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¥-ALGEBM ;

ON THF RBOUREL ENVELOPING Cg—ALGEBRA Or A €

e
Silviu TELEMAN

In‘this paper we shall aésocisLe~to any CK—algebra A

the Eoré; enveloping Cﬁmﬂlgebra'over A,-éenotgd R(4), éndeﬁﬁfi»

ned as being the smalleét Cﬁwsubalgebfa~of A%#, posées@ing the. . o
following properties: A : ’ i v

a) it contains the set (A m of all (lower) 3emi-conf
tlnuous elements in A** over A . | o
. b) its self-adjoint part (Ef@)é is closed in Asa y:i

with respect to sequential monotone coﬁ?ergence,,

. #e shall show that ®(A) has a good b@haﬁiour with respect . .
té the representations of A end to their irrédu¢ib}eudisintegpao
tions. | e

..-1f Ais ﬂommutative, then J3(4) van be zdentlflea w1th
the Cx-alg@bra of all bounded Rorel measarable complmx functlons
.on the meximal spectrum of A.Of course, B(A) is,in general, dlff
f@rént from ihe Baire enveloping C malgebra’B (A) of A, 3$noted
RN in g8l, and défined as being the smallest C *_subalgebra of

EE

A, y which contains 4 and has property b) (se@ also f1sl)..

In order to make the paper more rmndablﬁ, we have 1nclu~

: d@d somztimes w1fh fu’l proefs, sonme results from ofher sources.

b We shall also use results obtalned in E17] , gl E19] , [2cflxy
; fC?YIYZi} to which we shall frequently refer (see, also [11). We
'shall slightly alter the notations and the names for tk4ﬁvarious

obJectﬁ we enﬁount&r, in comparalson with previous usel Heplng
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that by so doiﬁg we achieve an improvellent.

' We shall probably not always refer to the orlv“nal sour
ces, Theéorems X; 2; %; 4, ¢c); & end 6 are new; alsoc, some of thef
L@mmuu and Propositionm, The others are inciuded for the r@aé@r5g

convenience.,

-

Sl b@t A be an arbitrary cx«algabna, A" its Banach.snac@
dual, Qog ) {L&A“; £20, WfA < 1‘ theU(* sA) = compact bonvmx sat,
of the quaglustates aff <A, @(A)mx (A)~ “f\\%*} thﬁ convesx

set of thc states of A. We have

ex Eg(A) = pP(ayu{o}

whef@ P(A) is the set of t e pav@ 8tutea nf A (see [5], Pr0p031»

tiom 2.5.9)« B(A) de (4™ A} COmpact 1P, and only if, A has &
unit element.
\

\ %5 %

\ ooodeb Re R be the convex cane conﬂxstlng of the po itive

o

lihear funetionals in Aﬁ; then for any ﬁéﬁ; we SD&LLtO@ROt@.Qy_
. the Hilbert space, by 2?655% the canonical cycliﬁ veétorg hy
We: A-%\ﬁ(Hf) the representation and by Qf.A-%-Hf the csnonical
'mappxng corr svondvng to the Galfand Nalnark ”Pgal cecndtruction.
Wé‘haV@ Qéa}nnf(a)gf y f(a)m(ﬂf(a)§f\§f) and h;f\\zm&if“_s§élﬁi;
ach (see (5], Proposition 2.4.4). \

By uherman s Theorem, the second dual A can be endowed
with a structure of a ¢ -algebra, which extends its Banach space
St“aofureﬁ such that the natural 1mbeddlng 3 A -—>2** isa 0 ~a1~
gebra homomorphiam (se&[S]; Corollaire 12.1.%.).

We shall frequently identify-—4~with j(A) by this isomor-
phiem. i - '

By Kadison's Theorem, *he restriction mapping
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is a linear norm-continuous isemprphism of A*E onto the Banach
. b o . . »
. 8pace AO(E@(A);&) of all bounded affiie complex functions on
E@(A)» vanishing at (0, endowed with the sup-norm; its restriction
to the 3@lf«adjaint part Awﬁ of 2¥% 35 a resl linear isenmetrie

U (B, (4)50),

1ﬂ0uo“pn18m ento the real Banach «uu@ﬁac@ A, (E (A)‘cgQ

(%), Vanluw

consisting of &1l ﬁauuded affln@ real xanvtion@ on L@

hing at Q.

We have

XéJ(A)%?>Q( )éA (Bo(A)38)5

i.e., Q2 iz a cohtinuous.linéar isomg»phisnm of A onto the Banach
space AQ(EQ(A);@) of all 0(A*;A)~ continuous affine cemplex func-
tions on E_ (A), vanishing &i O;fits restriction to. the.real vee-
‘tQ?.a&bﬁﬁaG@.AsﬁZA of all self~adjointlel@m§nts in A i# a lineap
isometric i&@marpﬁism onte the real Banach space AG{EQ(A)) of all
(4% a)-continuous effine real functions on Eé(A); varishing at O
(see 781, Theorem 3.10.%3; [15], Ch.IIy §9.1, Lemma 9.1.10.) (For -+
any subset Mc:ﬁxf we 6@no?e by ? Yy «%{\P % the set of all self~9ﬁ4
Jjoint. elsments in M) . ' |
» We cen also consider the universal representation
T A u-»ééj(H ) given by 7. = @ TeinH= & H., and its nor-

% pemen) ® feE(a) ‘
nal @?*enolonf1 tA U ), given By o

| @100 6pCe))=(5(e) Tai (0)) (2,

for feE(A), acﬁxg, b ;,CEA. We have uufﬂﬁygo Then?ﬁu is & z-isomor-
’phlsm of.A Gnt@fﬁu(g)" (see ES}, Corollaire'l2,1,3}‘
&€ course, j(A) is G{Aﬁﬁ;Ax)~denS@ (i.e., ultraweskly den-

se) in Aﬁ%. It follows that
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o WD

wlere <M)E denotes the uhit ball (ﬁﬂ)1 the pcaitlve garu ¢f the
unlt ball of mc:g ; (M} denotecs the QPt of a1l llmltu of ine

u

creasing nets of @1&m@ntﬂ belonging to MCA g ond, similarly,
(M}r denotes the set of all lipite of u@creasing nets of elemente

‘b@ﬁunﬂing to McaTx, By Vlgl@?g Th@G”“m, the 11m1?@ are to be

S&
understooed either as suprena, r@@p@@ti@@ly 1nf1ma, with respect
to the usual order relation in Aii, 0r<with respect to the tepo-

logy: O’A ig

14 bJ th@ Lsomcrnhxsm Qs ?he latte is i&@ntifiedg;
with the tupology of thm DOlnu\lu@ c@nV@rpence on E, (A) (sve
[15], ch.11, §9.1, Lemma 9.1.10; [16], @haxl, Theorem 4 ?4 [2r}
©h.I, §1 Theorem 1.8). ‘

We remark that in (1) the limite are:to be takenm, in ge-
neral, over uncountable nets. This fact is cumbersome, especial-
Ay dn pfobl&ms where integrstiocn processes are invelved. For
ﬁhis reason one is led to consider intermediate (real) vector:

spaces }{, such that

:1&"&}{(«(:& §

-

and such that ?(JQCAE(E@(A)) should consist of bounded affins
.real functions, having good integretion properties. Moreover,
from an algebraic peint ef view, it would be desirable that the

set
Hox fdeci®s . ‘

be & Cﬁusubalgebra.

§h. ‘The situation is best-illustrated by the case of & commu.

. X® o ] e
tativeCo-algebra A, possessing a unit element. In this case,



E is isamcwphiﬁ with the G aﬁfezwa Q(Y} of all centinuovs ¢ on-
plex functions ﬁ@flnwd on & @u*t&ba compact space ¥ (the: maximal
spectrum of A); whereas E_(A) ideatifies with the GTC(X)%;C(X))m
compact cénvex space H(ng ef &13_pesitiva Radorn meaéuﬁeﬁ on X;
¢f norm £1. MHeoreover, P(ﬂ) identifies with X h? the ev&im&%i@n
“Mpnlnv Xax r)@ ﬁ { }} @ m(@f Ec?{ 6’),; ‘

It is easy to prove tﬂdu vh@ real vecter spar&i% {ﬁyQ} af
&ll Bounded Baire measurable ?@al fune*ﬁ ong on X coinc 1&&3 thh

ﬁ?e»&maii est subget (it turns cut te be a real vecter subapace)

£ vy J "~
of B~ gspgce O(F ;Eﬂ of',(WT 001»L'~~u;nr real func-
l Oris OY\ 'Q; 3 9 ‘. 26 P e Gl Se gj rent ..‘- 1 n) unao A {3ie L,L HIRO R + £ 2
point-wi - vector space B(X;R)
of ol X' coincides with

5 70
the

of ng which contains the bounded (lohc r) semi-centinugns real
funculons orn Xp and is clesed with resp@ct te sequential bounded
monotone point-wise convergence on ¥X. We obviously have the inclu.

sions

c(.&,mcg c‘.,ng “c}:m

and the mapping
. :
TC?::.EK.(X)K B/M‘&P(@a

extenﬁscyeﬁp(X;Q) frem X to H(X)ig es a bounded, affine Borel mea-
éurablé real function,on } u }1, endowed with the topﬁiag?
GTG(X)ﬂr G(X)}° lf(@éj% (X } then the @@rr@apanﬁlnﬁ affine funv»
tion on N(X)I is Balre measurable. .

An example du@ to Cnoquat (se@[?;p[ld] §12) corresponding
to th@ chomce AafO,Ll shows that, 1n general the range of the
restriction of 7 toi%o(x;@) is strlctly included in the real vec-
tor spaceé of &ll bounded affine Baire measurable real functions
on H(X):,; vaﬁlshlng at 0. Moreover, the.(baundary) barycentric
caleculud-does not hold for all functions belonging to this 1atte;

class. but it does hold for 811 functions in the rance of T (seo



This shows that one has to be carcful when trying to ox
teqd the not:@n of 8 BHlP@, T Borel, e;cment over a ok alg@bva
ffem tna 00mmutat1vs case to Lh@ case of an avb:tfary U ~algebra

Ao

wase -v~1opgdf eapecially by V%“x&on 9nd Peders@n (see [ﬁj L&39

i

3. As far as the Baire elements are concerned, their theory
de

mzz %w %hc smallest real veq uor

subspace (eodlvaﬁentlv aubset) of A@a,mhlch contaxnsfg(ﬁga)x

Ch.1V, §5). Nemely, let By (A) ¢

gj(ﬁ}ﬁéxﬁsa‘ an& is closed with respect to 89quentiai bo&nﬁaﬁ me«

notdne convergenece in Ai;’ either with respect to the order rela-

tion or, equnglenﬁ}yg point-wise on E@€A)a : V
Thenfﬁh(A}m% (4), +i55€ﬁ)q i& a Cﬁ»algeﬁra, %hic§ behaves

well with rOSpoc? to representations (see 383, mhecrem 4.5.4,°

Theorem 4. 5 9 E(a})s : ‘ : : ;fﬁ

Remark. It is obvious thatﬁgo(g)”& is the self-adjoint
‘part fo%Q(A)@ Thia\fact'givgﬁ an a pogteriori justification of

the notation.

It is natural to c¢all @b(ﬁ) the Baire enveloping c*F-algenor:

of A, and to ssy that the elements of B (A) are the Baire ele~
ments of A™® over A.
The situation is no more 8o 61mpie when *ryzng ta G%i?L

the Borel enveloping C“ algehra over A

4. The notion 6f a universaily measurable (bounded) fanvtlon

A6 2 Y

on a ‘localij, compact space has been extended to the case of ar-
bitrary ¢ ~a1gecras by Pedersen (see EB} Chie IV, §3) We first

consider»the subset (Asa)CZAsa’ consisting of all-elements in

EXE

AS&

y which are suprema of (bounded) increasing nets in

(xJ(A )}a of course, fqr any aé(Aga @, the function
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s

Q(a)egé{EG(A)) is lower semimeémtinuoua on E_ (A).

o

)

' LIEs % o Ak \m .yljs. o ! .
It is easy to see that (ﬁagj(:ﬁza 12 & cenvex cone, and
rfx 7 ::%
sa) (here 21 aenateﬁ the unpt element of A“E; see CB], Fro-

pogition 3.11. %) we have Q(lYéf}mkﬁﬁy ren {A;g 

rela

f(@ €A (F {L)} is Jower semi-c nmﬁlﬁuovs on & (“)9 then

CX Ry IEL
(@)ﬁf{u& }‘,_; conversely, for any &e(fﬁs,} = he fmmctloq
b e ; :
¢ ()EA, \uﬁfﬁ)} 18 lower semi-continuous on B, (A) (Heﬁé (M) S
notes the norm closure of uh@ subset m<:ﬁ9& lu A )
| : ! &

We shall denote hyﬁsfgfﬁ) the smallest f@al vector subse .

m
end is cleseé with reapect

*%
to the sequential hmanﬂc@ monotcne convergence in &8&;

gce of AT whwch aﬁntaznﬁ (am
e ?

here con-

vergence is to be understood either with re spect to the order re.

. ° v{;‘,},_,, s ® ¥ !
laticn 1n~A;§ or, equivalently, strongly in the-space Hu

of the,

e 0 5 *©

universal representetion of A,-where AT® can be 1d@n tifred with

A agaiﬁ this is equivalent to the ﬁequwntlﬁi bounded ma»

notone nalnu«wxs@' eﬂ§$P ence on Eo } modulo th@ fuﬂctzona¢ e~

presentatx@ﬁ.go :
It iﬁignt knawnfwhethg \b (4)= ﬁ (A)éijga({%,ia & Qﬁaalﬁﬁ

gebraj; in sny case, we obvicusly heve : e :

cBy(a)cB%(a),

" e

and we shall prove tkﬁt'?p ;; ie a:B:(A)-bima&uie.

. 'We shall call the .elements XEH (ﬁ) the stronglv Borel

X

glements of A over A (see also fl“j Gh Ir, §10, whcre the -

:ﬁéceﬁﬁia(A) ia d@no?ed JﬁwCA))p lt is known chatiﬁ (A) ias a

5
A

_JC«»algebra' (see (15], cmrn §10, Pronos:ttion 10.%) .

~The (self-adjoint, sﬁ“ongly) univereally measurable

elellents X in Aea (over A) are deflned as follows°

for eny feE(A) and any £>0 there exist hﬁké(ﬁsa)m, G
sueh that .



w8

~¥<x<h sndg f(h+k)<£_

(ses (8Y, 4.3.21, p.104). : =

.FW U4} we shéll d@ncté-lhe ncrm»alﬁ@ed real vector uhwm
pace of g§§ y coneisting of all (self w&&JOJFﬁ strongly) mnivarml
sally meassurable slements Qver.& (gee TJJQ ?rowositi@n 4.5.35).
Since U(4) is so equentially mcno%Qnﬁ ci*&eﬁ in A (see [é]wlxemm

<

n8 4.5.12), from the inciusion «&QQE'Cﬂi(ﬁ§» we imf@r that

F 0 B %
CG‘S ,»&CJ séﬁ(ﬁ}ﬂlifﬁ}a
$5. In this section we shall prove that L,(A) is &'3»(A}mhiw

module. Jhsu will be done by an attentive analysis of the procf

6f Th eoren 4.5.4 from g&j@

x_acﬁ

Lemms la tetdTc 7% pa & real vector subgpace, such that

1 1} and Jie closad with reanect to gequential monotone conver

gence in Ai? » Then % is norm ¢losed i A”“a;E o

Proof. Let {x'}ﬂzg ha a norm convergent sequence .in'U

° 3 pogd
vcanvergaﬁ%; to xéﬁgé e may assume that \\x .-.x ﬁ{“&ﬁ s Tor

n+l o
4 :
all n30. Consider the sequence (Xﬁf gﬁzﬁ?l}ﬁgg’ which converges
to % and belongs to U . Since
(x_. .- 15 I} (x = 1) = e 2 +i- 4l 0
n4l” om 12 n f - n*l e

the Sequence is increasing and therefore, ite limit = belongs

to’t}. Thus 15 18 norm closed,

Remark. The proof is the almost verbatim repetition of
the proof given:in [813 Proof“ef’'Theorem 4.5.4, whereas the re-

sult is essentially due to Kadison (see {15}, Ch.II, §6¢2;[6§)e



.Earollary ls The real-vector subswaaei%ia(ﬁ)-is norm elo-

EE
p B » .
sed in 47T . -
et $(a) c2%% be the real vect t renere
2 \A) Crlfyg be the resl vector subspace of Adﬁg ZeNerte

Zﬁ-’» L s ® 3
, &nd let Q@H(A3 be its norm closure in Asﬁa

{"‘mrm“‘ Ty ‘J«‘ (:%"-ga A} @_(K f;.’%).,

S e e G

: > & m O - " o :
Proof. From the inclusion (ASQ)Q;J ég(é}, we infer that

ne Q w il " . . e ¥
%%&(Aigjgs&(ﬁ}@ The regui&wa inclusion now folleows from (orolla=

1

ry 1.

a(ﬁ} and is closed with respect to sequ@nﬁial monotone

o

Proof. It is sufficient to prove that the smallest subset

af Asag pOdSﬁﬁ itng the required properties, is a real vector suha-

pace of Asao This is left to the reader.

We recal¢ that for eny Hilbert space H a real vegfar su%sm

1]

pace \J(~$€\H] is said to be Jordan aleebra (of operaters) if

aﬁ}él):$%(ab+ba}éﬁﬁ,
¢
Following D.Topping, VU is said tq_b@ a JC-algebra if, mo-
reover, \J is norn elosed 3113?0?)%& (see E14W, Dis 438 El“}, Ché*I,
§6.1, ﬁ 373) .

e -t

Remerk. The notions obviouwsly extend to real vector subspa-

ces of Amﬁ

The following Lemma is - uranslated from ([151 Ch.IT, 86,

lemma 6.1.5), with slight modifications



o~

Q' ¥é @ JC-algebra, such that lﬂj9

“and if }':,4;’\3 is such that w0 andi'x “L exists in Aiﬁ , then %",

g E 24 :

i1) 1et Tc A be a convex eone, such that 1€¥ and let
U be the norm closed real vector gubspace of & g:@nabat.@d by T
If

) & @ f L 4}
ae\ , &x0, a’ " exists in gg%‘;} u§»a &U‘

e A -
hen'V is s Jo-g2lgebra.

Combes (see(15], ch. 1T, proposition 9.2.6, p.420).

Froaef. i) Since ﬁifs a JC-algebra, any real polynomial in

e = % z A 2 :
X belongs tc;’ﬁ;. hence ¥+ telongs to ) , by the spectral theory.

fcm Gy

&

:u) f x¢ { andg u #W €1, then iwww &nfi 1+txel

telo,1): sinece "fﬂ“b@»‘f:.:x:)“1 exists in A;; , for any uL&O l), we infer

3 | N !
that (l+tx) ”‘LU + From ithe norm convergence

2 ¥ S
x =1im 1 \_{Z{«zv‘t ) »}_-e»ﬁ;*‘"_; : ‘
a0 b ;

we infer that x‘?e"ij; hence, z:‘?éﬁg for any xéfl .

#%  generated

byv . Thwu U = X=y-z, where ¥y, L‘? it f‘mllmvs that Xgﬂz'?jg.?'g-‘i«-

{18 < A
Let. nawb__ be the real vector subspace of A

5 L)
f+22§;‘°-—<3ﬁ*m‘:) é\j” girnce UV ia the norm closuf*@ oflj; s An A , we

infer that xe\?’xfz» % 61}“9 and this implies that U is a Jiiuérzlgesabra‘

by easy computations. The lLemma is proved.

'ﬁhé following Lemma slightly extends a result of F.

- e vLotet mer ax0. Then for any a€((A )"} Tiwe b



)

a is mva rtible <=>mf{e(a)(p} peP(@h’)O,

=

in this cage g Jsa

[ = £

on e  : TN
Proof. ‘Let us define, for any 8€A_ ., 820,

A, = int§ (2312): ey, W20 = ‘\

rheg we have
ais iﬂ%ertip}eééxé>oé
On tﬁe other hgnq,‘we have
Ng = infdo(a) (£); feE_(g)}, - meAlt

We shull prove that for ae( (A

qa)m)’, if we define

‘;\; P inf{g(a) (n); péP(A)"},

owe have')':k c Indeed, itiis ohv1ous that X )a Let us consider

the Tunction d:BE (A)— R , given by
A)=p(a)(Fi-dy WE1 ,  £EE (A).

We obviously have atp(a)uiol> 0. rrom H.Baver's Mindmim Princi-

ple (see [l?], Theorem'l&l;‘[Sd}, Theorem 4), we infer that 4 0

-on E (A) and, therefore,

¢ (a) () 2hg » TEB(A);

——-—-—-thig -shows that )\ >)&, and the first assertaon is proved

Let us now assume that aé((Aﬁa) i azo &nd 8 lrexists



- 12 -

-~ in Aii. From ([8), Propositicn %.31.6) we infer that

.

% +ele(§},;a) . s

+ ¢ ; . 3 ,
whare gdg -’““{8‘5:‘%%; a;-{ﬂ, It follows that for any £>0 there ;-

exists an increasing nst (:vs.ar’)o‘ s2:8uch that

: Y AT
&&"\a +£1, where_a&éﬁw >

. and, therefsrg,
&léad}e}.'?a + 281,
whence we infer that
: | {'adel):"l\\, tas2e)"L, ' 0.

If we define bo(l_”i S']: 1 -(zao(~;~£,1)’1 s We h_ave bd.e;;- » and

b %21« (a+2:1)"1, It follows that

1 -1 H
% 1w (gf?il) efh Yes0,

. and, therefore, (a+2£1‘}”1€ (3083(1%). Since we have

1im (a+221)"legl
E>0 ' '

An horni; we infer that a™le S&sa(ﬁ)w* and the Lemma is proved.
The following result is due to Combes (see Dﬂ; [15], ChalX,

§9.2, Proposition 9.2.7).

Cofollm‘y 1 EPSQ(A)“_}S- a JC-plgebra,




= 15 -

““proof. This follows from-the preceding Lemma end. from

Lemma 2, in which we make Pm(ﬁsa)m and U ;:(fm (A)". The following
Propositien is due to Combes (8=a2 [4};[1.‘3], Ch.II, §10, Proposi-

tion 10555) e

e (P O it I
proposition 1. B_ {a) is a JC-glgebra,
T gsgoors,

Coicas enons i

Proof. It will be sufficient vo prove that :zceﬁ%ga(A) =

xzéﬁga(,:;), et us define

Ma{xeR? (n); xeRS (), Vken}.

We obvinualy have theat %a<ﬁ)2»Mc'3ga(A)* If we can
o

o prove that M is sequentially momotone closed in%s&(A), then the

agsertion will follow from Corollary % to Lemma 1. Indeed, let

(ndnso be @ monotone increasing sequence in M, with

lim x,ﬂmxéﬁga(m@ We can assume that ‘Axn\\ $ily D20. f;_l“‘lgen,,:}«;fcr\»
any tel0,1), the series expansion

is norm couvergent. Since :?ﬂeu"’(g“vl n>0, we infer that -

(Lftxn)vé %ga(A) » ¥Yn20. Since

(1-tx 1‘\‘ (1«‘(.3:)‘"1)

ﬁ)f
we infer that (l«ﬁx)”%(&ga(mo It follows that
= "(“L«tx)“lu.(utxﬂeig@ (a), Veelo,l)

;?L*“ 2o 2 aa 'l 9. e 13 9

and, therefore, by norm convergence for -0, we get thag
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; %Zéiﬁga(A)a By induction, from .

Kl g2
%= 1im my[(lwtwi L a‘@%tx 1,.

itQ

\,‘_La

12 .
we infer that x 2B (A}, for aay k>0, and, therelore,

Propositien is proved.

e

proof. We have to prove that 2T (A) , ye@b(A):§K¥€ﬁf(a) ”

anﬁAy3€?$(A}~

" From the identiily
G . Lo e
(1) 2xyx= (Xy+yX) X (xy+yx) - (FX +XY)

. O
we infer that x,yefD,(4)=> Xyx eﬁSsa(%)'
The identity

(2) i (xy-yx) = (A1) (x41) sxyx-y, X,yEAry 4.

implies that

2 g s FE(h o) s LOF-¥X)E Ty (AIB g, (A) ¢

1t immedistely follows that

A5 Belugs yégga(h):%’icxy”yx>‘sy%a(A)C3nga(A)°

From identities (1) and (2) we now infer that

wehygs Ye¥, o (8) => (r+il) Fx(y+31)BC, (A)

Xg— \'M & Th@




and, therefore,; by a sequential monotone closure argunent;

2€@b<é>5&’ yé‘g;aCA):%>(ﬁ+il)ﬁk€y+il)éjégaké)°
By identities (1y and (2) ég&in, we infer %hat
R (B g T € Lp (A) = (X«#i;i>:#y(X+f}1}e %QQ(A)
én&,viheraforeg by Coro;}ary~§-to-nemma 1, we inﬁa? that
xedy (A)%s e ﬁsa(a) e (x+11) % ¥ (x+il)eB] SlA).
By (1) end (2) again W? final}y infer that

(4) xe?% (A}Sag yéimt,&} :a.w*f«yx)eﬁ (A).

v

sinqe ve have

(5). . %,7eBI (A) = xypeyxeR® (4)

; : < {23n) 4 u,.. " s:}u‘ = $

from (4) end (5) the Proposition now imnnediately follows,

‘Remark, Even in the commutative case, we.have; in general,

73 cg)¢$§<g)e et course, one would @kﬁ@@t at first glance, that
£(4) ve a ¢ ualgwbra, as it happens w&thf% (L). Our ﬁongeﬁture
lu that this is not the case in general (gee FIA] for conditions
in order that & JC-algebra be the self-sdjeint part of a C*-alge~

bra). : j . : B e el

86, Tot s now deflfw T(A) to beithe smallest e maubalgnbra of

¥

A", such that -



6

8) (A cBA);

" % : e o Py w ‘ 9
) the self-adjicint part ﬁ{a)ﬂa oqugf) is closed in “yrzwwlﬁh
respect to the sequential monotons eonvergenceo

¢

We immediately infer that f?{A}ci%(é)e

;miLfﬁﬁﬁ) is th@vcﬁualg@bra whoge selfmadjoin&.ﬂérﬁ-

is the %@C}H&llbl&}. LIOI‘LO{.OY'

Nt Al T OB i T I o

_closure of the selfmad301nﬁ part o th

C’malgeb d~ﬁ1(A) generat ed -1 ,ﬂsga(A),
Proci’s We have to consider

i) the ¢¥.algebra @%}A) generated mngga(ﬁ);
jii) the smalleet_sequentially monotone é}Osed subset
@%a(A)c:Asa, containiﬁ% the self-adjoint partfﬁi(Azsa ﬁfigl(A23
and to prove that : B . =
ii) ?%a(A) is the self»adaoxnt part of a C’ --algeb~a9 Which
coincides with B(a). - -

B Since we obviously have @@a(&)CT?iA),éthe Lémma will inmew
diaiely fdliaw from agsertion iii), and, as a conaéquen¢e,.g@ ha--
ve that%aa(‘g)aﬁ(ﬁ)s&.@ . ,

: It is obvious that@%l(ﬂ} is the norm closure in AXE or

the z-algebra

: & # i T o -
‘& m{é“l fskle aaA »,,. ks é;: A "klaac.ﬂ km?; A}EE QA‘};%Q&K?)%& (A)}

k=1 o k=1

Let WOW»@%g(A)c Aii be the smallest qu@ntial Yy monotone closed
subset of ﬁ““ » containing the real vestor subspace @ﬁ(A)sa
Let us firet remark th aiiB ([T ig a real vector sub-

space of Aiﬁ. Indeed, for x\_WAA) the get

tsa'



s

(1) {red,, (a); x"'yégsa(‘b‘ﬂ“
ie a sequentially monctone closed subret offﬁsa(A), containing

GSE(ﬁ}gag‘iﬁ follows that the set 'in {1}‘@qualsi%8&(ﬂ), snd, the-

refore,

xeBy (A) s 3’,"5-(5‘733&{-5)_ = rye B @} i
A r?peﬁition of the argument ﬁh%%S that

,'x’yé%ﬁ%(‘é)ﬂ.ﬁ x-&yéﬂ%%(é\)
and,ieimilarly,

%é@w xeﬁmjgh%XxeﬁwﬁAp

Lemma ! now imnmedistely implies thatfﬂga(ﬁ)“ig a norm.closed .

SEFF
88

We shall now prove thatfﬁﬁa(A) ig a JC-algebra. lLet us

real vector subspace of A

L)

consider the set

b4

. . .
J{}mi\xéﬁs&(m,. X'e %8&(5)59 v I:QN}f
We obviously have that
_§2> e ﬁ%lfﬁ)aézjﬂlFi%aa(A)f

- If we manage to prove ﬁhataﬁh is sequentially monotone. closed,
then from (2) we would infer that M =B, ,(4) . Indeed, lat

S e S irie S e s e B e ; S
_(xn;nzg-be &n increasing sequence indJ{y, converging tph@gﬁgaCA)e
We can essume that Wx W<1, neN. Then for any t€{0,1) theseric

expansion

Eaaay T DN s s



®

o }, -

3’“’5’

(%) Clgtxm)”,'w 2; 4 !

is morm convergent. From the fact;ﬁha%%xwgwﬁl and from (%) we
infer that €1m%xn}miéf3 ,{ﬁ), ne%im

Since the &qufnce (fluxx ) *Eﬂéﬁ is moncton@ increasing
. < oo 1 3 » 3
te (l-tx)}7", we infer that (1-tx)" &33 ﬁ\A)g for any %e[b 1)« A As

gbove, we infer that

zu.umuv,f(z m(fl—e-“é:n)_j eR (ay
50 t 28
and, by inéuctimﬁ9 we get that xké?%a(Aﬁg\fkeﬁia
It follows that xaﬂi and this shows thatf%l is sequential.
1y monotene closed and, therefor@,f{lﬁzéafﬂ)e Hence,f%ga(A) is a
meaigebr@“_
I order to preove tnaxfﬂaﬁ(A) is the qelfwaﬁ301at part

gt a o walg@ara it will suffice now to prove that il
(4) Xﬁyéﬂgg&{ﬁ>z%>i(XY“VX)éjgsa<g)

©o th s end we shall use agaJn the identities

(3) 1 wy-yx)=(xeil)’ y( e+11)~ ~xyx-3,V X,y € s
and

(6) wxy:mx(xy+yx}+(xy+yx)xm{k23+yxeig fogyéﬁﬁﬁ

thereforeg'xgyei%aa(A};@>xyxéi%@$éélﬁwr

Iet L2 now remark that

(7) x,yeﬁiAZ) -4>(x+11)“v(k@11) €53 {A) 0
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- 1Let then xef%l(ﬁ)qﬂ and define
Mt \, T i =y ok
gkém{yé?%aig}§ x(xywyx)e_ﬁﬁﬁfﬁ?}a

From (6) end (7) we infer that

By ()

n

8o ."A"'E"

- whereas (5) inmplies thatJ%Z i® sequentially monotone closed in

33 A)« W& infer that

sagﬁ}’

and therefore

S
B,
{59
g

zéﬁBIhh)aa, yéﬂiﬁé{ﬁ?=§>i{x§«yﬁ)é¥%ma€ﬁ§e
.Leﬁ now yéﬁ%éafﬁ) an@ define
J(3¢{XQ@wﬁAH i@%ﬁxkﬁmgﬁﬂ.
From (8) we infer that
QQ(A)QQCTJ%g
and, therefore, with the Lelp of identities 64) and;(ﬁ); we get
xeBy (M) g Y€ Boalh) = (red1)*x(r4il) € B, (4) s

We infer that\)\”(5 is sequentially monotone closed in‘ﬂgp(A); hence

J{3 mﬂ@a(A), end this shows that:‘ «
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%,7.e B, (A) =5 1 (xy-yxye B (A}.

It follows that ' : ‘ S

t

Ba) =B, (A1+1B  (A)

3£

¢ -algebra, and the Lemma 38 proved.

pedo
B

Remarks 1. The c¥.algebra .J(f) has been,'defined as bainﬁ

X

the smalles: bfmauba¢gebra of A whose ﬁe1lwadgaln% part is

Ay irk
sequentlally menotone closed and contains the cone (Aﬂa) S i 4

[
is natural therefore, to consider that the elementis eof B(4) rre

the Borel elements of A®® over A,

The definition we have given tc the Borel eﬁvgxoplng ¢ gl
gebra of A, hawever naturel, Wﬁuld rnot De ve ry'usbful 1*’?%&)9 8c
defined, would not poase 8 some baq10 properties which bore re-
senblance to the C,falgebra ﬁ) of the becunded Borel «edsurrbig
cnm?léx funéticnﬁ on the meximal spectrum X of A, in the case
that A is commutative. It is, however; easy to see that if A is
comnitative, th@n.the ¢ .algebra J(A), defined as above, éaﬁ be

identified with 2>(Y)e

2. The approaﬂh b" stages we have Qbfﬁ*xuﬁ in Lemms 4
for the C“;algebraj%(ﬁ) is necessary in order to avail of the

implication
. . o .
ac(Ay,) => a'c 14),

which féllows from Proposition 1, and will be used below in

establishing the disintegration properties of B(A).



t
w2
i
i

&7.We shall now study the behaviour of B(a) with respect
to the cenonical irreducible disintegrations of the cyclic repre~ -

sentations of A, as defined in (E?E]p 82) «
%

For any peP{A) let @péé " be its support, which is e mini-

mal projection. We have
X% _
A@T!ﬁ = A “GV; péf’_(f’s)g

and we shall consider the vector space T (A@Q) and the mapping

peR(A)
T ST : : o ‘
T:A™" — Wl Aey, given by T(a)=(T,(a)) ; where
pebfa): P Bl ipeRia) S
-CI) ¢ A§€¥——% Aep, pé.P(A)s
° - - 4 %%
is defined by'tﬁ(a) = Be, achtr.

,Siﬁce we have
it L e
epaep w p(&)ap,‘ BEATT, p&?(g),

" if we endow A@ﬁ.with the structure of & Hilbert space, given by
.the scalar product
" : =E
ae_lbe_) _=p(b™s a;b ek
we infer that the irreducible representation of A, corresponding

by the GHS-construction to peP(4), i8 unitarily equivalent to the

Ae

left regular representation Rp of A on the left A-module Ae

-
in{22], we derine T =t(a).

Let&y={h (E,(A)) be the set-ofsil maximal orthogonal pro-
bability Radon measureslx on E,(A), such that the barycenter
b(ﬁ&eE(A)f We shall denote nygluthe prcbability-measu&%*induced

on P(A) nyk, and defined on the.gw-algebra of the Borel measura-
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ble aubﬁets of P(ﬁ), with resps et 40 the maximal orthoponal to-
pology of Pgﬂ; (We rcfer to [?},[17]ﬁ€k8] [193 {20] réij anﬁ
Egéﬁg for »ll questions regard . ng the construction and the
proof’'s of the properties of .Lhe induced m@asureﬁ}lﬁa e ghzli
uenofJQLl”Q; (P(h))= jMfﬂilgza\” (A})\a : _

{(nce fl(xmea»ﬁEJE (nf(A,i} has hsen chosen 1n\mifs.we can
defire a (non-separated and nuamacmpiﬁﬁ@) sca$ar nroduct on | )
o : _ :

(C(aNTOY)= | pbFa)siip) .
\ L pEA) iy

s ¥ 2 . s . ® N
and we can consider Lo L°~completion of T with respeet

i
(e}
e

denoted F {Fq, a3 in ([i?jﬁ pe154).

If we denote £=b(u), then the mapping
Noad -8,

given by

VIT(a)) =Te(a)$2 , aca,

is ccrrectly ¢efined, jsometric, end it has a dense range in
Hp; hence, V ean be uniquely extended as a unitary lincsr mep-

ping onto Hpe I we denote by W this extension, then we have
5 5 . q e
W [m (a)é’p pl=Tp(a) W) 1, (Splel </“'):°

i e o
(note that the elements of P“9&} are (square integrable) vector:

fields); and alse : ' : ‘. :

T A 2
Do e % V) o1,

ach, () 02 ().



§
™l
b

§

_.“maraewérk*ﬁince S is orthogonsl, the vector space ?29a) i@ an
f’w‘ A 3 ¥

PFpa), BUP(A);Q); @)mmodulm
1 we denote by? (Fj the {(compleie and separated) Hilbert

space obtained from [ Q&} by identi fwﬁug two (strongly sguare it

L

tegrable) vector fields which toincide (M -a.8., then we have the
e B - g : - ,,
canonical xuqnnJng@:T QK)«éRJ fﬁjg and W fact £W§a5‘%hzuugh;G%U
- e :
iy,e,tAcv" exists & uniquely dstermined Hlinﬂr -space isomorphism

\i’\!‘,v:( (&Z) S Hf 8
e

such that W Q=W
i F

“Let us now consider a {(bounded) fielid y of ope~

(2, )gcp(ﬁ
rators a?ﬁiTéﬁp}, peP(AYs

We shall say that

Yo 4o, i& 8 A ~integrable field of
*p’ peria) ! EER2-5 21520 02

operators, if

2

g 2 2 '.
Cplpepar™ P = (ﬁ}?};ﬁ}péf’ (o)t

( )ﬁéP(ﬁ) will be called a universally integrable field of O C -

rutars, ifis ia;xwlntegrable for anyrfdlj.

It is obvious that aﬁy)iménﬁegrable field of operators

\

(1) facters through Qﬁ; i.e.,it exists & uniquely deter-

(@p)pep

; o~ a2
mined -operator a et {F&)§$@eh that

Ep@ ‘Q,L{(ﬁ Va5 (é’p)pe(‘i?(/”l)“

HTh@ operators in J?Hf) of the form

WE vl
PE

corresponding to}Iwiniegrablﬁ fields of operators (ap)ny,arw



_said wo"be the decomposable operators 1n‘ifﬁf§ (with respect to

o e e

the chosen irreducible diairn tvg?&ulon which still depends on ths
choice of the maximal ot thogonsl m@a&uﬂﬁf&A‘A&ls auch that.

bp=t).

- 'e:s‘ o - »
We shall say that an elepgent amh&‘ 8 universelly disine

tegrable if the field {a €ﬁ3)

,.

?:

by the (extended) left ﬂ@?alar P“px@&@nﬁ&ﬁlQﬁﬁ Rpfhm”»%;fxﬂ@p),

(1) of operators. A &)y given

maP(A}; ‘is universally %nteﬂrabJVﬁ and if for the corresponding

\
decomposable operator W kga) %M in gﬂnﬁ) we have

/A
e e '.‘.‘:
L

~ : . = BE
wheres Te is the normal exteneion of Te to A &, for &ay;g&lig;

auch thgt‘b(ﬁwa

R o - F’i& : 2 @ . .t 5 . 9
Lemma )e i) If a,bea™ are universaily disintegrable, then
a+b and eb ere universally disintegrable, and ~a is universally

mdwkww&ﬂai'mﬂwvgﬁé@ .

DrAm s

©

ii) The norm Lin “of a sequence of unlverm& Ty c181mt»—

gratﬁc bl@mmﬁtu @f ﬁ“” 18 unlvcﬂsa3}y i ntegrab¢@@

144) Tf {a } ia g b@ﬂnf@ﬁ ‘monctone Seqniﬁu@ of univer¢

i GRS o e ri
: xE
' @ally'ﬁimlﬁtagrahle elements in A .y then 138 limit i2 a vniver-

sally disintegrable element,

¥roof. i} For aﬁy~<§g>p@pcﬁyep3gﬁs we have that

=2 e

it follows that



iy

) oF ga(a) EE QVQQ

,s

§€ﬁ#b}§wkﬁérzgﬁf &ﬁ@-{{éﬁ)?

)i

[

and also (&xa)ﬁ m(d<a€ F??(

‘wh

2

&
¥

0n the cther hend, wa,h&v&

and.

Sl S e S WA
Walab)y ”wwA<a)k<m)w =

~ m ~ e
)
I

MD)W mW@(a> Tplb)= Tf(ab)g
e o~ e b T e X ?
WA (oa) W 1$awx<a>w “%ﬁ“ffa)* (a)

Assertion i) is proved.
; T %% : - il
11)“Let B EN ", ne il , be' univereelly disintegrable end
; . 3
assume that lim a,=a in the uniform tepology of A%te Then

Ni-% o0

(3p) el (/J -—~><%?§})wer (2, dmem,

We then have 1lim (ang y. = (a%d iﬁ the (seminﬁﬁm) ﬁopelog& of
et o kel
o (Fqﬁ and, theravePu, we heve that (aﬁ ) rr 9&}.

It is obvicus that lim '\(&n}Nu/K&)« and alco lim T, (a
oo fu.. }A - LER

gy

Wﬁf(a,, whence we immediately infer that
o
W <a}w WWf(u)o

iii) Assume that (P )

ﬁi ; converg&n%4 to aéAgi, and that a, is universally disinte-

grable, for eny neN. By Vigier‘s Theorem, we have

B is an inereasing sequence in

A
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-lim"%a(an) nﬁ?u(a), strongly in Hy» =1

N-

and, therefore, from the equalities

m ppl
= \T £(2qe0,) T (0) 52 1 ‘mf(b* LR 'b) :

“\a be, ol p(apbey) IIA p(*(a -e, )*(a ~am)b)iﬁ{p/ ey

which Lold for bea, m,ne N, we infer thst (abe ) erz(F) for.any

beA. 81nce i is dense 1n Fz(r)y we obtein the 1mpliu ation
(5=) 6V2(*)-=>(8? jar g
Epe gl W,
On the other hand, from the equalities

2 2 - ~ 2
agbep)y af p(b’”ammot,»_camfuvfgammﬂb)é’? h s

»f{b*a b), bed, me N,
we infer that

b -,” 2 x 2. . 1 i e 0,2
“Fabep/p“ fg;h)p(b a b)%ﬁ(D)&““f(a)nf(b?§f1\ =

=f (b¥a zb), bea,

whence we get that

el e il e
W \Me) W~ =T.(a);
s e

'i.e&,,éVis universally disintegrable.vThe Lemma is proved.

1 4 .
~*Remark. We were not able to decide whether ag is unwerssl

ly disingegrable whenever a is mo. ' A S
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the formla

p(n%ab) A(p)=r(d ab) “ St >
i A _

‘holds for eny b,cch. In particular, the boundary barycentric ecal.

culus noi@s for e(&}m

B —— I —

= das o : B
Poef swme <be)>t}éx (mer (/u.),w\, have (&bep)pe}?(ix)é‘(\ (/.,),
ard for any b,ceA we have i 8 0
" plcTab)Ai(p)= { O <a)be ploep)p dip) =
P‘(_A) i _Pl) 5 H
= (M=) (ve > \<ce pYp)= (L «(a)(be I\ (ce ) )=
= pp pe
é(ﬁf(a)ef(b}l@.(e)):f(cﬁab). . ki
On the‘other hand we heve (e ) "P(E) el Qu, ‘and W{}e p P

¢ (see Card; Proposition 4.5 and Theorem 4 3. We 1mmediaté1yr‘

‘infer that

[ playdicmrze(ay.
P(A) 4

The Lemma is proved. :

v Letci)(A)CAm be the set of.all ﬁniversally &i%integrable
elements in A% , and define D (A)ﬂ%(A)/\iXA) ; whwre.$(A)
={a*cs%®, aed(A)}. Then we have :

Propogition 3.9 (4) is a ¢* walgebra whose ee¢lfedjoint

part is- sequentlailw monotone closed.

- Remark. It is proper to call the elements afﬁbo(A) the

regular universally disintegrable elements in A (see [11] oo




e ?8 Lo

# Proposition 4. The atomic representation is faithfial on .

D,

-

Lewma 7. We have b*U(A)be U(a), for any beh.

Proof. Let aeUfA), feE(A) and £30 be given, end define

g&b«fgbﬁ; whigh obviously belongs to f(b%b)E(A)ﬂ We~can find

h,ke(Aga)m, such that

~ksach  and g(hek)< €.
We then have that L™hb, b™kbe(i )™ and
~b¥kbsb*absb™b  and £ (b¥hbeb¥rb)< € .

The Lemmé ia proved.

o

Corollary?fﬁoﬁ‘agx aeLKA}?ﬁgg‘b,ceA the complex fggg@ion

?(4)3p+>p(c¥ab)

e

() [ pe®ab)dfi(py=r (c¥ad),
: P(A) : :
where b i)

Proof. Ve have

- .
N s

p(c®ab)= %[b((b+c)ﬁa(b+c&}aﬁ((b-c)§a(b~c))¢;«,._J:

{1 +ip((b+ic)§a(b+ic))mip((b~i¢)?a(bvic)f],



e ————

- S i i . e S g 2 ey
aw g e :

whence*@hﬁ}i»measurability immeéiately follows, if wé take inte"
account Temma 7 and ({200, Theorem 3:[22Y, Theorem 1.8) ¢ Formule
(%) now follows from (1)@ if we take into account the fact that

for the elemants of U(A) the bowndary barycent ric calculus hcl@s
(see tzﬁjﬁ Theorem % andi.Z?], Theorem 1.8). The Corollary i

proved.

L@mra ba gng_aaj%ié(&) is universally disintegreble,

Proof. ¥e have

B oa(A) CU(A)

- {see §4). From Proposition 1 we infer tha% a“éﬁo (A). Let ue

-now éofsider the vector space F glvem by V Q(Ca&+c§e¥ .;y@eAE

We vawmAA fave ik

Lel.e b e
peP(A)‘

and

' p((ab2+c2)§§abl+él}):p(b§32b1)+p(b§acl)+-
+p(c§abl)+p(c§cl);

hence, the function

P(a)a p (&1, € €
is{'aintegrable, for any (? (pp pm T qe We can, therzfore,
considex the Lzucomnletlon of’ V with respeet to V~(see fl?},
§4), which we shall denote by Vé F)T*ﬁe nan define correctly a

Iinear mapping

VarUp—> Hp
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va[((azye)@n)pf},m?rfga)gf(b)+9f<e)9 b,cea,
whaere Ews&l ; and fﬁﬁfﬁ);

Indeed, if w((ab+e\§(uu+c\)«0, peP (LA}, th@n, by the

preceding pcrﬂllary, we have

f((abéa)g(&b¢c))% f ,p{(ab+c)g(ab+c))%ﬁ(p)=0,
CP(A) ol R

and this implies th,tfw (a)éﬂ(b)+9 (e)=0.
t is easy to see that V 18 an isometric 1inpar'mapping; there-
fore it extends uniguely to an isometriec linear surjective mape

ping e, (" (i*)—-)»Hf. Ve infer that
e =2,

and, thereforc, for any bes, there exists a strongly integrab¢m

.veetor field (fp)peP€A)er (FJ, such that ab@pz$p,Ffa¢e§'We infer

that

2 n2
bl pep(a)el™ (B ‘“"%’(afv)pep(me (/*)"
on.th@ other hend, from the fovm&la

~~ b r) 2 :
[ p®a®b)dfip)=r (b%ab) =l T a(a)? (h)i
b () / oy

- —

which holds for eany bea, we infer. that

W Me R S,

o o, BT 0 e e S s s e ho i e
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The following Theorem is the main result of the papere. ..

‘Theorem 1. pny aeB(4) is universally disintegrable, iu:. .-

‘Procf. ¥rom Lemma 8 and part L) ief Lemma'ﬁ we infer that
any element aeh (where s is the z-algebra defined in ihe proof
af Lewma 4) is universal,y diaintegrable. From pert ii};af Leme:
ma 5 we then infer that any "eleument &e@@(ﬁ) is universally disine

tegrable. Let now

i g : o & » *
Jﬂém{aéﬁ(ﬂ)ga; a is unlvgﬁlgimﬁ.¥.
From the above argument, we have
‘ £y M .c o
From part iii) of Lemma 5.uwe infer thatM; is a sequentielly
\ e : . £ L .
monotone closed subset of A?ia ILemma 4 now implies that
J%nﬂfyﬁ)ﬁa, whereas part i) of+ Lemma 5 row ends the procf.
et zomﬁupikap; pep(ﬂ}} be the eupremum of all minimal
projections of A%, Then Zajiﬁl& central mEwaed projeciion and
e JK & * 3
the mapplng,ﬁzﬂaa»$azg is the (space~free) atomic representation,

Coroliary 1. The atomic representation is isometric

on 93(4).

®

proof. The assertion immgdiately follows from Lemma 6.

sed in (5]}, ch.1I, §10.15, Remarik . (2), p.434).
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§8. In this section we shall study the functor Av> B (4)

with respect to surjective merpiisme T:A ->B of Cﬁmaig@bvas.
lat B be a Hausdorff }@cullv convex topoiarlcal esl vege
: tor 8ﬁ@€$, end Kck a (non-empty) emm“ﬁ@t convex aubs @ta.Wa r@céii

that a convex subset FcK is sald to be a face of ¥ if
XeFy x=d 'ﬂg"’(l“‘dfv”s Xe pX ek, dé(@al}‘%‘xq.rxw Ele

~The face F is said to be supplemented if there exists a.

faece FP°*cX, such that r(\F*mg and for any xey‘\(F\JF ) there exist

unique «efo,1], yeF and y!¢P° such that x=dy+(leo)y! fands of

course, K= co(Ft)F')). The face F* is said to be a supplenent of F

&

A shown by Perdrizet, if P hes & supplement F*y.thenibhis is
uniagne (see,[9])e
The following Lemma ie due to perdrizet (see £91;(15],
Ch.II, Lemma 9.1.8;[16), ch.111, Lemma 6.26,p.170).

Lemma 3. Let FcK be a compact supplelented face. Then any

bcund@d lower ’resneutwvg3v upper) semi-continuous affine, funca
3. UPPE

S

ot

tlon(y F-> Rhas a bounded lower (r@apectlvely, upper) semi¢ons=

tinuous affine sxtension (:K>Re If @ is positive on F, then y

can be chosen to be positive on Ky and, in any case, Wyl = 1@l .

Proof. Assume that >0 .on F; and that © is upnar 9em1con»

tinuousm Let F* be a sunplement @f F, and consider the compact

convex &et

M=co ( (kx{0})ud(x,t); XEF, 0<te@(x)})ekx R

Then by\Q(x)msnp{t; (x,%)em}, x€¢X, we define a positive bounded

upper semicontinuous affine function sn K, which extends @. We



-

obviously have U7¢il = W . The general case reduces to this or

by the trensformations Y>> L+ Nyl - rand @ = W\ -

]pmnn 1 0. Let ﬁ _be any G walﬁmvra and ICA 8 c30aec twa»

sided iﬁculo Th@n the sets

PRI DTN Do 2. B B s ANy

§
)
—

Fp ={£CE_(A); £1I
and
Fy ={fEE (A); WEITW = 1)
are supplelientary faces of E (A), whereas F is compacga

Proof. This is anoth&r'formulation of ([ﬁjﬁgﬁropcsitiﬁn

24117 .5 see, also, [16], chulxx, pProposition 6,27,p.171).

‘The following result is eséentially due to Combes, who:
proved it for ¢° u&lgebras possessing the unit element (see{4],

{15]3 Ch¢z§, §9.2, Propss:tlun 92,16 )4

*z ry . L
Lsmn& 73 LG?A,B b&MC”fa;gebrag_andTT:A~>B~a'ﬁarﬁec%1ve”

¢

mnrnhlﬁm of gt alg@brasg The nwﬁewgayajw (g(apg iy )m{(g )mx”

and ¥ T B

%

Proof. The duﬁl mapﬁing o b T restricts to an injec-

tive continuous mapping eﬁu(%)—%-? {4)and v”(E (B)y=%

¥ 3 B¥
:% . 1§{ B

kerw ?

with the above notation. Since -r is normal, we have

e e "



and, therefore, since T™" is norm contimious,we huve

EOE e W i M. e
picd (<O T R

Let now b€€(ﬁd%} ) . Then<gg{b) i8 a bounded lower semicontinuous
function of B (B}§ such that @, (b} (0)=0, We infer that there
exists a (unlqae) bounded 10wcr semic ntinu0V$ 1unct10m

QP > ®& , such ehatty{e}wo end

(,?o"ﬁ%:::?g(b)o

B? Lenma 9, there exiete a beounded lower semicontinuous function
W 1By (4)>R, such that Q\®_ =@, YWi= ¢y ; and, W20 if €20,
From ([8¢$ Propesition %.}1u%) we infer that there exists a uni. .

L

que aé((gsa)m) ; such that QA(a)w%@ and la\l = \yWl= Heﬁé\xb“ :
moreover, axQ if 830._Iﬁ is obvious ﬁhat”ﬁﬁﬁ(a)mb, and the Jemma
i8 proved. ‘

The following result is due to Pwdersen (see Ll"), Ch.T%,

§6,Lemma 6.1.7).

Lemna 12. Let W:A->B be a C*-homomorphism of ¢*-slgebras
and Jeh %.Jd~ﬂgb$lﬁeb?%f~?@@3 T(J)eB. is a JC-subalgebra.For any
X 1%y XET, such that x s, andjw(xa)gw(xlhgn(xz), ther¢ existg:
&an x€J, guch that x oSk&H, and T(x)= 1*(}&1)

We recall the by a C&thﬁGMQPPhlﬁ i'8 meent here any self-

R -t

ad joint (hermitean) linear mapping, such that

T (3 (absba) ) =3 (T(a () emb)m(a)),



e

It is obvious that any #lomomorphiem of Cﬁwalgebﬁ&s is

a &ﬁmhomomorphisme

-For the proof of this Jemma we also refer to a paper by Stﬁrmﬁr,

(see{14).
The Tollowing result ic ésgentiglly due to Combes, who
proved it for ¢ w&lﬁ@%ﬂ 1@ havﬁqw the unit element (ae% E4j 35§$

Ch.II, §9.2, proposition 9.2. 163

Lemna w% ’”'{(ﬁo (a)" W\‘Q (I?)

sl

@ m
Proof .For any “““v (A) there exist s b““Pa) sy such that,

¢xa~-b and, therefore, T *®(¢)=y™ (a)«nf%(b)EH%Ef((Asé)mfﬁbw

Q M = Iy o b "t o TR
W ) )1 B ™ ) "7cY,,(8)7. This showsthat
T Aenthl e -,
; For any e'éf a{B) there exist a',bre (Byet yisuch that

C'=a'-L?, and we can find a bé({A )ﬁ)“, such th&t &'xw%ﬁ(a);‘”
b= T(B), We infer that c«m”um Bl e TRRL

cﬂ?%(f P\é) )« Therefore, we have that
¥ -
() %’Ba(mm (0 Te Y (817,

‘Since 3éa(ﬁ)” is a JC-algebra, whereas = ﬁf“% Bﬁﬁ is a8 C(ho-
mombrphism; by Lemma 12, we infer that'ﬁﬁx(gp gl ) e JC~ale
gebra, From (=) we infer then the required GQQQLitya The L

> ie proved,

: 0 Lemma 4. (a2, (4))=80 (5).

i

Proof. Let us define

M—wae ba(A)3 T (2)e (3))



- TE .,

We have

S”éa(ﬁ}” <M - o =

o
0r§l140bv10aulv'zu aﬁaw@ﬁtlallv manatﬁn@ closed inR° ¢

4 akﬁ}

folﬁows that

(v*_’t:}
M= iga (4)
and, therefore,
(1) Yoa (BT (8D, (4))<RC, (B).

Wwe shikll now prove that ar PR <,,>Dw

(4)) is sequentially mbntteone clo-

sed imRJ (B), with the help of Lemma 12. Indeed, 1ot (b)) . be

~{4)) e Then there exists

: 2 2o
-a8n increasing bounded sequence in PX s

W <

& ke R | such that

bcsbﬁgbn ixk‘, n.eﬁ4@
Let ué{BQ (4) be such Lﬂai'ﬁﬁgfa )”h « By lemma 12 we cen f£ind
an @r;g (q)E such that gﬁgflsx$§ and wﬁ“(a )wbla Induchvely9

wa cen find an Jnoreasznﬁ sequenea (a ), 1n1ﬂ© (£), such that
I }ﬁ ma 3

e

= v o BB %
15kl and jT;*(am)”bm*

for anyrheﬁd I a*iim anilnﬁﬁo (A), ﬁhcn'ﬁkﬁ(a) b, by virtue

of the ‘normality af%;:jo It follows that beTgﬁ(ﬁ (A)), and, the.-
refore the latter set is sequentially monotone closzed inﬂ%ga(ﬁ)ﬁ
From (l).we now infer that‘ﬁﬁ%(ﬁga(A))= gng), and the Lemma i&

proved.
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s e

Remerk. This Lemma ie due to Combes (see(4]; (153, GzeIT

310, Proposition 10.8(2)).

Wa shall now denote byeﬁig}, respectively (B}, the x-al-

Lo

gebrac, gerrespond ing to A, respectively B, as in the ppoof of

L%lﬁ‘ﬁ“%@ 4.,

S5 ¥F Y [N
Lemma 15. T {k(A) ) =AB) .

-

Proof. lhﬂ@dlut@ conssquence of lenma 14 and of the defi-

e 17

nition of K.

Lemna 16. v (R3(4))=8) (8.

proof. Sinee T is norm continucus, we have

. e TE - P . >
() A(Bicw {{Liié)}¢b§€5

: x% = X :
Since T . is a m-homomorphism oi C”-algebras, T (%v(A)‘ s 8

igtsalget bre, and the P@qu1?@d equality now immedietely followg

from (®).

We csn now repeat step by step the above argumentis; in

crder to prove that
TR (A))=R, . (B).

In this we manner, we get the following

i -t
LA S

Theorem 2. For any ¢ urjaotmwe ﬁ«homonorphﬁﬂm‘ﬁuﬁ~% B we

B
have T (B(A) )=R(B).
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& 9« In this section we shall introduce the "concrete® Do-

ala &y

rel enveloping uﬁmaTthx%ﬂ of the "concrete” G*«mf”ebras ke Fiu

- =

where ¥ is anv Hilbert spacCe; we shail assume that A is & ﬁﬁﬁw

degenertte C g balﬁ@%“@ of ¥ ().

V2

Let A" be the bicommutent of A& in L(H), end Wt~ﬁﬁﬁ -

P

vth@ nermal extension of the identical representation A*@ETH)»

o : m : = ‘ =
Ye shall denote by {Aggly the set of all elements in Alas

which are suprema (hence w0- or so--limits) of incr e&slnb nets

1@.&8&6 : =

Lemma 17. (A =T((a,) o

8&1 "{

proof. Obvious, since v 48 a normal z-homomorphi sm.,

We ghal} ﬁ@not@ q;M

(A;H)ﬂ(ﬁﬂﬁ)g > (QSB}S‘Q vaccuraeg

. m
(A:H) is'a real vector “ﬂu&ﬁﬂC@ of ﬁ” e Fronm 1G(A8Q)F wa
4 A

.

a&

¢ e 20D 2 ; o i e i £
infer that 1efq3(3;h)° Let (AsH) be the norm tlosure of
o .

?sa(é;H} in A% . We have the following result due to Combes

&g

6[41;_{2151, Ch.IT, §9.2, proposition 9,1;2‘@3.@}_, :
Lemna ‘re“'“fr@" ())=¢,
Proof. We obviously have that

%g(ﬁ Hlem(¥,, o{8) )CS” o Bl
sincew is norn continuous;lsinca;w is a C%~homomorphismﬁ

WTCQQ;(A}) is a (norm cleosed) JC-algebra, and the equality obtain:

(see Lemnms 127,
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Gorollar 34 l,:<?gQ(A;H) ig a JG-algebra,

Remark. The preceding Cors sllary which is due ts Cﬁmh@ﬁ,
is proved im ([15], Ch.TI, §%9.2, Hemark 9.2.19} by another way ;.

under the &ssumption that leh (see, also,14))

we shall now consider the sequentisllr monotone closure
o _ SRS : e e
R ontlsH) df’y (r;H) = 6 S0 1

The ToliaWQng rosult is due to Combes {Cﬁj {?§] Ghall,

10, Preposition 10.8( )

s G

(IEJA;H} &

O O
LER 19 £Y 3R
w’f‘f?‘.’f“il F{T {38& <'€ 4 } jj}a a

Proof. We obviously have that
Do (AsHICT (B2, (A))
Leé us Cefine
Ma=laen? (a); Txﬁa;cu%(&*?)}
Then M is sequentially menotone close: and
qga(A}CJ&cﬁﬁqq(%)e : - | =

We infer that M= (A) and, therefore,

S";a'(A;mcﬂ'(:ija (4) )cﬁsgé (A;é).,
The proof now proceeds similarly to that of Lemma 14..

We shall denote by A(A;H) the complex %#-.algebra generated
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.

in ¥(H) hyfﬁ o (A3 @3%@ obviously have =~ i

,

u@mm& ’O@’W&k}mf%*ep

w

&

“ele
]
4
7y
Doy
uloes
vy
.

and,if we d@nat@ by B4 (4;H) the norm elosure of H(aH)

we hawve the followi ng

Corol 1 Y 1 (r(&ﬁ(@))MJW(A ﬁ}e

~._We can now consider the sequentially menotone closure
‘Q@a(égﬂk of the self-adjoint par iﬁﬁ(ﬁ;H)E& affﬂliﬁgﬁ} in A%,
e can now state the following

Theorem 3. 1)R.,(A;H) is the self-adjoint Pf?;?.f"'_ﬁ_“.‘?)fuff,@?f

:a}l?.?i;ie 5t C“%%lgeblﬁ@_3%@%;?&%}g which has the propertiesyiiy;
% 10 . ; ‘
) th@'@@lf»aﬁj@imﬁ part ixggﬁ}@' ie sequentisally monotone clo-
: 80 ie Pzt lan 48 00QUON AR S o S
ged 1n Y

aa

ii )"\”(JM y=R{AH) .
" Proof. 8 1m3}ar to that of Lemma 4.

§10. o @hig section we Bhall consider surjective z-homo-

b L

' morphisms of concrete (¢ -algebras.

The following Theavum is sn extension of some results
‘of Combes (see [15), Ch.1I, §9.2,Proposition 9.2.18 and §10,
Proposition 10,8(2);Eﬁ]}¢

flieorem 4. 18t Ac¥(H) end B cX(K) be concrete non-dege-

nerate ¢F.algebras and let W:A"—> B" be a surjective normel

s-houomorphism, such that or(A)=B. Then we have

_ =
a) T (AL Iy y=( (@ By~



o by b

B) WY (A H) )= (B¢

38

o) T(R(A;H)) =NB;K) .

Proof. We have the following commutative diagram

S I A

4
A : i
by e : /i'
R T A
A ; & ‘i/
y £ £
A - > &

i3

where i, and i, ere the inclusions, o anévfz are their normal
- B :

extenglons =74, whereas j, and j. are the cana&xcul mappings.
¥ H .@x }; &

The details of the proof are now left te the reader.

Remark. The preceding Theorem, part a) and b) are due to
‘ : ¥ v - :
Combes for C -algebras posgsesging the unit element. Part c)

aprears heére for the first time.

11. Let fcE(A) and let f&éé}“‘g be a max1ma1 orzhagcudﬂ
Radon probability measure; 1etrfiégim be the carreﬁnamﬁlng bound
ry wmeasure. We shall consider the sssociated cyc]lc w@b"ma@n%&*la
Wf:A~al?(Hf) by the GES:@AQOnst»uatlon» and the cenonical irre-
ducible disintegration,as described in section 7.

From Theorem 1 &nﬁl%h@arem 3, ¢) we immediastely infer the

following

Theorem 5. Any operator a¢R(Te(A);Hp) is decomposable

with respect to &ny cenonical irreducible dx&lntmgrntlor of Tee

Remark. This Theorem is an exteneion of ({227, Propositie:

2+1), where the case of the Baire operators were considered.

%12 As en example, let us consider the case A“l(ﬁh sbhe
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A2

q -algebra of all compact (11near) operators on an arhatrary

 gilvert egace He It is easy to s@e that, in th...ﬁ case, Ja(A)ﬂf(H),
o _whereas (A) 18 the e -algebra of all aperators 1n<f?H) haVA"g

aeparable ranges it follows thati@ (A)aﬁ?H)-
This case has a relevarce to Na¢mark's Problem (see[?] {é]

.2?5.[13] p.236;117], §7 [21]\ As it is well known, the 8pec -

trumfof:AEE«H)ahaa.only one polny,i.e.,all irreducible rEpresen-
‘ i.vati’ons 6f ‘K(H))“ are‘unitarily ‘@»éx.iiv.alant““(éee Cs], Corﬁo'lléry‘\ _
*".‘4‘1 5).: The problem is ts eatablieh the converae to t,his Theorem
-vhich is known to be true in the separable saae (eee (12] El?ly
5 ,Theorem T 5). Let. A be any c -algebra and 1et z GA** be the {cen.
-tral) proaecti on wha.ch is - the supremum of a11 mmmal prujec-f mn.

“An A o Then corollary 1 to Theorem 1 can be aleo 8t8~&@» in the

follo\nng equivalent marmer'

Corollary 1', The i_-hombmorphiam 'P;(A)sa > az*fb,,is injece:

tive.

_gemafk. The mapping A’- s3av>8az, is 1niective ifn and only

if, z =1i. This cbvicusly heppens for A4=K(H).

we recsall that a cardlnal number m is sald to be (\,mw

tinously) measurablie if on (any} set M, auch that, card !ﬁ—m,

theré exists a prob-ability measure P:P(M) afo,ﬂ, defined on

- the class P(M) of all the subs_etaA of M, and euch that

PAxY) =0, ¥V xeM.

(The cérdinal number m is said to be measurable,if, moreover,

the range of P is equal to {0,1}).
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"“‘Zcﬁgﬁ“”bf‘all minimal projections. We have then a bijective

mapping

P(Alpr>eye e,

"% o :

« FOU Dyabs

¢ P(A) the corréSponding irreduéible representationSWQE,,ﬂb of.
v g e ll 1 2 -

A are unitarily equivalent if, and only if, the central covers

which associates tc any pepP(a) its surport ey in A

of e and e

are equadlsy
P . i :

2

- ' - c(epl)fc(ep2)5

Let then (pi)iéI be.a complete. set of represeniatives for this

equivelence, and. define

zixc(e 3, derx.

Pe =

Then 7 ieI, are mutually orthogonal minimaiScentrélﬁprojections

in,Aﬁﬁhand

izi-'-’-zo

ier

If we denote Hizg*ﬁena, i€T, then for the left regular represen-
: ; , 3 5 : :
tation ki:A§%4>§?(Hi) we have ‘ker NizAﬁ“(lazi){ iel; dee,

Aﬁﬁzj can be identified with(KYHi).

For eny iel, ‘let us choose an orthonormal hasis in Hy

consisting of pértial isometries wijeAﬁ@ep 5 jeIi,'such thatesar
r.; o ) . e s ~é 3"{:‘% » . 3 » 3 ¢ HEB Y Pats
yzflJ epi, lewa el& A Zis fqr any JE€I; and any i€X rhan elJ

are minimal projections in A*% , such that

51 945 ® By LeT
dez; :
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P

It follows that

Z: Z; eij = {30’

1ex Jers
and, therefore, for any peP(A), we have

a2 S5k e,
i€l jeI, e

Let Hy - Hj o Then the direct sum f\q*@}\l
5 1GI ijey

representations can be i&entified with the reduced atomic repre-

of the left regula?;t
sentation
)\a:Agﬁ—éZ(%); i ar a
we have ) (x)[€33)1e11 (Xsl)lél‘ XGA%K’ (5’)I€I ,?éd
kér‘xa = (15,) .

Let d(A) be the Hilbert dimension of H, and let J be the disjoini

. union of the sets Li4 iel..Then

d(A) = card J.

We recall that a C%-algebra A ie said to “be elementary if it is

isomorphic to @ 1QH), for a suitable Hilbert space His A is said

’  t0 be scattered if any fcE(A) is of the form f"fr‘dlpl, wher@ & 3

=0

ol >O, ieN, E;tx =1 and p;€pP(4A), ie W\(see[ﬁ] BeB6) uy

i=0 : ’
The following Theorem gives a partial solution t@:Naimark!

Problem.
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T%ecrem 6“ jig i)(A)z mAﬁ§z -and if d(A) is not meagqrab)e

-------

then z, ‘*l ,“ﬁ_.“'“ @om’?«f? "+ If,morecver, card I=1, then 4 is ele

mentary.

Proof. a) Assume,by way of contradiction, that gz #1,~T4@n

there eszts an £ 6h(%§, euch thatg f (2, )~0. L@t/! b@ any maxi-
mal orthogonal Radon probability measure on E (4), ﬂuch that
b(ﬂo)mie, and le¢/10 be the bounadrv measure inducn& on P(A) (“.

rzz]).

F@r-any McJ let us define

GM = ‘2 Z ei;{
el JeE’H\I .

4+ Then €y is a projection in Aﬁ%y for eny Meﬂ?(J), and the mepping

P@)s u>e ™™

is & spectral measure. By hypothesis, for any M<P(J) there exia

2 uniquely determined prnjectiom'dméigo(A), such that-
ey = Zodm'

(see Proposition 4). We infer that we have

ey (M=dy(p), pep(s), leP).

‘Since the boundary barycentric calculus holds for any déz%(A}Vﬁ :

(see Lemma 6), we have
ey (PYAE (p)= | a, (p)af (p)=f (d,)
§P(A) MR P{(ﬁ)'M Fe it e

for sny Me GVJ).
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é““have “the foliowing proparties

i) If (W,),. , 18" any increasing sequence in ?(J), then

e ... = suple. 3 mx0) -
U%m }"{ }’\::1 ) }
n>0"

and

d dyig <= aup{dm : n‘a{)\;-,
nso 1
becsuse the mapping QQ(A) 3d v>dz € f(Ha),is a Sequentiall-
monétene isomorphisme.
1399 L= ey 3 . ‘.ég’,‘..a“’,"'-e,,
ll)_JéJ =g g @131_*f-3 o
ill) GJ = 1& :
"'It follows that the mapping v: P(J) = Uo,1I], given by V(#)=
:fﬁ(d’ﬁ} s M€ @(jﬁ}, is a 'prot;ability measure on P(J}, such that
: v(iily)r=0, ¥ jéd. since card J=d(A), we arrived st a contradiction,

b) Assume now that, moreover, card I=l. Since:z _=1,.we.infer. that

o
Aﬁ‘%#%(}{a) and, therefore, A is sc‘atter@d; We infer that eny (cy-
clic) .représentation of A is of type I; hence, A is of type I, as
a Cﬁfalgebra. It follows that Aaﬁ}((H&), since the atomie represen-
tation is irreduc:i.ble'9 and, therefore, Aﬁ')((}ia), since A is simple

The Theerem is8 proved.
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