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MEASURE-THEQRETIC PROPERTIES OF THE MAXTMAL

ORTHOGONAL TOPOLOGY

by
Silviu TELEMAN

In the first part of this paper a new topology is introduced
onn the pure states set pP(A) of an arbitraryfcﬁ~algebra A, and its
measuremﬁheoretic properties are studied.

In the second part of the paper we introduce and. study the
canonical irreducible disintegrations of the representations of
c*-algebras. The main result of the paper is the fact that any ope-

;rator belonging teo the Baire'Cx-algebraf%o(ﬁT(A)) over the range
FT(A) of any (cyclic) representationTW:A-% (H)riscydecomposable with
respect to any canonical irreducible disintegration of ‘i (Propusi- .
tion 2.1). ' '

As an easy application we also prove the iﬂtuitively sensible
fact. that abelian projections are fields of cne-dimensional projec-

tions (§ 2.IV).

§0. Intreduction

- et E be a Hausdorff locally convex towologi?al real vector
space and KcE a (non émpty) combact convex subsét. On .the set
ex ¥ of the extreme points of K, besides the topelegy induced by
that of K, several_othér topologies have heen introduced and stu-
izrvaied (see (1], on.ar, s6;05).  ;ls), ch.11:¥7); Ll . el
'Yle»Elél).
' In {16}, {lf} and Elé}, we have begun the study of the:measu-

re- theoreflc properties of the Choquet tonology, for an apbitrary

K, and of the orthogonal topology on the pure states set P€A) of



an arbitrary Cx-algebra'A.
| Namely, iiw@ denotes the Choquet topology on ex K, then denote
bnyO(K), respectively bnyO(ex K; C), the 0-algebra of the Baire
measurable subsets of ¥, and the 0-algebra of the Baire measurable
subsets of ex ¥, with respect to the Choquet topology; i.e., the
g~ algebra of subsets of ex K, generated:by the closed Gsusubsets
of ex K in the corresponding topclegy. By B(X), respectively
Tlex K;C), we shall denote the(?-élgebras,ofvthe Bcrel measurable
| subsets ot K, and of the Borel measurable subsets of ex K, with
respect to the Choquet topology: denote§§0(ex K)={Dﬁ(ex K D&BO(Kf§
Tt ﬁk is any Choquet maximal Radon probability measure on K,
then, by virtue of the Choquet-Bishop-de Leeuw Theorem, by the for-

mula

Fo(D N (ex K))=p(D), ‘DB (X)

one correctly defines the: boundary measure}lo onfﬁo(ex K). We then
have
(1) | B, lex K50)eB, (ex K)

Mo
(see [lélgheorem =y andﬂilig, Theorem Tx.

If E’(A)’ :{féAX; fao,\{f(<§l} is the set of the quasi-states
2iof aC nalgeora g then an (A) enoowed w1tH the GTA JA) - tono‘ogy,
.Tls a comnact copvex set Tn [lf} (%ee Theorﬁm 6) we ‘have shown that
-_for‘any maxinal orthogonal Radon probability measure p~ con E (A),
such that ?b(u,ﬁ =1, the measure}AO can be "extended" to a measure

ﬂj_deflned on‘ﬁ(P(A),u,“ with good regularlty pPODPPtlmS and so
that

@ R etneBmalnl
. ’L

The difference between the extensions (1) and (2) is comparable %o

that existing on compact spaces, between Baire and Borel probabiF¥ity

measures, where the Lebesgue completion 18 i general not suffi-



{

el

cient tc ensure the passage from a Baire measure to a Borel measu.
e,

In fact, the constructions carried ouﬁ in {16} and in [lfﬁ.
contain, as a particular case, the theo™y of Radon measures on com-
pact spaces, which obtains when A+is a commutative C¥~algebra with
the unit element (see [1§§, for a‘detailed discucsion of these
facts). .

In {2] (see, also CS] for & revisedsversicn) C.JvKsBatty
extended the theory we have developed in Tl?A; by showing that for
-any compact convex set ¥, and any Choguet maximal Radon probability
measure the measure ;To can be"extended" to f(ex Es@)oni oo,

to be more precise, to the T-algebra generated bygﬁo(ex X) and

Reex K;C)o"ITt was then easy to prove that

‘{EO(GX KICcBlex ¥ )

b
o : . =
where fW is the extended measure (see Lif}, Theorem 6).

Of ccurse, in order to be able to integrate as many functions
as possible, the topology on ex K should be as fine as+possible,
subject only to the conditign-that RBaire measurable, or, better,
1 possible, Borel measurable subsets, be measurable with respect

b0 any extended boundo~y measure, -

s T Yl6§ we have 1nir0ducéd the ofthbgOnal topology on fhe pure

'states set P(A) of an arbitrarylcﬁuélgebra,‘&e have shown that, in
isgeneral . it i ststirietly stronger than the Choquet topology (see

[163, Theorem 7.4) and. we have proved that any Bairec measurable
Asubéet M.-P(A), with féSpect to the orthﬁgonal topology, is meesuraa:
‘ble with reépect to the boundary measure }Z y correspondingsto anym
max1mal Radon probahility measure fL on E,(A),such that \\b(u)“

=1 (see [ 16, Theorem 3.11). -

S i s ElB‘} we have introduced the maximal topology M »o;?p:‘:,s‘th‘e,,.heg;}_{_-
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treme boundary ex K of any compact convex set K, and we have raised
the problean as whetﬁer this toepology ig, in general, strictly stron-
ger than the Choquet topology. In ElB] we havé also sﬁown that any
boundary measur@jzo can be "extended" to R(ex K:M), with good regu-

lerity properties, and such that

By (ex K)e Blex K;M)om
; A

b
where ?lriis the extended boundary measure (see tlé], Theorems 1%
gnd 14} .

C.J.K.Batty has shown that, in general, the maximal topology
is strictly stronger thansthe Choquet topology (personal communica-

tion &4}). With his permission, we reproduce here his examples.

Batty's examples:

1) Let X be:any cémpact Hausdorffuspace and let X% 1X0€EX
be thrée distince»peints; let e pe a.Radon probability measure on
%, such that suopr»xx and#({xé}):ﬂ(éxiﬁ)iﬂ({xgy)rOo Lét A be the
Banach-subspace of Q@KK%[@, %]), consisting of all functions

_.fecQ(XX[O; %3), such that

(1) fidvptr it dtiste o 0 Yels
:éqd
(2) s, 0)+T (X5,0)24 j flx,t)du(x)dt,

e

°

Let K be theugtate spacé;@f Ay dleen,
K ={Lea®; Wnu= (=1},

endowed with the @YAK;A)-topology.

A separstes the points of Xxfb,%l, with the exception of the °



=

pairs (xo,o) and (xz,o), which are identified. The Choquet bounda-

Ty 18

ex ¥ 2<XXEQ,%3)\{<XO;O)§’

whereas the Choquet maximal Radon probahility measures W on ¥, re-

presenting E(X are supported by {xl,xéb{b,%} , and are given

S
by

f(xG,O)‘:A__Ofli (Tgfgf(xl,tﬂf(xz,t))d\?@(t),& feh,
Lo ’?

where Yy  1s any Borel positive measure on Co,%l, such that

5 d v, (‘t)

1 T2
Losﬁ

=If PeK.i8 eny compact extremal sutbset, such that E(_

~

(%) /\E(Xl’t) — (l-k)ﬁxz’t)ép,

for any té(o,?ﬁ and any,@&p I}. ance F is compact, from (3) we

1nfef that

g == A" ‘{;.‘.. ..
76 1:0) (X2109 F’.

N

and, therefore, from (2), we infer that
p2 - : 1, - 0 1 3
xx{o ,vglz(supp#)x[o,?jcpo :

It followsithat the C-closed subsets of ex K are ex K itself, and

the subsevsiof ex K, which are compact in the original topologxr.
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On the other hand, any ccmpact subset Fc;Xx(Q,%J , containing s,
{xl,x2}xgb,%] =F (XB,O)QF, is maximally-extremal; it folluws that’
any subset of ex ¥, which is closed in the original topology and
contains the set {xl,>2§%[b,%], is M-closed. Hence, the Choquet

topology is strictly weaker than the maximal topology in this cese.

2} The preceding example csn he used in order to éhow that,

in zeneral, tge(f;élgebra;il(ex K;C) of gsubsets of ex K, generaled.
'byiE (ex X) end by R(ex ¥ kacyy is UVrlctly included in the T- alge-
brabﬁg(ex K) of subsets of ex ¥, generated gv’3 (ex Y) and by

Blex K;M) .

In order to prove this, let us first remerk that for any:
gé@%{ex K ;&) thore are Baire measurable subsets B,Bf of Xx{O,%ﬁ,w
such that (xo,o}éB and‘E(\BzB'\{{xO,o)ée By taking into account
the characterization of the M-closed subsets of ex K, given in
Examnle 1, cne can find M-clased subsets of ex K, that are not in

R, (ex k;0). Tt follows that
1 3

~ = :

By (ex ;002 My (ex K) .
Tndeed, let us consider the comndct space X= {b 13 Lo, i3 the Do*n+
xé:(xo(s))seioylléx, where x (s) o,\/se[G 51 and the set M' glven"
by

M:-{(X,t)é}CX‘[o,?}; . x(s)<s, Sé[—Q,l}l;-
Then'M\{(xQ;df},is M-cloged in ex K:xx[b,%]\{(xé,o)},
On the othér hand, if B and B' are Baire measurable subsets

1 =
of Xxfo,?],'there 18 a countable subset Ic(b,i], such that .

(x,£)€B, ¥eX, ¥(s)=x(s),¥ s¢I = (v,t)€B,

o e



Sed

(x', Eicl! ' Blex, y'(s)=xt(s), X gei = (9! L)cBr .

If (x4,0)B, then (M~{(x,,0)})NB#B'\{(x,,0)}, and, therefore,
M\{(xo,oﬁagﬁéi(ex K;C), although M\{(x@,of} is M-closed.

In({iélg Remark 2, p.151) we have raised the problem.to esta-
Llish whether tﬁe boundary measures, cerresponding to maximal ortho-
gonal measures on the quasi-states space of any Cﬁ-algébra &y can
be extended to the J.-algebra of all Borel measurable subsets of
P(Af with respect to the orthogonsal topology.

In this paper we shall introduce the maximal orthogonal tono-

logy on P(A), which is stronger than fhe maximal, *the orihogonal
and the Choquet topologies, and we shall investigate its properties.
Thereby, the foregoing problem will be solved positively. @

We shall alsc apply the results obtained here, and in some
previous papere, in order to improve an irreduciple:disintegration
theorem for the representstions of cxmalgabras, which we proved in

([161, Theorem 4.3).

8§1. The maximal orthogonal topolegy a

In this section we shall Introduce the maximal corthogonal .to:

pology, which we shall denote by L' et
I. Let A4 be any C%:algebra, EOCA):QféAK;W{fhgl, f>o}the quasi-
- states'space of A, endowed @ith the‘@TAK;A)-topology, for which
EQ(A) becomes a compact convex set, whosc subset of cxtreme poiﬁts
is given by
ex Eg(4) = pa)uio}.

Let E(A)széAE;\\f“ =1, §;,o}xbe the states space of A. s

It is’ obvious that E(A) is a Gy -subset of EG(A) and a face of

)

B (L)«
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We shall say that a compact sub@etAEcE (4) is ), - extremal =
1f for any maximal orthoponal Radon probability measure/A on E (A),

such that b?k)fW(\F(A), we have/x(ﬁ) =15,

Propodltlon l.l. For any compact ,[), ~extremal subcet Fmvf (A)

we have cu(F)f\P(A) exco(ﬁ)F% E(A)=FNAP(A). N

Preof. The inclusions ; \

FNP(A)cCo{F)AP(A)cexco(F)N E(A)

are obvious.
By the Milman Converse Theorem, we have exco(F)e F; let
Téexco(F)NE(A), and let I be any maximal orthogonal Radon probabi-
lity measure on EOCA), such that-bgﬁ)rf.’Then we have/x(F):l, and,
therefore,/A(EB(F)):lc It follows, by H.Bauer's Theorem (see €16],
Proposition 1.2}, that}klEB(F):Q% and, therefore,fizg . We infer

that féP(A). The Proposition is proved.

Proposition 1.2. For sny () - extremal compact subset FeBe (A},

P

the set F "FnP(A) is ) - extremal and FdPP(A)”FnP( Jie

Prcof Let Hﬂ De a ma"*mal orthogonal deon probablllty measu-~ 4 
*re, sueh that b<P)¢*oﬂE(A)‘ phén we'have'ng)éFnE(A) énd, thérefo-'
I‘e,fju.(F)ﬁlgA(E(A)‘):ﬂla We infer that ‘f&(&'j(F)z\E(A)):leince co(F)
E(A) is a qg-subset'of~'KE(F),-theré exists an increading sequen-
ce (Dn)nzo'of compact Baire meacurable subsets of Go(F), such that
- D, cCo(F)nE(A) éﬁd P(Dh)TI¢(See {17}, Lemma 1). et DCE,(A) be any
compact Baire measurable subset, sﬁch that DnFozﬁ. We infer thafl
DNFAP(A)=g, and, therefore, we have D'Aexco(F)NE(A)=p, by Prépo_

sition{l. We infer that Dn{\D(\eXEB(F)=E,V’n;O; since DD is-a

Baire measurable subset of ca(F), whereas by Henrichs' Theorem (see . -
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[161, Theorem‘3910),fhi65(F) is Choquet maximal on co(F), by the
Choquet-Bishop-de Leeuw Theorem we irnfer that}A(D ND}=0, V20,

It follows thetf&(n):o, and this 1mp1;es that/#(FO):l. The Proposi-
tion is proved.

Of ecourse, F "F{ﬂ}’A) 18 the smallest (L -extremal compact sub-

set of & (A), such that
E,NP(A)=FNP(A).

It is obvious that any finite uﬁion, and any intersection, of com-
pact (), -extremal subsets is a compactaQ,~extrema1 subset of Eo(A)“
It follows that the set %C of all cempacggfl -extremal subsets of
E (A) ig:the set of all closed subsets of EO(A) with respect to a

rf\J

mnen

topology in EO(A;, whereas 3¢~ﬂ P{AYN T & 7 ig the set of all

closed aubSets of P(A), with respect to 8 tOpology on P{A), which
we shall call the maximal orthogcual topology and we shall denote
ieby ).

It is obvious thet any compact extremal, or maximally extremal

or-orthogonally extremal subset of EO(A) is&Q,-extnemal; it follows
that the maximal orthogonal topology is stronger than the Choquet,

the maximal and the orthogonal topologies.

ProD081tuon 1. 9. a) yf PCB(A) is ay uuMDdCt () —extremal subset,

Eggg_exco(F)rFmP(A) and the set FmP(A) is ), -quasicompact (and

élwglosed).

b) If 1€A, then P(A) is () -quasicompaet,

e} EEPI(A) ig,fznquasicompagt -then 1%A.

S -

Proof. a) From (Eﬁéj, Theorem 3.7) and from Propositionil we

infer that
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exco (P)=exCo(FYNE(A)=FNP(A).

—

lLet now (? ), T be‘a decreasing net of \{) -closed subsets of P{A),

such that F;,~ £ 4, Wherelngh?(A)a For ¢ny o« &Y there exists (cf.,

Proposition 1.2).a smallest compact, ), ~extremal subset Fﬁ:Eo(A)’
Of&

Q

Y

such that F NP(A)=

kS

s.we then hawve F e, for 0[(4 Andl e
f.}c.,

QF

therefore, E(A)2 N\ (F{\” YAD We 1nfer that (\ W )m #0 {see Pro-
positrien 1.1 anumgiﬁJ, Theorem 3.7); hence, Fiii‘(l quasicompact.
b) if 1éA, then E(A) is a compact,ﬁ{»extremal subset of EO<A)
and, therefore, P(A)=E(A)P(4) is.l) -quasicomnact.
c) If P(i) is L) -quasicompact,then it is guasicompact for the
Choguet topology and, therefore, leA (see {16], Proposition 3.19).

The Proposition is proved.

§il g Let;x be any meximal (maximal orthogonal) Radon probabili-
ty'méasure, such that\ibgﬁ)ﬁ =1, and let FlcEG(A) be-the smallest

compact {} —extremal suhsef, such that B supgﬁ,.

Theorem 1.1 a) The set FynP(A) is the smallest () -closed sub-

~—

set of P(A) y whose fL ~outer measure is equal to 1. b). For any

0

Fe¢ %:»\ we have

Ly
7;: (FAP(A))=A(E) »
/

Remark. Here/k denotes the pounda ry measure correspondlng to

/JL and defined on Jb (P(a))=4{D; WP(A); DR (“0(1))3 by the formula

/?IQ(D-I‘W'(A);)‘:};L(D), = D&J% (E, )
Proofs a) 1et Def%(EO(A)) be such that DAP(A)>FjnP(A). From

Flﬁsuppf& we infer that}ﬁ(¢o(F1))nl and,.therefore,fQEB(Fl) is
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Choquet maximal as a Radon probability measure on EE(Fl) (see rig?;

o et

Henrich's Theorem 3e10§for the case that po is maximal ortuogonalﬁ
/

. W = :
Since D =(LD)}co(Fq)eB (ca(Fy)), from
Dghex €0 (Fy)nE(A)=DAFaF (4)=0

we infer that gJDQ)ﬂc (since E{A) is s Ggwsubset of E@(A), there
exists a DIQBO(EN(A)), such that DISE(A} aﬁdjL(Dl)ﬂl)e It follows::
that /.L(GD):Q, and, therefore,

o : - = LS
o (DNPLR)) .../J“,(]). y=1,
e infer that (X (F.nP(4))=1.
e 5l

We have still to prove that #.AP(A) is the smallest () -~closed
stbset of P(A) having this property. This will follow from the se-
cond part of the Theorem.

b) Let now ngg%. Then there exists s cdmpact Baire measurable

| 9 N

set BQ&Q(EG(A)), such that
FcB and}L(B)zy{F)e
/

It follows that FAP(4)cBaR(A) end

N\

(1) l/U:%;(F@’iP(A) )‘g/}.f{'@(BnP(A) ) =p(B) =(F).

If JA(F)=0, the required equality is proved. Ifiu(F)>o, let us
define\ﬁia(F)'lj%¢&ﬁ Then by ({id}, Propositiqn 3f16, ¢ )y the mea-
sure V is maximai (maximal orthogonal) and Y(F)=1l. We infer that

suppyY ¢F and, therefore, from part a) of the Proof, we have

(2) %ﬁ(FnP(A,))ﬂls

vt

—— T

Let now B{K%O(EQ(A)) be such that BaP(A)>FaP(A). From (2) we infer

that‘Q@(BnP(A))zl, and, therefore,”)(B)=1l. By the definition of V

it follows that )k(F)z/M(B(\F){f&(B); Fred,!



el 2

/\L(F).s;?;.G(BﬂP(A) )

and this implies that

(3) C MEIR (P (A))

§

From (1) end (%) the required equality immediately follows.

et

c) 1et now Ff“{ﬂ‘be such that

o e

Pro (FAP(4)) =1

Then, from bj), we infer that K (F)=1 and, therefore, F.,c®; hence
/

/

FinP(A)cFap (4),

and the Thecrem is proved.

=

Thecrem l.2. If v ia eny“maximal (maximel orthogonal) Redon
e - } _

probabilily measure on EO{A), such that |l bgA)H =1 "then

By (P(a);0u)eB, (m(a) ), .

Po .

Proot. Let E\gf?ﬂ.be such that
! cas = : .

!

i :
PlAYS & =Y (T nPCAY),
n=0

it S 18F S -
where (Pm)nao 1s a sequence of sets 1350 ﬁl’ nx0, which can be

assumed to be increasing. From FaF nP(A)=p andafromiProposition 1§

o

we infer that

exce (FaF, )n E(4) =g,

Since the affine upper semicontinuous

function EB(FAFn)afpél - £
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is strictly positive on exco(FnF ¥ from ({16J, Theorem 1.2; f)é},
Theorem 2) we infer that ifu<1 , for any ftco(FnFn) and, therefc-

re,
"FAF,NE(A)=0, n>0.
It follawé thath(Fstn)ro, and, .therefore,
/#(F)+/i~'~(Fn)é 1, ’ n20e
We infer that .

.}72(P(A)\F)-—'sup{ﬁ‘g(anP(A)); nxQy = sup{,u(L ¥ naO}SL-/A(F)ﬂ-—

~fkg (FaP(A)).

(see aiso El?], Ch.T, §1.5, Proposition 1.5.2; tlé}, Proposition
L.l2). It follows that rpplA) is ]lo-measurable and, therefore,
we have the inclusion

B,(p(a) B, (P .

o

The Theorem is proved.

Remark. The preceding mkeorem shows that the lLebesgue comnle-
tion of fﬁ (PYA)Y) with respect to'kk is strong enough to render
"measurable" any .(), %alre measurable subset of P(A). The next step
will be to extend the measure f“ y - in erder to render "measurable"

any ()l -Borel measurable subset of P(A).

11, et nowﬁﬁ (E (A)) be théiﬂ“«alveﬁré of subsets of E_(4),

~—~—“

generated by % i Lﬂ% (B, (A)), and 1et‘B (P(A)) beithe o- algebra of

subsets of P(A), generated by“? Uﬁ% (P(A)), where.



S

%OI(P(A))&{D&\P(A); DeB, (B, (AN},

and
T =drap(a); FeTF ).
BT
i.8" the set of allif), —cleosed subsets 48 P(A).0f eocurse, we have
B (P(a))={pap(a); DeB (B A1)},
el 1o :
and, also, the following inclusions
R P(A))H (P(A)),
Q
and
Bo(P(A) ;00 B(P(A) ;B2 (A)).
We shall now prove

Theorem 1.%. For -any maximal (maximal orthogonal) Radon proba-

bility measure jx on E@(A)a such thet_\\b(P)ﬁzl, the formula
: oot e S 4

Fi}(ﬁ)-—-sup{jmﬂ);rﬁe_’i}&<Eo(A)), r!mP(A)cm, for a_rg«-ﬁé%&(P(A)),

-~ e *
extends;Eo to a probability measuwefxi%fﬁ (P(A))->Eb,i}, which is
o : e o

regular in the sense that

——

a)?’“&ﬁ):supb%(m Fell, F=FaP(a), Fe‘?‘g Zor_any e o il

where & {VG ; FcE(A)} -z
A

Moreover, we have}A (V)-M (F), for any F¢ = Tee.,

b]
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%

b)figtF) =inid X, (B): e, BeB, (P(aN}, for any Fe

—~

o)

Proof. The method of proof i3 an adaptation of that,giﬁen by
C.J.K.Batty for the case of the Choquet topology on afbitrary connact
convex sets (see Céﬁ, P10 aud.also, E]B], proof of Theorem 13%).
Henrichls' Theorem (see (16], Theorem 3.10) 1s involved at several.

stages of the proof, if/u.is assumed to be orthogcnal.

a) For any BcEO(A) we shall define

/ , 2
_IMOCB)rsup{MF);Fé B meB},
JotBY=suplu(x);FeT ] FAP(A)eBaP (A)} .

b} We shall first remark thast for any &> 0 there exists anj%e'§1,
such that M&F)>l—a. Indeed, E(A)<E (A) is a Gg—subset such that
]&(E A))-l. From ({113 Theorem'2) we infer that for any £>0 there
exists a compac >t extremal (Baire measuirable) subset FrF(A), such’
that ’A.(Fé } 1-€. It is obvious.that Fcé.g&.»»

¢) We have the following properties

: i)fAé(B)ﬁMg(B). for any}BcE (A); obvious.

11)}&0(F)-F(W), for any vc_r. Indeed, for any Féﬁ- we have
- = "
" e
Fmse: ﬂ’n

£>0, ond this implies that;hg(F);y(F). On the other hand, for

and an<;v Tt follows thau/N (V)ﬂM(VmF )>H&F) £ for any

FOESEQ, FocF we have P(Fo><ﬁ(pl’ and this imp;ieg that}dé(Flgu(F)o
iii%ﬁé(g)zﬁ(g), for any Béf%G(EO(A)). Indeed, this is'an imme -~
diate consequence of ({17}, Theorem 1, Corollary) and of remark
b), above, if we take into account the fécp that E;mnoﬁqz, for any
compact extremal Baire measurable:subset D.CE, (A
1v)u (6)= F(G), for any Ggwuubset G“E‘(A)
Indeed, this is an immediate connequence of ([17] Theorem 2), if

we also take into account remark.b), above.

VUué(B)%M(B), for any BéWE,(A)). Indeed, any Radon probabi-
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lity'measure on a compact space is regular by closed (compact)

-

subsets. |
v1)fL"(B)<u(B), for any Béﬁo(Ea(A}); Indeed, by Theorem 1,b),

for any Féﬁf‘and any BéﬁO(EQ(A)),such that Pr*(A)cBrP(A), ﬁé have

ke

P PYPG(EAR (4) )€K, (BOP (4)) =p(B) -

viii)Mé(Bl)ﬁug){BQ)éu (BjuB,) and ug (By) +/(A"(B2)</£L (ByuB5), for
any Bl,Bzch(A}, such that BIHBQAP(A)=65 Tndeed, the first inequali-
ty«is obvious by the definition oflké,'if we take into account the
. b
A
faect that Fi,erﬁﬁ, F1cByy FocBy = FynFonP(A)=g und, therefore, by
Proposition X 3 and thz Krein.Milman Theorem, we infer thut Ferz—ﬁ

-

A similar arghment works for the second inequality.

@) Let A={Be Bz, (1)) 5 k5 (B)5u(B) ug(CB)=u(la)}. mhen Ar 5
G~algebra, such that df-ﬁ' byre, 11) and iv); and alsoIB (E A))cgy,
by ¢, iii). It follews that‘ﬁl(Eo(A)}qﬁ', by the definition of

s :
ﬁ% (E,(A)). T
e) Let a’"\'”*‘{BCﬁ% (% (A)), J5 (BY=JA(B), 1 "<Cs)=ﬁ<03)}. Then A" is a
G-algebra, such thathG(Eo(A))qA", by «¢,1), e,vii) and d). We obvious
1y have/A(FokﬁAg(Fo), for any Foe;ﬁéuse*b)). on the other hand for

any £>0 there exists a Fleﬁ%&, such that
. PP (e (@ronrpa) and s @F,)-g<pu(ry).

Since we have that F_aF;e %Q'and FéﬂFinP(A)ﬁﬁ4 by Propoéition 1f3’

&) and the Krein-Milman Theorem, we infer that For\leﬁ. We have,

therefore,

1>(FQUF1)—)A(“‘ )+}k(F1)>/u(“ )m (8r.)-s,

and this implies that/; (fr )<FD(CF Y FQQ?;::;

On the other hand, we have



et

| wo (Cr, o<p (LT (e )7«0@ .,

by taking into account ¢, i)and d)a'It follows that we have

fxg(QFo)mm(GFQ)o From ¢, vii) we now infer that
l>;}_"(? "‘/U." Gﬂ ) ?A.(FQ)‘}*/IL(CF@)zl,

and , therefore,rL"(F 3 JIF ¥, 0 6:i£ We infer that we havwggQC?d%"

and, therefore

A= (B )
1.

5 9«,/\L"/B> M(B), Be%(E (A)).
).“’Fw(ﬁ (A)) aqd BﬁD(A)“ﬂéa&(%) =0, Indeed, this is an imme-

k"‘N——«.?% ULINCE
diateYof e). It follows that by. the formula

: D ;
(%)  fao(BaP(8))=p(B), Béﬁ&(EO(A)).

we correctly define a probability measure<ﬂf§iJP(A)5;'and we have -
I\'LQ(N = - i ~ ~ s
o (B)=supd(F); FeF, Pap(a)cBY, BC—'ELQSP(A))O

Equality a) in the statement of the Theorem is now an immediate con-
sequence, whereas equality b) follows from The orem 11, b), =nd Tron

e) and (x). The Theorem is proved.

Remark. Although the definition of the;maximal.orﬁhggonal topo~
logy involves only the use of the maximal orthogonal Radon probabili
Lty measure, whose barvcenters are stéEEE‘of A, by the precedln%_lheo
rem any maximal Radon probabilitysmeasure whose barycenter-is a sta-
te of A can induce a measure on?%QFP(A)). It is an open problem to
establish whether the maximal orthogonal tOpoiogy on P(A) is, in ge-

/\v’,v/i\j 7/@ ‘(} // i;*



g
neral, strictly stronger than the maximal topdlogyl The follewing

Theorem shows that, by restricting the extended boundary measure

/thtofﬁ(P(A),Q), an¢, then, by passing to its Lebesgue completlon,

no informatior is lost; i.e., 'extended boundary measures are, essen.-

tially, Borel measures.

Theorem 1.4 &) B (P(A))eR(P(A) 50 5
e

b) r. is T-continuous:; ik@.s

e

Mot =inf { Yo, ); e 1},

of Q,-closed subsets of P(A).

o g st (T
for any decressing n=t (xeer

£

Proof. We obviously have

BEPARDCH (P(A)) .
] fiyA

For any(ge Ekfp(A)), by Theorem 1.3%, a) there exists a F\;Subset
a’

(a3
FcP(A), and a (. -subset CCP(A) (w1th respect to the maximal ortho-
s

gonal topology), such that FchG and =
NLQ,N N(:Q ~ ~ (s
P () =l (B) =fighG) «

It follows that BeR(P(A) ,cﬂ.)wdl‘
byt F‘CF 5(4) is the smqllest (compact)dl— extremal subset of E_(A),

such that &(\P(A)zaLfdézI, (see Proposition 1.2) we have

]

R

/M N F )-1nf5/u(v )3 och} inf{iia(E ) s weT]s Rl F )= N 7 ),

6T Hﬂaael edeT >

because N o is a (compact)tfu-extremal subset of EO(A), such that
o €T :

(O F )AP(A)=N F . The Theorenm is proved.
ET oLel ¥
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Let now E“:EO(A) be the smallestt (compact),(),~extremal subset of

EQ(A), stch that El;psupp?k.

Corollary. The set ?l-FInP(A\ ig the smallestLQ,-closaﬁ subs

et

oFf ‘P(A), such that fx (F y=1; i,e.,.bl is the Q~closed support of

~ 1)
For

- SE ~ : ‘ :
Procf. By tle definition of/Ai% given by formulg (%) in the

proof of Theorem 1.%, we have
10 el o
Mo(F1)=Ji (F 1P (4) )=H(Fy) =1,

Er P cf? is such that/xo(yq; , and if F €F is such that
e
FoNP(A)=F_ , = »

1,*7:1:6(1(’}:0) wffA(FG} :

hence, F Dsuppfk and, therefoxe, FooF, - 1t..follows that F =P AP (A

-:)Fl(\r (A} Fli

IV. The regulavlty cf the mcasure}L(L'immediately implies the

‘1ollow3ng extcn%lon of Lusin's Theoremn,

Theorem 1.5. Let f: P(A)»%(Q be an V}i - measurable function.

Then, for any g>0, thero exists an (), - -closed subset FCP(A\ such

~e

EQEE/AO(F)>1-a and f\F is (Q -continuceus. Moreover, F can be assumed

&

to be )-quasicomnact.

Proof. Given £50, we can find an Flé?g’ such that;&(Ff}>1»§.,

and an () -closed subsettgocp(A), such that}rg(}oﬁ>l-f% andwf(?o be

- bounded; therefore, there exist m,MeR, such that méf(XQSMG@Xé%Ai
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Let €507, iel™, be chosen such that §2i51—5'° e En’sz 1'(~oo,

m+kw“m3)ngo, ne,m%, keN, by the regularity ofiadlwe can find~clo-

0
sed subsets ka("P(‘A)’ such ti]at T ,Oc—n o and @Fn K“Eg k\“En i
1<k<n, and such that for H = F,_, we have ’/Ilm el o
k:O da g i ) n =

f:P(A)— R is defined by

& M-m

fn:-‘{% (m+k T)?F ;
c=0 ot

1

then fn is confinuous omrﬁ and \\(f -f)TN L =4 It follows that

e m
the set'§=F1m(?§£§n) meets the requirements in the statement of the
Theorem. = :

Sometimes a probability space (M,%,)\) enjcvs.the property of
being Eﬁﬁiggi (er quasi-compact). This ‘means that for any 7\ -measu-
rable function f:M-»R and any fﬁ(})-measurable subset SR (§+(A) is
the full direct image of A through f, defined on the T -algebra

<£“>={sc R; Z’(S)ej;“}by & (k)(s):x<f"1(s)), Sex,. .(?“)),“i':there”

eéxists’a Borel measurable subcet BcS,* such-that: f ’k)(S\B) =0 (seea

ol vaniel, eny, 520, (15], (18})

Th@orbm 1.6+ The. mmasure/L ‘B(P(A),JD -ALQ Iﬁ -is perfect.
’ : : o

Proo“ et ScR be such that f“*(S)Cﬁ( (A)”QL“Q where f:P(A)
-§.R is any>F!£measuvah]e function, and SCR is én; ftgxﬂ)umeasu-
rable subset. For a given £50 we can find an (. olosed LQ'—quasi- =
compact subset’ﬁcP(A), such.fhat'Féf (s) anu'f (f (S)(f%?{- and,

umcreQVef suech that f{? be‘Q,-contlnuous. Then f(F)CS is a compact

subset of R, such that

NQ. N ;
:t‘* </‘L°) (S\‘f(F)) <&
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The Theorem now immediateiy follows._

V. It 18 easy to see that any (relatively) C-closed subset .

FCP(A) is LL-ciosed. It follows that we have
R(P(A);CXR(PlA) 1),

and, &also, since}ZI(§)€§§(§3, it follows that}ﬁ? is.an extension
of the me:asmre/'.‘?4;1‘Ig defined as in CQ}, or [18@. :

By taking into account the results from fié}, we infer that
for any semicontinuous bounded affine function h E (A)—> R, the

function hO\P(A) is;fg;measurable, and we have

i

hg (b(i)=_ fA o (P AT2D)
)

Let A** be the self-adjoint part of Aﬂﬁ;‘and'z'the C*-algebra ob-
DG .

tained by adjoining 1e4** to Kilet (X )m be‘the subset of ATt
a7 %

a.
consgisting of all elements of: A;X, which are limits (thh resgpeed

to G{A A )) of bounded 1nbreaslng nets of elements in A s and

O
denote by (LA )m)" the norm clesure .of (A )m in“aA**, we can state
: Da, ' : DG Da

the following

Tbeorem 1.7. For any x€A™®, such that x|{E(A) is (lower) semi-
e D e

continuous, the function x|P(A) 1st§Lmeasurab1e and we have

() x| x(o)ail).
P(A) e

B2 ot
e 5

Proof. According to'([ldﬁ, Préeposition 3,11.8), the element x

belongs to ((X )m)’; therefore, it is sufficient to prove the Theo.
na

rem for elements x belonging to (Enf)mJ‘By taking into account ([i{
[aY/ N
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Proposition 3 3l 7), 1t is suff‘01ent to prove the Theorem for ele~

/\‘V\Wf\ 2C e TN G AN G vo CA 3 f\!cm}' %CM W s CCSMQW’\-CQ/

= of ([1,J, The%rem ?), if we toke into- account the. fact thst
:A:igﬂis an extension of Fdfr?j,(P(A);G)a
/

Q.E.D.

By slightly extending the notion of a universaily measurable

element, given in (014}, P.104), and that of a strongly universally

2 5 . sl n s . . = v 1 e
‘measurable bounded affine real function, as defined in (L19j, V),

we shall say that an element xepA™™ is strongly universally measura-
e =

ble if for any feE(A) and any £> 0 there exist y,zeAK%; such thats

na
the follewing conditions " held:

}J-

ol ) yIE(A) is upper semicontinuous;

‘6) z|E(A) is lower semicontinuous;
and
) y<xer and fz-y)<L.

We have now

A

Theoiem 1.8. For any strongly universally measurable element

: . -v 2 o "Q -
xehA*® the Tonetion xXIp(R) 13¢¢ommeasurabie and
S ).

S

(5] ae x(b(u))= | % (p)dREXp)
: : ! P(A) !

for any maximal (maximal orthogonal) Rafon probability messure |} ,
/

such that “bgﬁ)ﬂﬁ

Proof. similar to that of (Eld}, Theorenm 3%).

Remark. Somewhat stronger results arelobtained if the measura-
bility of the functions inVolved is'statedigffﬁ<}eépect to the res-
triction oxﬁlg.tofB(P(A);c), Of course,.=8uch Statements are '‘true,

as one can easily infer. =S
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§2. The canonical irreducible disintegrations of the!

& x
representations of ¢ -algebras

. . K 3 £y ° (3 3
For en arbitrary C -algebra f we shall maintain the notations

introduced in the preceding section.

-

I. Any peP(A) extends to a normsl positive state of Aﬁﬁ, and

. XX . sy ; . . .
1ts support e)eA“ 18 a'minimal,.projection; conversely, for any mi-

I

; : . XX
nimal projection eepn®

one can define a pure normal state_peP(A%%)

by the formula

eae=p(a)e, Ve

and the vestriction of p to A is a pure state of A, whose support

: X
1A g equal: te By

The GNS-construction, cofresponding to peP(A), yields a Hilberd

space Hp’ a surjective mapping QP:A~%-H sy an: irreducible represen--

p
taltion T = f-—= 4. )} and T _zeyelie vector 2’ : such that
o >;€(H’,p, . 8. T seyel s Hys a

p(a)zcwp@)ﬁ;\g’;) gna'9¥<a>zwx}<a>€,: , 8€A.

‘On the other hand, it is easy to see that the scalar product on

EX

A €y given by
Caejibe | = p(d¥a), o e

endows AK‘“ep with a Hilbert space structure, whereas the mapping
WPTHPEBQ(R)P% aepeAepcA§§ep is a unitary operator. It immediately
b :

follows thst AepzAﬁge , and-u estab;isbes;a unitary equivalence

p P
of the representation w¥'with the (Xeft) regular renresentati on

P, of A inff(Aep), such that

up§;mp.
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IT. For any state fOéE(A) of the arbitrary C§~algebra A, the

GNS-construction, corresponding to To? vields a Hilbert space H, -,

=

: o

a linear mapping-@f tA—~Ho , @ represenfation’wf :A~$§?(Hf ) and

9 @ : ) G~
9.7, —eyelic veeter £ €. 4 Sush that:
i )’c f
o : ! o
red 2" \ o R Sl oD e '?o P
fo(a):(“f (a)f '8 ) and fr\a,mnf (a)5§ , 8&A.
O ‘1(5';) -‘:) hy (#] <

If A is commutative and has the unit element, then, by the Gelfand-~
Naimark Theorem, "A is isomorphic with the ¢*-algebra C{m(a)) of all
continuous complex functions on the maximal spectrum M((A) of A,which
is a compact space.

The formula
JL(E) =t (o), ach,

where &eC (WI(A)) corresponds to aghA by the Gelfand-Naimerk iscmor-
phism, determines a Radon probability measure w on Y(A), to which
{ S
: . 2 = =
one can assnciate the Hilbert space ¥ &({a),k). By the Gelfand<:
: (
< Naimark Representation Theorem (see'ﬁléi,Cﬁii§HJ, the mapping

. ~ = i
Qf\(a)ve-axmatai extends to a unitary operator
o :

= 2 - . :

u:Hfé~>L (A) , 1)

which establishes a unitery equivalence of Wf with T:A—%X(Lz(w«A),
o

M)); where (¢l denotes the class of @é§€2(W«A),#Q<in L2(WKA)¢&),

whereas T(a) is the "multiplication operator"‘ofﬁﬁ@l by A
AN sl i PP b
T(a) Lg)=Caq@l, ack ,@ed~tmay,n.

Let us now maeke the following remarks: -
1. The pure states of A are in bijectiom«with the evaluation map-

pings



-

Aaamefg(m); mell(A);
';\
2. If we denote by Y (A),~&ﬂ(ydﬁ))\ the ordered real Banach

A
space (endowed with the sup-norm) of all bounded Baire measur abWe

real funciions'on'%ﬁA), then the same space is also the smallest
set of real functions on ¥{(4), which contains C(M(A);R),. and is
closed with respcct to the taking the point-wise limits of bounded
monotone sequences; ..

%o If we denote by Xf(“(A), W(A))) the space of all Borel
measurable bounded complex functions on ¥{(A) then any g7é'

ﬁf’p ta), BOa))) ls!u, -equivalent to a hounded Baire measurable

complex function -’1) 6},{} (M), %Q(}"QL{(A) Ja e

4.+The representation T can be extended to a representation
e e m‘C:JA),§S(%Kp)))pints g%%l?(ﬁﬁA) ﬂJ) Whth is uniquely de-
termined by the conditighs~ '

@A @ in Y(ua), B ua)) =@ in L A ).
w 3 iR n N /

5. The inclusion C (1 (ﬁ))‘(ﬂ(\(A),35 (W(A))) has a general
abstract amalogue. Nameiy, let A be an arbltraryscﬁ~elgebra and
let 'L:‘\(éf\)c:!&}m be the set of all universally messurable elements in

the self-adjoint part s — ok 5= (see [14], §4.3.11). If-A 58 ceno-

DR

nically embedded in p™* , then we can consider the smallest subset
EX : . : £ \

3%0(A ()CA " which contains 4 and is closed with respect to the
Do, NG, %

taking the limits of bounded monotone sequences. Then‘?b(AQ&) is
the self-adjoint part of a Cﬁ—algebra ﬁ%(ﬁ);;anﬂ’j%(Ao&jcqi(A)
(see 1141 Theorem 4.5.4 and Corellary 4.5.1%). In contrast to
([141, §4.5.14), we shall say that\h Ch=ds the € ~ﬁlge%ra of the

Baire operators over A.

IIT. We shall now present the main features of what we shall
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call the canonical irreducible digintegration of a given (cyclic)

representation W:A—> Y (H). Onece 7 is given, the canonical irve-

ducible disintegration of r still depends on the choice of an ar-
bitrary maximal abelian von Neumann subalgebra é%jT((A)'.

e s ~ oy :
For any representation W:4 —sY(H) let M 1A _5 P (4) be its

: A\ ot g
normal extencion and letTTmTﬂjé(A)h
For any pé€P(A) we shall define:the mapping
33

s ‘FEX
Tl s he ="

%X :
y acA™ "3 and also the mapping

by‘tp(a)raep

T oA > TT  (he)
peP(A)

Sy %
vbyft(u)m(tp(a))p&P(A) , 8EATT

we shall denote U=7(a), Ug=T(R,(4)) we have

f it sl T (e
“ e PGP(A)( S

The elements of ' will be called the canonical basic vector fields,

whereas the elemenis of FO will be called the Baire canonical basic

3 . ¥ - - ‘—-‘ -
vector fields; of course, both " and 1 , are vector subspaces of the

direct product ek (Ae_)°
p<¢P(A) P

Let us now assume that T is cyclic, and let § €H, WS h=1, be

a W-cyclic vector. Let £ EE (L) be defined by fo(a)ﬁ(ﬁ(a)g\g), ach,
< v -
and denote by T, its canonical extension to A*#.-The .GNS-construc-
tion corresponding to T cOR be identified with (e, &) by the
= 5 - ——— T > 2 :

unitary isomorphisn

= . . e
Ut /Lf ~> T(A)$, , given by uo(a+Lfd}:fK(a)§; smeh,
a
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whiech is them extended by continuity to u: Hf-%~H.
- Let @cT(A)* be a maximal abelian von Neumann subalgebra,. and

' let/A be the corresponding maximal orthogonal measure, such that
bgﬂo)-f and é’ = %’(see L16-) Theorem 5.,3).

Endow P(A) with the topology ) . Then, according to Theorem
1.3, we can associate tolﬁo a probability measurefLO:@KP(A);Q%%QN,Q
such that the mapping P(A)> pr==p(a) is(ﬁ‘é&-—measurable5 for any
aGBQ(A), and A

1 (é)= ( n(a)d (v), }aea (A).
= ) _3’,?

- pcoordingly, we can define on fb the scalar product

(1) t t(aln—uagﬂ fl

— ; p(agaa) ‘A,"Q(p), 81,82693 Ch).

£
We can also define correctly:a mappingii:.
. Y
Ve t U H

by_VO(tfa));ﬁ(a)ﬁg, aeﬁ%(A). The correctness of the definition fol-
lows from the fact that for aéﬁ%(A),'if p(é)zo, fer any p¢pP(A), thet
8=0. = '

From (1) we immediafeiy infer ﬁhat v.~is an isometry -from Po’
endo&ed with the semi-norm «corresponding to thé sealar preduct (1),
into the Hilbert space H. Since fo isTT-cyclic;_the range of VU is
dense in H. Let V be the restriction of o utO‘re~of course, V is an

isometry of E 1ntc H, whose range LS dense 1n H.

e

We can now apply the theory develonped in ([iél §4) . We shall

consider the Lebesgue completion

H = Bea) 1%,
: fres
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and the corresponding extended measure, for which we shall keep 71
the same wotation;ﬁéz Then, condltlon (x) from ({16}, p.154) is sa-
tisfied and we can consider the completion f (T&ﬁ, consisting of
all strongly square integrable vector fields, which are "generated"
by F . The same congtruction, applied to F, vields the completion
(Fﬁ , censistifip of all strongly square integrable vector fields,

which are generated by VC(;. Cf course, we have

CE Dt <M‘1 L :

i ' 3
whereas V, and V can be extended by continuity to{ﬂi(ﬁé5, respec-
tively VZ(F§°2 as unitary isomorphisms onto 4. We infer that we ha-

ve
' = 2 ~& (T
) F =0 ﬂ“)

Let us denote by we( 9ﬁ%-»-¥the unhique unitary extension of V,
and by F (Nﬁﬁ the (seoarated) Q11bert space correspondlng to the
pre- HlleP; space F ’PHH Tet W,1 (p- >~ H be the unltary iscmor-
phism of Hilbert,spaces, obtained by factoring W through the cano-

nical mapping CI:FQ(P%B-a(’zgﬁéQ; ice., we have WQ=W.

Rpmarké 1. Tt 1% 'customary to denote th° HJlbert space F ( Q),
whose elements are equlvalence classes modulo ”%’of strongly squa-

re 1ntegrable vector fields, by g Ae dﬁﬂfn). No confusion should
P(A)

arise if the svmb01{\13 omitted 51nce, in this case, the construc-

tion of the field

X 5 : 2 ‘\J'\ 2
{aep) op ) 07 () |

of Hilbert spaces is canonical.



i 29 2
2. The vector fields &529 ) are functions

= PlA

such that g(p)eae =a™"e cA™, pep(4).
%. Since the measure ﬂe is orthogonal, the vector snace

F %LO) is an i? P(A); J3(P(A) ;0L ) -module. It fol}ows that

\
Sy

Tl e ﬁ(pm;@,?;; B O i s

is an integrable field of Hilbert spaces, in the sense of W.Wils

(see [161, Proposition 4.4, Theorem 4.1 and Theorem 4.2).

4. For any Leéﬁf( (A); R(P(A) &&WQ) ‘We can consider the linear
operator T T (‘§ C 9@} given by
e

(1,9 () =Eige), per (), 50T,

which factors through Q as an operstor °

T 0 (5 @mr (/x%,

which belongs to‘ﬁ(F (FQQ) and dppevds only on the

of (p in 1°(p(A); %(pu;),m‘“ ',f,L;Q>.

% m@ :
5. The mapping T:7 (P(A), fB(P(A),éﬁgﬂg Q)”>}ﬂr (Eﬁ%) given

by (Wiv T
e Tl

ﬂﬁ(P(A 5(P(A)’“»;m.f&% into &%( \U~3). Thls follows - immediately
from thesfact" thot -

class: § @)

Therefore, we can denote
a

, 18 an injective - homomorphlsm of the W —algebra

' 2~
(=) (ep)pep (a)el (1),

which can be proved as in (E16], Proposition 4.5).
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6. More genérally, we can ¢on81der a“field (ap)péP(A)’

rators apﬁfYAep), peP(A), such that there exists a constant M, ha-

—~

of “OPR-
ving the property
: NTIOR
IEMES 5 fg)faoee on. P(A).

We shall say that (a ) is an integrable field of operators

peP(A)

if

(D .

(=x) ($pdpe P(A) (l = (a5 ) peP(A)r o

Tt is obvious that any integrable field of operators detormines a
linear cperator a: f (Jb)wé(\ (Ffm), and there exists a uniquely de-
termined ‘operator acdj\ (ﬁﬁ%), such that aQ=Qa. ';¢M’

It is customary to uall the operator of the fofmrﬁgﬁbl(élﬁH)),

corresponding to integrable fiel}ds of operatecrs, decomposable opera-.

tors, and to denote

o
a

- g a av&p).
A)

The operators of.the form’ﬁTr_AW"l are decomposable, and they ccrres.
. Cgl ¥ .

pond to the integrable fields of operators of the form {o(p)A )p P

where lp is the 1deﬁt1tv omerator in Avp, pPEP(A). Such operators

are called dlagon3117ah1° onerators, For any at nb(A) ‘we cen consi-

der the field of left regular repr esentatlons (Pp(a)) w1t

pEP(A)
obviouS‘from equality (2) abovo that any such field of oaerators is
integrable. If we denote

& *

Plar=_ | o (a1dfip), aeR (a),

P(A)

thenﬁﬁ@(afﬁ”lQE(a), a@@b(A). We have, tﬁenefore,

R T S
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Proposition 2.1. Any Baire operaﬁor in (8} over T(A) is de.

compaosable,

proof. The Baire onerators in L)y over’W(A) are, by defini-
tion, those operators in ¥(H) whose real and imaginary parts belong
to the smallest vectecr subspace ofchH}. : whlch is closed under
the takzﬂg of limits of mounotone bounded sequences, and contains
‘W(A) (see Ll4j, Theorem 4.5. 4) Th’ se {P (¢A)) of the Baire ope-
rators over T(A) is a Cr-algebra dnde (9 (A))”t(ﬁb(A)) {see [14J,
Theorem 4.,5.9). The Proposition now immediately follows from the

equality Jjust precedin% it

. Remark. This result eXteﬁd?:?Q the poséibiy non-separable case
the Well;known method of redueing a von Neumann algebrauﬁ,acting
on a separable Hilbert space: cne chooses a separsble weskly dense
CX-subalcebra anfl, with whose help aﬁ intégrable field of sepa-~
rable Q111ert quoes is constructed Subsequeﬂfly it is proved
that any operator in Oqu deoompoqab]e. %ut in this ca§ei
Cv? (C{ ) (see LMJ, w-\,o@m»a Ao - -

It is obv1ous that for any strongly square integrable vector

: fneld g (g (uv) and’ any aaﬂ (A} we have'

p pJ’f‘

- A__‘-, ..' ' e "/\ :. = 2 e =t o e ) N\ = 3 > . -
7 - A edwEl = } \\(Jp(a)“g W\ d);»ﬁ(p)o g =
In particular, we have -

A N ~ (‘ N
W (2)3 W= ; )\\aep\\:z'd{,kk%(p) ;
- PA

for any aé@%(A)o

Proposition 2.2, The algebra of the diagonalizable operators

coincides with @.



.

Proof. The mapping

~.Q >
S 1 m‘S(P(A),&) o 1Ly ) —=> X(H)

<

given by S(qu):WTENJ%Ml, obviously.is a ¥-homomorphism. From the
; ol
equality
. 2 L 237
wstcel)g = § e (o)l 2aftin)
| e L

we infer that S is injective.
It is now cbvious that the rangef@(S) is an abelian ®-subalge-

bra of ¢(H), end also that

G @Sy T(A) .

Siﬁcé @ is maximel abelian in ’\T(A)", .‘We. infer that %’ =R(s) (fak

a more defaﬂleﬁ proof’, sae[i61 lbnorem 4. 3)

: The preced;ng theory @xtenus the 1“reduc1b e dlslnteoratlon thecry
we have developed in £163 .

‘ _The new feature shown bv this extﬂn81on lb the decomposability

.of the Balre operators, as well as the topoloplcal nropertwes of

'»‘the mPa%u”es with whose he'n the dlSJntPgraflon can be carried out. .

: As in Elé}, we can apnly these results to the central (factor):
dlslntegratlon (reductlon) of the 1dentlcal representat‘on of any
vom.Neumann algebra, as well. as to the 1rreduc1ble disintegration
g of\phg unitary representations of the locally'compact groups (see
(16}, §5 ana §6). :

IV. As an example, let us consider the field of operators

(e

p)pGP(A)’ where ey E%Aep) aéts by multiplication to the leftd+s
e : : ~\0
aepp»>epaep p(a)ep « Since pesp(a) is bounded and r&ofmeasurab%eﬁa

o . 2 r~e .
- fer th effcn : £
we infer at (p(a)ep) D) r (ﬁb)’ and ﬁherefore,‘the field of
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operato?s (ep)ﬁeP(A) is integrable& If we denote
{9
% = | e dip),
e

then WEW“l is the projection onﬁi?o; hence, it is an abelign pro-

. : : ol . : e e
jection in ¢ and, more precisely, with the notatlon from (LlG],

Theorem 3.4 ) we have
!(\'A’G o
and this shows that the projection e . is decomposeble. Hence,

(#
abelian projections are shown to be .” fields oft one=dimensional

projections, an intuitively sensible fact. di

Remark. In ({ié] osition 5.6) we have proved that any

Q-measurable.fuhction(@:éuppdwiﬁicoincides & a.e., with a (unigue
continuous function. With the help of the regularity property oF o
which-was proved 1n ([17] Theolem 6), one can show that any such
functiomn @ is continubus on an’ open dense subset of suopci This
result is well known fer-(compact; i.e., quasgmcompact and Hausdcerf
hyperst&nean Sbécés, where the'ﬁausdorff sepébatibn.pfoperty is
usualij used i tha preéﬁ; I our ca%e, where “th ,‘éDéCé sunn:: ge -

nerally fallo to be qausdorff the proof can use the PCgUluPltV

" of the measure czvinsteado
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