where 4’1,..., \Pp:Rn"")*R are the affine functions occurring in de-

finition:2+2 a).

Theorem 3.1. For any f:Cn—-*vR and any :.v~triannglgutirvr§ D =

'={D.1P of co C_ , we have
£ i7i=1 —~ n e

TP < o) e -
Apdeting L (ke t ) (3.3)-
Avfmr:_c_{g_ﬁ. By (3.1%, we have

¥ 00 ¢ 200 e

p ;
Now let X e co Cn. Then, by -L,’Di:co G there exists i.¢p-
. ’ e o8
'such that xeD;. Hence, by (2.9) ang (3.4), we obtain 'f‘?")\(‘x)=

f.:\l/.(x)‘g?’:’é(x), which proves (3.2). Finally, by —F:’DIC =f and (3.2}, -
i Ry
we have (3.3).

“ Inorder- to chatacterize the Fuﬁctions f:Cn*»R for which the
equality sign holds in (3.2), €3.3), we shall use
: . st PG faraate
Lemma: 3. 1. <1f D—co{xl,.,.,an}CR is an n-simplex with

eC and if ‘{f'i:Rner (iel) and “;»’:Rn'—%R _a“'re affine

R renie iy

-functions such that




1 S e e
sup ?{(x}=‘¥(X) : corbnEl) (3.5) 1
iel a
‘ther for each ¢>0 there exists i(€)e€ | such that 'f
: \r,, 2 ! by / “
. X > £ C . . ° %
i A«‘(g)(’,) \}’(X) & \X € CO fn) \3 6) :
i
Prooticlet us, first show that ‘forteach ‘e > 0 there exists ;

i(€e) el such that
' i
Sl'/;(f,)(xk):? \T{(Xk)'f _ (k=1,...,n+1). (5.7) 1
Indeed, If for some £,70 there is no such i Ec), then for .
each i€ there exists k, € {1,...,n+1} such that ?;(xk )=§‘?(xk )=
: o e
-~ & . Hence, if {k Bk } is the set of all distinct k,’s, then
(0] b i P forotl H
for xowg o X, €D we obtain, using that 4{ end Y are affine §
g i ‘

functions satisfying (3.5),

: oty P p ;
! l S 4 , < .].. - T/ 74 - e { - i
: ?ibb)mp%Eﬁ?iby;)sF)EZ%\(xkj)~éo %on) o (iel),

vhich contradicts (3.5). This proves (3.7).

= g ) ' i e
Now let Cn {xi"f"xn+1}t}an+2""’x,n}' Then, . s ch X5

i

:

2
Sk are affinely independent in Pn, for each x: eC there' -
n+1 J n el
; e i el %
exist uniquely determined XJ,<.,, A eR with \\J=1, such
1 n+1 i;] k i
Pl e |
thak =2 Xix, < ket §
k:‘ < K i
b e e ‘ ’
x = max y rXi] 3 (3.8)
el =1 - ;
and-let £>0. Then, by the above, there exists i(€)é€ | such that
J kI/I - \ : 2 £ - .
&’(xk) 2 )(xk) > }’(xk) —;;; (k=1,.. .,nf1),
Whence
' : R et ! 2
- = 6k -¢, ol
m"j) ?i(s)(xj), ]g Rl



n+ 1

s e dlee L 1,000

k=1 1€ kgn+1 o
Consequently, if xeco Cn’ say x=§&7fjxkz, where ﬂjZO (s
) 2 f': then
e 2.5 e ‘
l oh , £
%0057, 6] }.z ﬁJ O 18 ey b Vs
J e
i I ¥ )
; 1 max[ b )-.H&)(xkj,;&,

L t<jgp J
wiiich proves (3.6). :

Remark 3.1. The argument of the first part, combined with the

. : : g N
uniqueness part of lemma 2.2, shows that if D=co {x],---,xnkﬁ“R

G 2 » ’ 7 n . .
is an n-simplex and \I'],...,‘E' , ¥ :R"—R are affine functions such

Lbﬁl | : ~
max % (x)=¥(x) 4 fwebl g < Fo (30e)
= 1<1<r = 1 ; : _
then thelé exists i c{] sy} Suchithat
W Gt - L bl G
\ <550 :

A\ - : 5 SR
Sy A \r P 2 p 1
\ Theorem 3.2. For any e ”*R D=4D, } and {%}}321 a5 in

definition 3.1, the following statements are equivalent:
o T -5 P

i Thf tlght extension f is cbnyex.
Hplien s polyhedral éonvex.‘
e ?w is an extensnon of the tight extensibr_y?ﬁ5 ol
& 0 =F4%) (xeco C ), (38
h?'?” is an extension of f, i.e., ' : :
; f(x}::?’éb(x) i : (x(;‘cn) e (3.12)
5?_ﬂg*h§ye =
%}(x)gf(x) : (xeth, Fe Ty, o vl (2.13)

: Proof. 1°=3°. If 1° holds, then, by theorem 2.1 b) and e.g.
3[?3], p.102, theorem 2.1, we have

FUx)=sup ¥ (x) . (xeco C ), (3.1%)
i€l : : ,

‘where ¥ ‘: RT—»R (161) are affine. Then, by-(2.9),

-
R



: e ot R e o

sup %,(x)z%ﬁ(x)_ : (el o et ok, (5N

el J : J :

fand hence, by lemnma 3.1, for each &>0 and j6{¥,...,p} there exists
J(e)cl such th?t ‘ :

(E) (x)>9 (xeco Ch). (3.16)
Conisequentiy, by (2.1) and (3.1,
?j%x): max ¥, (x)< max ?{ (E)(x)+£gsup ¥ (x)+e=
1¢j<p isjep Al
i =7°%x)+£ (xeco C ) ‘ (3. 17§

whence, since £;0 has been arbitrary and using (3 ?), we obtain
SRR

e : ; ; o)z 2tilo) o : :
Furthermore, the implications 3 =>4 =5~ are obvious, by
=3
i

i ; ; ; Ok ! ; :
c =f aﬂdﬂ(3f1)1 The implication 50=¢4 is ar immediate consc-

:aQENCGVOF (3.1) and theorem 3.1.
O ’ O O J i 2 i ® :
=3 . If 4 holds and D, =co {x;;...,x;+1} fiel, o inle olet

XLLJ

o —kJ)D énd gk i<p be sthAthat»xeDi, so there exist )

= ; 12
n-+1 ; nt-1 ; ; :
e & /O thi :5 . =1, such that y—§’ sl Then, by the convexi-
ri+ 1 - g ; ) L— "L TR ,
i : k=1 : : k=1
5 Pt : A
‘ty (ohaa Pt (3.12) and>(2:11),
S n+1 o

V(T)(v Z—Ak)k<z >\ ?Ji) XiJ"7>\ T\X ) f (X) ‘,,

whence, by (3.2), we obtaih (3.1T).
' Fina]ly, the Emp]ications 30=¢20:¢10 are obvious.

o~

_Lerollary 3.1. A function f:C ‘*R'admitc a-convex tight ‘ex-

tension if and only if there exists a v-triangulation $={D, }]_]

of co C such that (3.13) holds, where ?;.R —>R is the unique

affine functional which interpolates f at the vertices of Di
(i=1,...,p).

We shall show the -interest of such'functiéns f:Cn~+R for

combinatorial optimization in §5.

Let- us consider now the standard v-tringulation E={B“ el

of co C (see lemma 2.1). For. any f:C —R with £{0)=0 we have, by



remark 2.2 and definltion 3.1, ;
. X n !
T = M X ?W(X) : AxeR ), (3 18)
well = : Est
' bl
! {
: My % : : ! : . : S :
where é;é(ﬁ )" is the unique linear function satisfying (2.14)

(and thus?33 is subadditive and positively homogeneous). Moreo- |
ver, for any f:C ~*R we have, by (2.25) .and definition-3.1;, :
R e < i
Fo(x)=F(0)+ max @ (x) (xeR"), (3.19)
’h’ﬂ !

G Mk ' ‘ Ly : s : :
where & ﬁ(R )" is the unique linear function satisfying (2.24),

Remark 3.2. Inigeneral, ?03 is not ''the smallest" polyhedral

-~

n .
convex majorant of f on R+, nor the smallest submodular majorant
of f.on Cn’ and such '"'smallest! majorants need not even,exist, as

)=0, fleyt

shown by the following example: n=z, f(0)=0, f(e J=1 (ez
P(x)=

+e2)m1 (so f:Cz-%R ‘s not submodular). Indeed, Fﬁtc ¥

o : % ‘
mux(é (x), @ (x)), where, e.g. by (2.17), Zlug 531((> %ei

| =

geR ) kxi,z), but both é} dnd @ e "minimal' polyhedral! convex

: = i < .
smajorants of f on R¥ (i.e:; i a Do]yhedral conyex maJorant is

<¢ , then it as =¢ , and similarly for wz) and Y'minimal" sumej

dular NAJoxants gt Fion CZ' :
Now we shall prove the following sharpening of the theorem

| . : : : s e 00 vt

'of Lovdsz, mentioned in §2 (i.e., of the equivalence 17¢32 below):

g 2 . LS [
Theorem 3.3. For any f: C —R, with Lovdsz extension f:R+“>&,

’the following statements are equnvaleﬂt
| 1?tf»l$ submodular, A ?

-~

o)
2. f is _convex.

30 f is polyhedral convex.
L9 We have

Flo=r(0e max 620 - (xeRD), . (3.20)
nefl: *
n

whbre g e(“ ey the unique linear function»eatfsfying k).,
= o - .
He We have

F(R)=F (0)+max &7 (x) oatherd s (BT

el e




lw
i

: 6% we twve e v i : ; |

i SR

F(0)+3000<f (x) (xeC,_mell ). (3.22)

- - : G O . : :

Proof. The implication 2 =1 follcws from remark 2.4 d), e).
= 0 0 Ty
The equivalences 2 ¢»...&30 " (actually, we need here only the im-
B : O o) 5
plications 6 =5, .. =27%) follew - fromitheorem 2.2 and theorem: 3.2
applied to =B (using ¥ of (2.25)).

0.2 50 o : o

1"=6". Assume 1~ and assume first.that 7(0)=0, so @"=¢%, the

unique linear function satisfying (2.14).

If n=2,; then for ﬂ€[1 we have, by our assumptions,

<}>( )=0=£(0), @ (C'n'(? ) - (e (j)>{ ‘?ﬂ_(e}--:-ez):f(e1+ez),

i
* :
whence, using @ E( )” and the submodularity of f,

Q,”,\ TT(7)) q)ﬁ(ﬁ +e ) @( ) @‘n’(e'n’(‘l)<>Sf(e1+el)+f<o>—f(eﬂ(1))<

<ifle :
<f( ﬂ’(Z))

"Now let.nz3 be arbitrary and assume that the statement has
‘been proved for n replaced by n-1. Thus, for any7wf1n,

n~1

SIF e n-1 = 1 (i= -1) ¢ :
| Cn~1 {} 1>ﬁ(i)}i:1éR !gﬂ(i) 0 or 1 (:_I,L..,n 1)}, (3.23)
“then, by cur induction assumption, we have @%(x)gf(x) for all :

et
-5 ]

Yy : B ; e
But, any xeC \C is of the form x= > e, , where
e Rean o
iéSLﬂ!’(ﬂ)\

 SC{W(1), .,m(n=1)}. Hence, since i
BufrnPain(1), .. wln-1)3=s,{sufr(n)Puir(1), ... w{n-1)} ={1,

and since Z_e, eC , we obtain, using igé(Rn)%, (2.14) and the

|€> o

submodularlkv of F that .

8 (7 et (e )0 (> oyl

_W ; Tiles ; iz : i=1.
<f(j5 )+F( Zl_e )- f<2€~ew Lol
. €S i=1 i=1

_Assume, finally, that_f(O)eR isvarbitrary. Then fo=f—f(d) L

§Qbmodular‘and fo(0)=0,vwhence, by the abové, we have

B2 (=fGaF () o (e wel)

NG



-
LiLe., (3:.92)

Corollary 3.2. a) Every submodular function f:Cr~+R admits a
eSSl | sl 2

polyhedrai convex tight extension, namely, flﬁo .
blalf f:C —»R is submodular and £€0)=0, then F:R"'—R is sub-

additive.

,F
[co C
tight extension of f, so it is enough to apply theorem 3.3, impli-

Proof. a) By theorem 2.7 and remark 2.4 e), ita

cation 10:?39. 3

b) follows from theorem 3.3, imﬁlicatioh 19549,

Remark 3.3. a) One can define, for McR", the subdifferential

?g(xo) of a function g:M—*R at a point x_eM, by
"_690\ )=§0e(R™) ™| #(x) - &(x Jsal)=glx.) (xeM)}; (3. 24

for M=C < such a concept has been introduced by Fujishige 67,
81, who has used functions ¢: { y Dy R (clearly, they can be
identified with functions ¢e(R")™). By (3.24) and theorems 2.2 and

254 (app jed to f= $), we have, for any f:C ~*Q and x cC =

Al‘i’~a¥ico c ( ) 5@5 !f ~?(xo)= min Jf(x) éxx)}}
¢ n A XECO C :
{@C R )%]f % ) B(x ) =min %f(x @fx)}}*of % ) | (3.:95)>

ch

“(for a similar result, see [8], theorem 4.2), whence

max $l)=" -max $O)<F(x)-F(0)  (xeco Cn). {3.726)
2eaf (0) peaf | (0) '
= = 2 n

e iy ) o :
| f.un >R»1s‘submodu1ar, then, by (3:22), HS_DE¥E {¢ﬁ}ﬂ{ru§

.Caf(O), whence, by (3.26) (extended by positive homogeneity to all
x€R M) and (3.20), we obtain

e @ﬂ}x)g max @(x\<‘(x) -f (0)=max @ ( ) (xeR:),

vcﬂn ¢t2f(0) = el
and thus

F(x)=F(0)+ max &(x) & B.27)
» - $edf (0) . '



] e - P ; e
Formula (3.27) (which also implies 2° of theorem 3.3), has

been obtained, using the 'greedy algerithm', in [8), formula (4.1)
ahd; actually, in Lovasz {{10], :p.248), if we take info aceount

that, by -(3.24) (or, by [7], lenma 4.3 (a)), the palyhedron B of
{107, p.246 is nothing else than . :
Pe=q2e(RM)*) 2 ¢ (e )¢F (5 e i=F(0) (T€{i,...,nP)}=2r(0), (3.28)
£ der jeT J . -
: wherg~§£:$(e.)u0. Our methods, used above, for obtaining formula

' j€g

f(3.27), are entirely non-algorithmic and, moreover, they lead fo a
vdeeper understanding of the greedy algorithm (see $6). -

. b) Since for each xeR" the function hx(@)ﬁé(X) @e® ™) is
linear and since 3f(0) of (3.25) is a convex polyhedron in (Rn)%

we have

max ¢(x)= max  $(x) (xeRT)
‘ $e3f(0) . get(3£(0))
where ¢(3f(0)) denotes the set of .extreme points (vertices) of
-9f(0), and hence (3.27) is equivalent to
CE)=F0)+ max  $(x) (xeRD). (2.29)
: det(2£(0)) it : ;

One ‘can also show that formula (3.29) tmplies (3.20), and
thus they are equivalent. lndeed, using_(3.36) below, one can

write (2.18), (2.19) of remark 2.4 a) in the form

b (2 )=F e : (3 20)
“3’11(“5,‘) .(951) ; | | (3.30)

$ (e = f"" wrl > 3 : =t 21)
Qn‘\“v‘s \q ) F(. ei) f(_,e'__f_m....._.ei) (k 2""9”)) (3'.»‘11.
: kil k=1 IESP xéSk_] ;

‘and hence, by {8], theorem 3.1, the functions @2 (ﬂ&ﬂn) occurring
in (3.20) above, are precisely the extreme points of 2f{0). Let
>us note that, in the above probf of theorem 3.3, we have obtained
(3.20) without using extreme point methods.

: The répresentatEOhf(B.Zl), of an arbitrary submodular func-
1tion f:Cnf*R, involves lﬂn;=n! aff?ne functions ®§+F(0). How we
:sha]l imp{ove this, as follows:

Theorem. 3.4t There exists a sub§i£11n_2£17n; of cardinality'

i -
2 7t



Z

}f?nl“([z]) Q»'H“  : _. ‘SH» ‘ it b

sgivch that

=k /B T = » (3.33)

HEAL

Lang hence, fmr each submodular function f: C -*R we have

f(x)=F (0)4max & (x) i (xeC, ). (3.3h)

~Proof., bet ‘us first. observe that the permutationsvreﬂn are in

-ione-to-one correspondence with the 'maximal' chains,

SoES = ;
)1C._2C...C5n {1,...,n}, (335)

éwhere [Sg|=i (=1, ..on)e - Indesd, to cach‘weﬂn there corresponds

_the chain (3.35) with : _ ;

i ~ \ i
Skt{ﬁ(l),.. o, k)Y Gty oot (3.36)

‘and. conversely, for each chain<{3.35) with ]Si[=i (=1, o),
there is a-unique permutation weﬂn such that (3.36) holds, namely,
E{1 e ],Lﬁ\l)}ng\Skﬂl (k=2,,..,n). We c}aim that the minimum
iof the number of maximal chains (3.35) such that each S¢{t,...,n}

13 e p 2 5] 4 3 . . . i 0 "
belongs to one of these maximal chains, is ({n')' Indeed, by a

2)
theorem of Dilworth [h] the above minimum is eanal to the maximum
of the cardinalities of antlchasng in 2{3 *.2, and the latter
is known to be (r:1)~(see g 3, p.335, part e); one can also
i ‘

%givé a direct proof, by showing fhat in 2 the elements

. sn}
i

Zét the jave] Pi} e T ihe subsets Teil L bont with lT]z[%},
‘constitute an antichain of maximum cardinality). This proves the
'cléim. s
Now letjlncﬂn be the image, by thevabove correspondence bet~
ween maxima! chains (3.35) and permutations 7eﬂ o of a minimal
famxly of maximal chains as in the above cla:m g0 (3,320 bolds.
Then,_SInce each Xe( \jO} is of the form x~;;—e 5 Where B+#S <

€S
'Q{I,Tl.?n} for each such.x there exists a permutatlonvejl such



that S={n(1) !)}, whence x~j;"e 1) ~4_B”). This. proves
|~1 i)

(30334 Finally, by (3.&3), for each ALC‘\{“} there exists weQn
such that >»é\qwl\10} );Tieﬂ(' }k i whences by (2. 2&) and (3.21),

we obtain .
Fx)-F(0)=¢2(x) g max_ @ ,(x) ¢ max ~ 42, (x)=F (x)~(0),
_ ; )
e n(ﬂ

which yields (3.34).

Example 3.1. The v-triangulation (2.3) of co C.. contains 31=6

3

simplices 8” ‘and, by thoerem 3.4,  we'can rep xeg nt any submodularz,w

-ffCé~+R in the form (SMBH), using on]y( g
- o g

'say.ﬂg={ﬂ],89,83}, such that C. —k,/% B, ; for example, one can

)2) of #these simplices,

i=1
e 2
take 8 =CO0 10 e ,e]+eﬂ,4__c } 3 —co{d e ,ez+e3 ?i;eQS_and 83=
. i=1 =l

-.O{Oe,9+e3 Ze} | : .,,‘:

Rtmdrk 3.4. To each function f:Cn**R and each v-triangulation % ans

ﬁ {D } o* co C_ one can associate a polvhedral concave function
25 . ;
f_

c0fr sponaing results, with the obvious changes (thus,cHns the ré- -

:C ~9R replacing max by min in (3.1), and one can prove for (f. 1}, an” one

;sult forg%ﬁ corresponding to theorem 3.1, the inequalities are-g
reversed, and in the results corrPs;ond’hg to theorems 3.3, 3.4,
:submodular functions are replaced by supermodular ones ahd max &g _
replaced by min, etc.).

Now we shall show that tight convex extensions associated to -

v-triangulations of co Cn’ which are different from the standard
one. of (2.3), are also of interest. For simplicity, let us consi-

der the case n=2. In this case, there is only one ''mon-standard"

v-triangulation of co C,, namely,i)={D],Dz}, where

D]ZCO {O)e]’ez}’ DZZ.CO {e]’ez,ei-}-ez}' : . (3'37)
5. Fhe unsque affine functions Y ? R —>R, which.interpolate : v
a functxon fir: C,—R at the vertices of D1 and 02 respectively, i.e., TS

which satls.y



¥ le)=fle )=o) elszls o0 ¢ (238)

| £ (0)=F(0), ¥y (epro,)=Fleyrey) oo - 3.29)
ae 2 2 ' 2 :
: B0 e oD e (R r (D ))+£(0) Z{:g & cR (3.40)
i=1 i=1 ;s ‘:'. =1 i
7 ' | b
. ?é(%?%gle = (eg4e )= f\eZ )§1+(f(e1+e )—f(el))§2+
A af(eg)4fley)nf (g te,) (Lg aeitle © (3.41)

i=1

Now we shall show that the supermodular functions f:Cz-*R

'correspond to the v-triangulation (3.37) gi o) C2 and to convex

functions, in a similar manner as the submodular ones correspond,

by theorem 3.3, to the standard v- tr;angulatlon (2.3): of co C and

to convi functions.

Pr0p051txon 3ul.oEorithe v*triangﬁ]ation (3.37) of o C, and

~Tor _any f:C2~?R, the following statements are equivalent:

Sl
17.f is supernodular.

i (o . S
i 2. The tight extension F is convex.

30—6O= the statements To~ho of theorem 3 2 respectively.

Proof. 1°=6°. If 1° holds, then, by (3.40) and {3adi1),

o, (e +e ) fle)+f (e 2) f(0)¢fle te,),
o '4f(o)=f(e )+ le,)-fle +e,))<F(0),
‘which, together with (3. 38) (3399, pield s (35 13).
i The LquxvalenCts B 6 (actua!ly, we need here only
‘the implications 6°=...=2°%) hold by theorem 3.2. e
 2°=1°% 1f 2% holds, then, by (3.38), {2.3) for x=—rte, ,
B e ] e
and f l =f, we obtain
; C)
: +e eiete:
: 2, A1
L e+ le,)] - %’ 2 )= F ) ¢

1
if (0)+F (e te =5 {F (0)+7 Lo +e,)]
By remark 3.4, to proposition. 3.1 there corresponds the fol-

low1ng result on submodular:ty and concavity (where i’ ; ?2 are



"as above):

Proposition 3.2. Under the-assumptions of proposition 3.1,

the following statements are ecuivalent:
‘ _

124 is suuinodular.

- Sian

(@] AI
2. f .is concave,

of SR :
f™ is polynedral concave.

L2 Ve have

OSSR )

»?ﬁ(x)=min(§3(xj,+2(x)) ' . (xeco C,). - _(3.425

5? We have

Fl=min(¥ (), ¥, () - (xeC,) . C(3.43)

6% We have

) (xeC,, 1=1,2). (3. 44)

Indeed, f:Cz—éR is a submodular function if and only if -f:

2 :
equalities corresponding to (3.38), (3.39) (i.e., -%H(ei)=-f(ei),

123

RiE *+Rji§ supermodular and, since -?1; —%é and -f satisfy the

etc.); formula (3.13) for -f means that.+¥.(x)g=f{x) (XGC2,1=

which is equivalent to {(3.44). Similarly, for 7 of temark 3.4, i
we have. o e PR %
: T - 2
?azminxqﬁ»?3)=-max(“{}”%§)="(:?3 ) R (3.45)
ra 5 3 >
D =
SO -f=(:?) holds if and only if f=F"
Remark 3.4. a) Geometrically, we see that each f:C2~aRJhas
exactly two tight extensions, ?B=; and ?$:co C,.=2R, and
: ‘co C2 2

their graphs are dyhedral surfaces in Rj,bconsisting of two trian-
gles; namely, ?j%?&) interpolates f at the vertices of the trian-

les. B, B, “(respectively, D.,; Ds), so the two triangles of Graph
des ety VRl e e St S0

f (Graph 2) have the side [(0,f(0)), (e1+ez,

vely, [(e],f(e])), (ez,f(ez))J) in common. If f is ;ubmodular,

f(e]fez))1(respecti-

then T (respectively, ?ﬁ) is convex (respectively, concave) and,
by (3.20) (respectively, (3.#2)),'Fa(?”) extends tightly f "'from
below'' (respectively, 'from above''), and the converse statements

are also valid. This explains, in part, why-submodular functions



fhave some aspects similat to" (or, '"behave like") convex func-
tions and to concave functions (see aiso §h).

E;%_—rb)mln contrast with the case n=2, we conjecture that for any
Vftriangﬁlation'%={Di}?:] of co 63, there exists a supermodular
functionAf:C3~9R, such:that if %}:Rn~+R is the unique affine fun;-
‘tion which extends tightly Fto D, (i=1,...,p), then we do not have |

'?f(x)=‘max>§;(x) (xeCB); or, equivalently, there exist i <p and x e
1<igp : ;

€C, such ‘that f(xo)<§%

! e S

3

(xo). This is indeed true e.g. for the stan-

dard v-triangulation(2.3) of co C,, for the "minimal''v-triangula-

: . 8
ition of FO-C3‘ consisting of 5 simplices, given in [11]}, namely,
: L2 e e e <1 A
. ;D1 co {0,v1,82,€3}. D,=co {v],cQ,e3,ci+¢2+e3} and D3,D“,D5_colei,
: e :

bej;ei+ej,zz:ek} (i,j=1,2,3; i#j), and for the v-triangulation
G e s

;{D?}?=1 of c6 Cj, given in remak 4.3 a) below.

;4. POIYHEDRAL CONVEX (CONCAVE) ENTENSIONS S wd
=5 Sletiue recall that if E is a set ard W is a family of func-
ft!ons w:E—=R, a fupction f:E—~R is said to be W-convex fS], “f

‘there exists a subfamily W_ of W such that : : j

f

= Coehemsly Wi, e (h.l):
s wewf z : : [

or; equivalently (see e.g. [19], proposition 3.3), if

f=sup w . 3 , (4,2):
weW - :
wsT

Definition b.1. For E and W as above, we shall say tHat a

function f:E—R is finitely W-convex, or, briefly, FW-convex, if

of W, such that (4.1) holds

there exists a finite subfamily We :
(with sup renlaced by max). ' S i
| For E=Cn, theofehs 3.2-3.4 suggest-to consider the EM%’EQEXE&
functions f:Cn—+R, whereJZn is the family.of all modular functions

fw:Cn¥+R. Also, we shall say that f:Cn—¢R is Eﬂn~cohcave, iEe~f is

L4



3ﬁM6~conQéX; R b pet i o s "WW.MTWHW:.,.‘;
Remark 4.1. a) Since (by §2) w:Ch~>R is modular if and only
"if it can be extended to an affine function ¢=®+c:Rnf+R, a func-

ticn f:anéR is Oy

it -convex if and only if there exists a finite

-subFfamily Wf={wi,...,wr} ofth such that e o ,~»§~m~
fﬁ‘max'wi= max. (¢.+c.), o (b3

, lgier - A<i<r ' ' e

where ijéw’ @i(0)=0, szwi(O)ER; thus,'f:Cn~+R_i§ ﬁMn-convex if

and ornly if it admits a polyhedral convex extans}dn‘?:Rn—+R.

"bj By theorem 3.4, every submodular function f:Cn—»R A RMh-;

?-Egpvex and we have (4.3) with ré( i ) {in particulafy rg2 for

n
o 2]
n=2 and r¢3 for n=3) and with c1=...=cr=f(0). On the other hand, .

by a theorem of Rosenmiller and Weidner (147, every convex game

(i.e., every supermodular.function f:C —R with f(0)=0, f»0) is

Eﬂ“*§onvex, satisfying (4.3) with ?}20;.cis0 (i=1,...,r) and rg

i

- <2N (where 2" is not minimal [14]). Hence, every submodular func~-.

tion f:CnnaR with f(0)=0, f<0, is Hﬂr~:oncave, satisfying f(x)=

i% min {¢i(x)+ci} (xeCh), where ?ie(Rn)*, ¢i<0, ci;O Cislien ., rife
1€ign e = = ' ‘

thus, such a submodular function is simultaneously Eﬂh-conVex and-

:FJ%"concave (but, in general, not modulur).
For n=%, since each f:C,—R Ts either submodular or super-:
modular, from propositions 3.1 and 3.2 it follows that each f:C2—>

¥R Ic RMZ-convex and Eﬂzmconcave. Although for n33 there are

- functions f:C,—R, which are neither submodular, nor supermcdular,

3

‘we shall prove'now; for an arbitrary n, the following result:

Theorem 4.1. Every function f:Cnt*R ii-EHn-convex and’ﬁmn-

=concave. P

Proof. Let C ={x e }. Then, for each | there exist @.ei
; n 1 n . I

e 2

<

;e(R“)* and :iERngﬁéh rﬁat : = : : , E
i §i(x:>=ci ; ‘?i(xj)<ci . (%jeCH\{xi}), (4.4)

X, is an exposed point of co Cn; one can see this also

“since each



fdirectly, by raking for example,

(x)=2_¢ ng = (x={§.3er", s<ft,

iéc ICC \

=fS} ' : - (Sgﬂ,,n})

i il

Let o, PieR (i=1,...,25) be any numbers such that

b))

0<x.<. min e HPaS e T e
'_ xJ.ecn\{x;}‘;’i("jj = -
ey : : =
: ﬁi~f\xi) “Ch (i=1,=
“and let
¥, = @rkﬁ . (121,
F(x)= max . ¥ (x) (xer").
faien

(b 5)

- (L.6)

(4.7)

(4.8)

(4.9)
(4.10)

Then, each ?}:Rn~¢R is affine, 56 T:R'—R is polyhedral con-

fvex and, by (4.4), (4.7, (L.8) we obtain, for each iefl;

e (xi)=e; 2y x4y =g oy =F (x)

‘I’i (xk)zwi‘?i(x ) =, c|+o< G +(‘~ {f(x )- f(x \}}‘%

| +f(xi )=F0x) Coa
" whence : .
: - e ; Vo ' c AL
f(Xk)-‘ mcx h \ill (Xk/—1 (AK) . (k"1 s sl ) s
ksigd -

! which proves that f is FJ%?convex. Thus, since f:Cn—éR was arbi-tn;

fsbrary, —foisialsoe Eﬂn-convex, so f is ﬁﬁh"conaave.

‘ _E?mark b.2. a).By (holi}, (h.iZ), the non-vertical hyperplane
; : n+1
] {(x,d)eR l(%} d)=0}= { x, ¥, ‘xéR }=Graph Yl

contains the point (xi,f(xi)), pel e ”upper half-space'

{(x,d)ERn+1I(?i,;1)(X,d)$0}={<x;d)!?i(%)(d}=Epi b

i

" for the 2" points (xk,f(xk))éRn+]

B8
(l,'.ﬂ)

(!+;12,).

(4.13)

{2

(4. 14)

'1(1;.15)_

i contains Epi f . Thus, the above proof amounts to showing that

and for any fixed one of them,

, " n+1 Lo n :
‘there is an''upper half-space'in R containing all 2 points,

“with its boundary containing only the fixed one; or, equivalently,

~

e



;each (xk.f(xk)) is an exposed point of co {(Ep! f). Note also that

‘the hyperplane (h.14) supports the epigraph of f= max . ¢, at

; L 1¢ig2
i()&i,?-(xi))::(xi,f(xi\), by (4.11) and since ¥.<F. If c,>0 for all i
with xE#O (e.g., in the case (4.6)), then the functions @; of (4.9)
satisfy, besides QH(O)sf(O), also

?i(0):ﬁi=f(xi)~Mi¢i<F(xi)=§}(xi) (xééCd\{O}). (4.16)

b) Theorem 4.1 shows that, in contrast with the "continuous
.case! (whére each simultaneously convex and concave function is
jnecessar?]y affine), every function f:C_—R admits an extension
;to a polyhedral convex function ?}:Rnf*R and an extension to a
;polyhedpa} concave function 72:Rn~»R; in particular, ifﬂfiCn~»R

iadmits a simu]taneouély convex and concave (i.e., an affine) ex-
stension ?:Rn-¢R, thea f is modular. :

: C) We shall show elsewhere that W-convexity of functions f on
'ianandfofzéuHSQ£s ¢ of z" (in the sense of [6]1) are useful in dis-
;crete optimization:and might be ''the appropriate convexity concepts
;inhdjscrete structures'' (the problem of findjng such concepts seems
ito be still cpen; see e.g. [1], p.10). An ‘additional advgntageais‘
Ethat there exisk already a number of results on yeneral W-convexi-
5ty (see eag. 6]y [5), [19) and the references therein).
; From (4.13) and (4.10) we obtain, for any f:Cn—+R, the repre-

‘sentation f= max

involving 2" affine functions %}: By, res
lgig2 :

n $i|Cn’
%mérk 4.1 b), for convex games f:Cn~+R the number 2" is not minimal
{147, Moreover, let us give now the foliowing result, which, in
5particular, imbrovés the minimal number given in [14] .for convex
:Qames f:C3“>R. : . T ; =

Proposition 4.1. For any supermodular function F:C3—+R, we

have the representation

Flx)=max (¥, (x),¥,(x)) (ngé)», (4.17)

where ?f,?7:R3~4R are the uniquely determined affine functions 5 EEng

which interpolate f at the vertices of the simplices by : ce




=

D]*co {0, e1,e2,e3} D —co{é ptey e teg,e, +63,;i%ei : (Q.18)
_ = ;

respectively, i.c., which satisfy
' 'jl'](o)r-f(o), ¥, (e )=f{e)) - 1=062,3) (4.19)

\T, ( ,. 74 e wet e s . ; “
‘Z e\) =f i’]ek), qz(ei+ej)—f(eircj) (1,Jm1,2f3, P#7). (4.20)

ﬁiggi. Clearly,

e | i= / S i=1

= - ' . 3 =
..?1(Z_u?);ei)iz_ii(f(ei)-f(o))h‘(o) , (7 Geero) (407

= 3 3 3 :
*’ZQ-]%;@;FZ]_{H?} = f(ZM }i +7" -)"ZF(Zej)
: | = | = J '=] b

J#i i=1  j#i
(41_§ e €R ) by 22)
|*1

Thus, by (4.21), (4.22) and supermodularity, we have

‘i\ifi(q;i-;-;gj)=f(ei)+f(ej}-f(0)éf(ei+ej) » (=2 on

L,

4 (? el )= fle;)-21(0)<f(ejte, ) f(e;)-F0)<F (2 e,),

pey o _ e i=i
3 3
4’(0) jf(e s )+f(e e ) f(;rie )+ {f e Pez) f(;?:ei)}s
i=1 i=1
<fle )&{’r‘(e3)"f(e]+63)}-\<\f(0) 3

2 f(Ze +F(0 <fle,)
e J#l

(l‘"1 )2’3)

'I\”w ;

sl
\}/ (ei)::]c(S__-e.)“1(7(‘}::6.)""\P (O):<f(
(s _I R A J 2
j=1 Jj#i J

il

which, together with (4.19) and (4.20), proves (4.17).

Remark 4.3. a) co C3¢D1U02, and {DI’DZ} is only a proper sub-

family of a v-triangulation of co Cy (e.g., one can take, in addi-
tion, D; co {e Tez,ei,ej,e +e } D)=co {e 175585 85,8 % } 5=
=CO {e +e2,»1+e3,b7+e3,e3} and D6 elo): {e +e2,e],e2,e3 ¥, but C3~
=4(D, JuLD,) . -

: b) For an arbitrary n, if f: Cn-+R is supermodular then for

the unique affine function QH'R —R which interpolates f at the

Rl



conclusion -holds for any supermcdular f. ° . i

-
vertlccs of the n-simplex

S [ eo {0, ek} : e = (h.23)
‘we have 41> . Indeed, if %’( )=£{0), ¥, (c = f(e o= on)
and if (0 e )BT o o) fon alld sty ,.,nj w.th iSigs-1, where
i k k
keS KeS :

s¢n, ther for any Sg{1,...;n} with [S}=s and eny k €S we nave

e e O T
ke ©  kes\{k.}
i derle ) f’U)/f(§;~e ¥
ke\\{k} o  kesS

c) If f is a convex game, .then, since the unique affine func-

: n - : ; : g E
‘tion ?Z:R —R which interpolatées f at the vertices orf the n-sim-

plex

n

=0 {,¢k . Bl & | : - (Q.ZQ%

5 just: the last function constructed in the proot of the Rosen-

miller-Weidner thecrem mentioned above, we have, by [14]; %&sf;

ropcsitions 3.2 and 4.1 show that, if n=2 or n=3, then the same
i ¢ ; ¢ i

>5. APPLICATIONS TO COMBINATORIAL OPTIMIZATION

For a function f:Cn**R,-we shzll consider the combinaterial

optimization problems et |

:(Pmin) min f(Cn)= min f({x)= min (;?ne ) (5:1)
xeC sedl ;.. luonhi les ;
_'(P ) max F(C )= max f(x)= . max f(:;—e 1B (5.2)‘
e b e 5Bl ) S o %

Lovdsz has observed ([10], lemma.4.3) that for any fuhction

-

.f:Cn~eR with f(0)=0 and with Lovdsz extension f, we have

min f(cn)=minﬁ¥(co C ) =) {5.3)

and that, if f is submodular, whence fis convex,. then, by (5.3),

Je can StUdy-(Pmin) by applying known results of convex minimiza- :

tion theory to the problem



)= min £Ee 0 ). : e

o

R

S min ‘ , :

v Generaliziing this method, in the present section we shall con~

‘sider{ for a function f:Cn—»R, various extensions f:co Cn~*R, and

we shail study problems (P ., Y, (P__ ) with the aid of the optimi- .1:
min max :

zation problems

xﬁﬁin).,u ‘min ?(C?4Cn), : - (5.5).
¥$ﬁax)_»' max T (<o Cn), ; £ (5.6} =

~when the minima in (5.1) and (5.5) are equél,.or the maxima in
35.2) and (5.6) 'are equal, or'both. Of course, if f is any convex
'kxtehSion of f (see theorem 4.1), then (5.6) is attained at some
.xoeﬁ(concn)=Cn , and hence the maxima in (5.2) and (5.6) co?ncide;:
however, we shall not use here this remark. |

Theorem 5.1. For any tight extension f of a function f:Cn—»F, _z

we have

“min £(C )=min f{co Cn), (5:7)
n - ’ i ; £ ¢ : .
2 _-max f(tn)ﬁmax filco Cn}— ‘ : _ - §§.8)
MYPFOOf -l towidl be siéfficient to consider (P .. ). Since'?]p —
rroorw : min C,

we have the inequality > in (5.7). For the opposite inequality,
i o P P 2 T : '
tlet f~f ’"B“{Di}i=1 an {4}}i21 e gss Incdefinmittony 2:2 .= Then by;

: P 2
Telo) an\ij] and (2.9}, there exists i,¢p such that

i1 ,
min ¥ (co Cn)Lmin ?(Di Y=min 4} (Di o (5.9)
720 5 0 o : :
But, the-affine function 4} “attains. its minimum on Di at
i : o ~ : o
“some xkoé‘%(D.I ). Then, by condition (ji)} of .definition 2.1; we
fy : o) '
i
have xkégtn, whence, by (2,10) and (5.9),
; i i :
min £(C )¢f(x 2)=¥, (x ®)=min ¥. (D, )=min T(co C),
= B K It K e n

\which, together with the inequality .» observed above, yields (5.7)-
: Remark 5.1. From theorem 5.1 it follows that if f:C —R admits

a convex tight extension f:co Cn~+R (e.ae, by theorem 3.3, thisels



the case when f s submodular), then one can study (Pm.n) with the
following method: By theorem 3.2, implication 1O:¢30, f can be ex-
~ tended to a continuous convex function ?:Rn~*R, and then, by theo~

rem 5.1, we have

min f(Cp):min ?KCO'C1)=min ¥(co Cn); (5.10)
hence, from results on the problem of minimizing the continuous

: : ) ' ;
convex function f:R —R on the convex set co Cp , one can obtain
results on problem (Pmin)' Let us note that the "economical® (in
particular, the "minimal'') representatjons of a function F:Cn~+R

as f= max Y. ith i}:Rn—»R affine (e.g., (3.34) for a submodu-

‘ s W

1<i<p ' Cn :
lar function f, or (4.17) for a supermodular function F:C3“+R) are
not appropriate for such a study of (Pmin)’ since for them the

polyhedral convex extension f= max ?'ch C

" of f is not tight and
1<igp i :

(5.7), (5.10) ‘need not hold.

Using the method described in remark 5.1, let us prove
\ “

W TFheorem 5.2, ‘If f:Cn—+R admits a convex tight extension f:

:co Ch»sR (ihupartieular, if f is submodular), then’

ain %(Cn?: max. . min {f(x)-@(x)+min @(Cn)}. | (5,?J)l

Qé(Rn}ﬁ xeCn

Proof. By theorem 3.2, implication 1O=¢30, we can extend T to

a polyhedral convex continuous function F:R"—R. Hence, by (5.10)
and [16], theorem 2.1, and since -@(x)+inf @(co Cn)sO \X€CO Cn), '
min f(cn),§%;:;)% ;:;n {F(x) ¢(5)+:n. é(co Cn)} | :
= max ‘inf {?(x)—@(x)+inf $(co Cn)}. 55 12)
ée(Rn)% X€CO Cn :
éut, since Cn=%(co'Cn), for each &e(ﬁn)% we have inf 2(co CQ=
=min @(Cn). Furthermore, since F oo s convex_tight exﬁension of

T-% is a convex tight extension of f~¢}c , and hence, by (5.7)

s - ! : e
applied to F-@‘C , the right hand sides of (5.12) and (6. 1) ‘coin=
cide. L

—_—————]

Remark 5.2.VJust as [16], theorem 2.1, used above, is obtained



—

et

din [16] from the well-known duality theorem of Fenchel-Rockafellar
A h2],
Fenchel-Rockafellar-type theoram'of [Z1.

the: Rl s h

theorem 1), theorem 5.2 can be also ‘dediced from the recent
theorem 3.2 (identifying

)7"&
3

functicns‘¢:zl, uqed Tl 7 ] owikth: £ nc?lons de (R
. 'as in remark 3.3 a) above).

: Simi!afly,
Theogem 5.3,

1co L =R (in partxcUlar,

for problem (P ax), et us prove

i C =R admits a convex tight extension f:

if f is submodular), then | :

max f(Cn)= max . min {f(x)%@(x)inax <I>(Cr }. (5.13)
@e(Rn)g xeCn— :

Proof. Extend f, as in the above proof, to a continuous con-

vex function F:RT5R. Then, “by (5.8) , %Wco

c =f and [18], theéorem
“-2.1, we obtain (considering X@ f=lc (o) C with Q@(x

@, J+sup &(co Cn)<Q

max f(Cn)= sup inf {1 x)+sup ¢(co C )f”
‘ @é(Rn) % xeR” e :
L Tt é. sup inf {?(x)"@(x)+sup $(co Cn)}' (5.1h)i
o5 pe(RM)® X€Co L ' |
\<Bufjléfﬁiﬂérly to'the proof of thecrem 5.2, for ‘each "¢e(R =

we hayve sup $(co C ) =max $(C ) and F-9 is a convex taght extension

of T*élc , whence, by (5.7) applled to f- V}C and by_().1b), we_A.-\
n : n
obtain ~ : |
max f(Cn)= sup minA{F(x)-é(x)+may @(Cn)}, (5.15)
' ‘PE(RH)% X€C :
SO it remains to show that tne supremum is attained. Let xoch be
such that ‘(xo)—max f(Cn) and, as th the proof of theorem 4.1,
;hoose @Oe(Rn)# satisfying ;
— R ol _{ . :
.éo(x)<max éo(Cn)—éo(xo) : (xebg\ixo}). (5.16)
Then, for each xeCH\jxo} there exists XX>0 such Fhaﬁ 1
e
f(xo)“f(X)sk{max @O(Cn} @O\x)} (X;Xx). (5.17).

et k= Sma )

éb(xo)=max éo(C

Taxec\fxa "

n)’ we ‘obtain

(5,17), A6>O'and

1

Lo -
. Then, by max T(Cn, f(xo),



N Bl e (5.08)

max'f(cn)zmin {f(x)-k@b(x)fmax(kéoﬁ(cn‘

xeC
n

so-the sup i#n (5.15) is attained for all Xéo (X;XO).

Thecrem 5.4. Under the assumptions of tihcorem 5.3, we have

max'f(Cn)= max min fix). (5.19)
: o el ;
be(R) ?(x)=maxn@(cn)

Biggi. Similarly to the above proof of theorem 5.3, using

now [17], theorem 2.1, we obtain (5.19) with max , replaced by |
o se(R") :
sup, so it remains to show that this supremum is attained. But,

since for each @c(Rn)%7 F@:{xécnl@(x)émax @(Ln)} is a subset of
C_» the function F:(Rn)xfaR defined by
‘ p(@)=nin (F,) (ee(rRM™) - (5.20)

assumes at most 2 distinct values on (R")*, and hence sup y((Rh)x)
s attained. : ‘

~ Remark 5.3. a) One can also give the following direct proof
of theorem S.h: The inequality > in (5.19) is obvious. Further-
‘more, let x:€C_ be such that f(xo)=max f(Cn} apid, as o ghe proof

$

‘of theorem 4.1, choose 4’0«5‘(Rn)3}< safisf?ing (5.16). Then {xeCn‘
@O(x)zmax &O(Cn)}:{xo}, whence : oyl s

max f(C Y=f(x )= min e
n e xzC

. ./-.
@O(x)=max é%\ﬁn)

—

b) Theorems 5.3 and 5.4 may be regarded as ''duality theorems'

for the NP-hard problem (Pmax) of (5.2 Indeed, aithough these

i

‘results are not of max-min type, they involve the natural ''dual
; A0 n, %
:variables" de(RM*,

-

6. APPENDIX: ON THE "GREEDY SOLUTIONS'' OF A LINEAR MAXIMIZATION
PROBLEM

By remark 3.3 a), formula (3.28), the linear optimization pro-
blem considered in [10], p.247, can be formulated as the problem
‘of maximizing, for a given xeR: , the linear function hx(¢)=¢(x)
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T

Wik

; O b
ilence’l <6,

we obtain

50 $_is an optimal solution of problem (6.1). . §

i

o n ; S : i :
3.-Far each xeR+ , every greedy solution @W is an optimal so-

‘Tution of problem A6.1).

Proof. By (3.24) with M=C_ , g=Ff and x <0, a function de(RM™
(& 5 Ffeacible solutlon of (6.1) (l.e:0edf(0)) I f and-anly I'f

:@(x)sf{x) (xeCn). Hence, by the above interpretation of greedy so-

et B e e o 0 :
lutions; the equivalence 17°¢&><° follows from theorem 3.3, equiva-

10:#30."Assumewthat 1° holds and let xeR: be arbitrary. Choose

: - : - Iy # : Q
nell, such that xeK. , and let @we(R )" be the greedy. solution of

Zﬁ6.1) interpolating f at the vertices of B - Then, by the implica-
;tion {20 above,”gréaf(O). Furthermore, since xéKﬂ,, for any f:
f;Cn—+R we have, by theorem 2.2, @W(x)#%(x). Hence, by 1° and (3.27)

éw(x)a¥(x); mae. S},
$e3f (0)

Flnélly; the iﬁpdiﬁatfo;m30:¢2o is obvious. b e %

Rema'k 6.1. One does not need all xeR: ip order to exhaust

TaH “greeiy Fulc*sonj'@ V(weh ). In fact, already n! elements e |

zFR are SUxfICIeﬂt to tHls end, e.g., one:can take, for_ﬁach1réﬂn(,

o . ¢} )
‘OWQ element y €lnt K : Then, one. can, replace, in 2 and 37 above,

Mfor each (R ”, by: fO{ each e (Wéﬂn).-Moreover, in general, a
B > e b 4

iprooer subset of these xv,’s will suffice, as shown by the follow-

|ng Cdep1L Let f be the rank function of the matroid M:({1,2,3} 9

1n whlbh the ,amx1y of lndependent sets.is J=19,41},12},{3}. {1,

{1 3}} for these concepts, sec e.g. [20]), transformed, by (1.3_)9
,lnto a function f:C,—R (so £(0)=0). Then there are only two dis-
tlnct greedy funct:;ns {since three permutataons ﬂeﬂ yield the :
same greedy function @1(x) +§2 and the other three permutatlons.

ylcld @ § +§ i for x:{§1,§2,§3}€ R3 . We shall return to re-

lated problams in a subsequent paper.
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