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Summnary

The paper gives an analytical method to study the motion

the thin aerofoil in en ingcompressibtle inviseid fluid, The

only restriction imposed to the aerofoil motion is that the in-

cidence angle be small,

The solution needs the solving of a Ffirst kind Volterra

type integral equation which, in the case of the rectilinear

motion of the aerofeil, coincides with the Wagner'siintegral

5

equation. The theory is next applied to study the case of. the

incidence variation of the flat plate in rectilinear.motion and

to

the case of the flat plate having a circular motion at a

emall incidence angle,

Notations

The complex coordinate of the leading edge projection on
the aerofoil velocity direction at the moment tla=alt)),

The .coefficients in series expansion (4.3) (ak= ak(t)).

4,B. The projection of the leading edgé and trailing edge,

. respectively, on the curve CO;
The complex coordinate of the trailing edge projection on

.,the profile velocity direction at the moment t (b=b{tdd

Assistant professor at the Departament of Mathematics, '



C The profile contour.
CO The trajectory of the point Ol‘
C;, The lift coefficient,
Cé. The pitching moment coefficient.
+f . The integration constant (with respact.ito 8) in relss
Tiom- (5.5).
F The complex velocity pofential.
h The local 1lift on the profile with reversed sign,
h The locai force exerced by the body on the fimid,
i The imaginary unit in complex plane;
-3,3 The unit vectors of the Ox-~, Oy—.axes, respectively,

The halfchord ot the profile. ire,

T

The: overall 1ift on the profile.

The function defined by relation o % e 3

The overall pitching moment.

Q; %g =]

The unit vector of the outward normal to the curve C.

0y .. The mean position of the mid-point of the profile chord,
P The dimensionless pressure.

q The intensity of' the mass. sources,

R The dimensionless radiuec of the circle,

s The curvilinear coordinate along the curve Co.

t The dimensionless time,

v The dimensionless fluid velocity,

v, The characteristic velocity of the motion,

V;A . The mgan velocity of thé boint O1 at_the moment 1t ,.ws

30 The velocity of an arbitrary point of the aerofoil.

X,y The dimensionless variables in fixed reference frame,

Y, Thg equations of the.two surfaces or the gerotoll (eq.%.1l).
g The complex variable x + iy,

Y The vorticity,
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® The incidence of the aercfoil. (SO 2 constant incidence).

¢ The parameter determining the seroroll thickness, -
¢ The fluid density,

¢ The velocity potential,

Y the strean function,

G
3
B
©

curvilinear abscissa along the curve C,
w  The angular velocity ol tie moving reference frame,
W, The dimencionless parameter R,

8 The angular coordinate_in circnlar motion,
The subscript 1 denotes the reference quantities with respect to
the moving reference freanme, |
The superscript ' indicates that the quantity shoutd be. taken
at the moment t°*,
The superscript « denotes tne derivative with respect to ﬁime
for fixed =z,

1, Intrcdaction

We consider tne motion of a tnin aerotoil at low incidence
in an incompressible fluid, In this case the real (viscous) flow
does*nbt separate from body. In crder to obtain various aerody-

namic coctficients of interest .t is necessary to calculate the
‘unsteady bourdary layer, but this nesds the knowledge of the pres-—
sure distrioution onvthe‘aeroféila.lf the Reynolds number is
sufficiently large the thickness of the boundary layer is small
and, in the first approximation;,the inviscid region can be con-
sidered to be bounded by body ilself rather thsan by the nuter
_edge of the oonndary layer,

' The impulsive rectilinear start from: the rest of a two-di-
mension2l aerofoil at incidence was considered by H.wagner (1],

In hiostheory all vortices are-econfined to a very thin layer which
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can be assimilatedwith & vortex sheet behind the aerofoil in
accordance with Birnbaum's hypothesis [2]. The problem cf the
unsteady rectilinear motion of the thin profile was considered
by Karman and Sears [3], Stingen {4], C.Jacob [5]. In [6] the
unsteady motion of a thick symmetrical profile at zero incidence
was studied.

More recently Basu and Hangock [7] developed a nunerical
method to study the unsteady motion of a fwo~dimensional aerofoil
in an inviscid incompressible fluid,

The present paper is concerned with the determination of
the  first inviscid approximation of the unseparated flow of a
thin aerofoil which will provide the pressure.distribution on the
profile, The viscosity is present only by means of the Kutta-Jou-
kowsky condition at the tralling edge of the acrofoil,

The motion of the aerofoil is restricted to the culy re-
quirement of small incidenée. We consider the form in distribu-
tions of the Euler equations ES],{Q]; these equations bolﬁ in
regular pointé inside the fluid as well as on the surface of the
profile and on the discontinuity surfaces inside the flow (1.6,
on the vortex sheets)., By means of this rorm we obtain the vortex
sheet as being a surface described by the aerofoil inside the
fluid; tﬁe vortex intensiiy is-related to the loéal force exer-
ceted by the gerofoil upon the fluid particles. Thus we replaced.
the Birnbaum's hypothesis about the vortex sheet by the lineari-
‘ ; : ‘Lthe
sation hypothesis vatid in the case of/Thin aerofoil at low in-
cidence [101.

In the following the time derivative of the complexipotenw

tial function will be the solution of a Diricnlet boundary value

problem, That part of the solution due to the thickness of the



serofoil can be obtained similarly-to the steady motioa, The
other part coutains an undetermined function f(t) which enter
all serodynamic parameters of interest, By imposing the initial.
boundary condition a fifst kind Volterra type integral egaatiom~.
for de%ér aning the function : t) follows, We have a tneorem of
existence and unicity of the solution and an algorithm for nu-
merical solution of the integral equatioen,

The developed theory is next applied to the rectxenoar
motion of the Flat plate which cheng=s its 1n01dence and then
to the circular motion of the flat plate at low incidence. In
the 148t cacs the influence of the circular motion and of the
unsteadyness of the motion upon the 1ift coeftricient is pointed

out,

2., Statement of the problem

We consider the motion of .an_aervofoil. of 2L chord length
in an incompress ;ible inviscid fluid. Let 04 be the mid-peint of

the mean position of the prof file chord at the moment-t., The mean

xwtvof3le motion is des c:zbcd by means of the velocity V (L) of

the peint O end the ang sular velocity Ll (t) around ths point Oy«
We suppose that the profile is thin and the iﬁcidence, defined

as the angle of the velocity Vc(t) with the upward chord direc-
tion, 1s small, We .sefere the motion to a fixed system of coordi-

nates Oxy. The equations characterising the fluid motion are

dgivv =0 o (2.1)
'b-' 4 AZ‘ R : o
3% + (V grad)v + grad p :;g«ﬁ bé _ (2:2)

The term in the r.h.s. of relatiom{2:2) is the local action of
the aerofoil on the fluid [8],{9}. If e(x,y,t) denotes the charac-
teristic function of the aerofcil domain we have

-3

rad 8(x,y,t) = - ““%c (2.%)
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=Y - .
. being the outward normal unit vector at the curve C,

We considered dimensionless variables by choosing the fol-

~

lowing reference quantities: I for x and ¥y, V. dor velocity,

s
. - {Bad () ) - - o “q
I/Vb for time, .FVS for pressure and iocal force h on the curve (,

Let Y{x,y,t) be the vorticity

oW e
A (Zst) sl mme o k2o4)

The equation governing the vortieity is found by taking the curl

of the momentum equation (2,2) which gives

% . M h r A
STt W oaredp = (== n, - %55 n.) b (2.5)

If we denote.by @ the arc length along the contour ¢ we

éan‘write
R=R7.&7
and hence
.. %y s

0 - - - i L . O O e 1
This equation cam be integrated in Lagrangean coordinates x (the

position of the fluid particle at the initial moment)..[11]

%(Xoal'?;t) = \X(xo,y g (02‘ gc)(f\:{?ayoa‘t")dt' 237,

For fluid parﬁicles which do not touch the serofecil we
have %c(xo,yo,t') = 0 for all t' and it follows the classical iir+=7

theorem of vorticity conservation in inviscid flows, 1i.e.

i(}'{o,yo )= \Z(xo,yO.,O) :
If the motion at the 1n¢tlal moment is irrotational and
" the flow does not separate from the oody then the vortiedfyids
confined to the aerofoil contour and to the curve C, described

by fluid.particles which touched the surface of the body, i
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The continuity equation is identically satisfied if we put

Sl QY et QY (2.8)
e v ey : .
Z,¥,t) being the stream function, In the irrotational region

Y

there is a potential function for velocities e, v, L) sueh that

et

the éomplex potential function
Bz, 0) = Yx,y,t)vd 4wz, 5, 8) o i g
is an snalytic functidn of the cbmplex variable =X & 1y,

Let C, be the curve described by the point 0;. In the case
of the thin profile and at low incidence we can consider the vor-
ticity lire a9 being the curve C . Likewise we replace the sero-
foil by a line of singularities. (point sources and point vortices)
bn its projection AB on the carve. C . the vortices intensity o=
‘sults in the form

e 8

0

. t
Tey,t) = - § - Larr (20

where h is difference between the local body force on the upper
side and lower side of the aerofdil surface, and s is .the curvi-
linear coordinate along the curve Coe Similarly, the intensity
q(x,y,t) of the point sources on'the arc 4B will be taken in the

form

q(xz,y,t) = - SC

t £
g B at (5 T
0 (8]

The complex potential function corresponding to the above
-mentioned distribution of singularities is

Blz4) = e «Si}§(§}z> + iq(§/?)] In(z~3)ds d?

251

where =2+ iM , In our case we obtain after a b arts.integra-
Y P &

tion
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F(z,t)= -

) Blg st kil 8") :
dt! dadl(z,0) - (2.12)

‘S-ah

QL/-‘ ck

—
A'Br

TN . St :
whiere A'B! 1s the arc of the cunve Co occupled by the aerofoil
projection at the moment t'. If the dot indicates the derivative

with respect to time for fixed z we get

: | h(s,t)+im(z ,£)
F(2,t) = = meer % o 2 dine ¢2.13)

end hence ﬁ(z,t) is a holomorphyc function, outside the arc ﬁ%,

which vanishes at infinity,

%« The boundary conditions

We consider a moving sysiem of 2ccrdinates %1077, with
the origin 0 and Oqxy-axis directed oposite to the vector

Vo(t) (Pig,1)

Let
B om o w Y e, lanied -

- be the equations of the two aerofoil surfaces where 6 is the in~
cidence, .

The boundary condition states that the fluid slides along
the bnrding curve C, This slip-condition can be written as

“;uﬁxvc'ﬁ'. (5.2)

The velocity of an arbitrary point of the aerofoil is

7= ia Vg - (Sl+%>)yl}.§1v+ {yél),+ (£l+$>)xl'§ 3; : (3.3)

C
()

g 1s the vertical velocity ot the profile with respect

where V
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to the moving system, We have

Lot iy rms

where tae variation of the arc length ¢ along tue curve ¢ was
approximated by means of the variation of the curvilinear abscis-

sae 8 on Cﬁg The condition (3%;2) becomes
k®

O OO B dyl
& a5 meds ~ =t '*'m*‘gfyl i o

{V (1 ) e % }: \g}:

and hence

Wia,t) = -«{VQ yl o Vél)xl‘ = (R+g) }+ 1) o0
on the arc 5%“ In relation-(336)cf(t) is an yet undetermined func-
tion and 8 and t are independent variables, To obtain the varia-
tion of the variable £ with respect to time we write
i
B S Vo(t')dt' - X 5 - (?.6}
. :
“the first term in r.h.s,: being the curvilinear abscissa of the
point 0; . Hence we obtain
%l =V () ; (e
We write :

Ys,t) = £(1) + L) (hyb) - om i (5 .8) s

the 1UHCthHS\V(O) (xl,t) resulting by d]tfcrontlatlcn wnth res-
pect to time of the r.h.s, of relation (3.5). We all use the.
:boundary conditions in the form (3.8) and létoly in the form ,
(5.5% only for Xy = -1; this is equivalent with boundary condi-

tion (5.5) on #he arc gﬁ.
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4, The solatieon of the boundary -value problem

. The ﬂoterminatioh of the function ﬁ(z,t) requires to solve
a Dirichlet prioblem for the domain outside the AR arc with boun-
dary conditions: (3.8). In solvimg this boundery-value problem we
shall replace the arc AB by the segment I = [-1,1) ofsthe: Olyl |
axis, Let Zq =X+ iyl be the CUQplex varlable associated wiﬁh

the moving axis,., We have

ibog 4 Dt
z = 258 g 4 2 (4.1)

where a = a(i) and b = b(t) are.the complex coordinates with res-
pect to the fixed referecnce frame of the two endpoints of the
éo oment I, : |

By means of the trensform (4. 1) the“funetion ?(z,t) beco-
mes & holomorphy:function:i(ai,t) of variable Zq in the domaine

outside I. We have

+1 g
: Qi 0 -~y w
N = o ; +
- z
= (4.2)
Z 1 [z, -1 F L{)(O)(é t)~1~L{:"°)(§ )
1 1+ 72 = r Y
+ 1i(u,/i-\ L ?ml S ; fl“ ?M ”l- g

where the Kutta-Joukowsky condition was applied at the trailing..
edge of the profile, The solution has singularity on the leading
edge of :the aerofoil, To remove this singularity one can apply
_ﬁhe technique for rending uniformly valid epproximate solutions. @
'of'boundary value problems for domaines external to thinmegions
{22], (223,

“For numerical computations we write the symmetrical part

~-0of the condition (3.8) in the form

et— e i
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WL (s 1) s sty - ‘_
= (1) + ?: 8, (+) Bt ) (#.3)

U
4 i i L

where Th(x]) are the Chebyshev polyncrmials, We have
A o 5 4

- 7l
. i S e Pl 4 1
]:*(741311) = .,(L(t) ) dO(t)>\«'- = \[;I) e

e

oo
+ i El 8 (6), (e =88 — 1% % (4.4)
T

e S0
' ; g-‘ Zao dé

o
ho
e

The square root determination in the above formulae are choosen

such that we have

at inrinity.

b« Aerodynamic coefficients of the nrofile

Sl : o ;
f(xl + det) = +-§{~n(xl,h) = 1m(xl,t)} =

4l )
= - hE ) dmie ) |
O C-%

=} =
the integral being the Cauchy principal value, Hence we obtain

m(xy,t) :\Vio) (x1,t) - :£9) (%,1) : (5:2)

hxy,t) = =2 {(t) + a ()] :
= “{5.3)

t

E”m ay (t) sin(k arccos&&lﬂ

f R
A =

e -~
—]

2
The relation (5,2) determines directly the source inten-
sity and relation (5,3) gives thé local force of the aerofoil on

the fluid, The local lift on thelprofile will be given by func-
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H

tion h(xl,t} with reversed sigu, This gives

= +1 ®
" 1 ¢ ' - o o
CL:ﬁfiffxsw S h(z,t)dx, = 2 %;f(t)aao(t)j+ - } (5.4)
?XC Ay
-],
for the 1ift coefficient and
. -!—l
Y = AV‘('O — i i e e M %
= =t s s (e +1)h (g, £) sy
fv
o e
a?(t) E £5.0)
5= {f(t) + a (5) + ag (1) + —2—

for the pitching moment coefficient abouf the leading edge. The
relotions (5.4), (5.,5) are generélisationa of those known in
steady aerodynamics,

To obtain the pressure on’ the aerofoil we shall use the
Bernoulli equatioh in the form

d T s ‘
Pep e o g W (5.6)
In linearised theory the last term will be neglected and rela-

tion (4.4) gives
}.

(0) (o)
. _ C Yl Vamn o
plxy, t 0,t) = p_ l 5 5= X do ok
-1

(5.7
lmx

z {<f (t)rey(t)) T,

It is to be noticed that all aerodynamic quantities of interest

* Xm“ a,ft)ulnfk arc no,(X))1
T gt ‘ k|

contain the unknown function f£(t),

6. Intearal edquation for the function f£(t)

To determine the function F(z,t) we must integrate the
function ‘¥ with respect to.time for fixed z., By using relations

(4.1), (4.4) we have
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F(z,t) = i (f‘(t) + a (D)) QA - i;o) - .
oo -
+i Z”I ah<t)§wmwm-(é - &2 (e z-0)) (6.1)
vl

2 (5,098 ¢5,4) d
< 5 §-{2z-(bta)l / (b-a)

Hence
£
gt g Fer) - a )iy - 2 } at' +
— ’C, 2 (6 2/
; st 'k -
+1E‘E§‘T gak(t )%M--m (ﬂiﬂ;,\/\;mgv)(?mb'))\} agte +
Sl

d$ + F(z,0).

t‘gl e e e
3 t=[2z-(b'+a") ] /(bt-a")

Here a' = a(t*), B* =b({t').

To obtain the function F{(z,t) in the form (6.2) we used
the boundary condition (%.8). In order for the very boundary con-
dition (%.5) to be verified we need in eddition to impose‘thisl
condition to be yerified at-a point, say z = sg;

We have for the symmetrical part of the relation (%.5)

%
gi:{’(‘bv) + ao(t’)} 11 = Re g\/f;m; } 3 gLt o+
o co &t | ‘

S : k
% 2 a0 T e
+ e g ak(t')Rei e <ag 2 2) »\J(a»a')(arb‘)>} dat
2 :

(60’5)

+ e, 0demit@) ~{-v.5 - v\ 4 0500485 «
G T ) o ¥ (-1,1;)]}

Hence we obtain

£
% £(t') Re %\j:ZS:‘}dt’ = gt} (6.4)
- ,
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where
it -
&
g(t) = ao(t')L 1 -~ Re % 5ﬁii— X dt' +
¢ o o)
<O
S : o f
+ i“m"' S ak('t‘ Re{‘-ﬁ';"%”é*f <a = %ﬁm = \/(a,“jsj(a_.b!)}]( d-i*ti 2

i vél) + 0.5(048)40.5 BT, (-1, 8)+¥_(-1,4))+Y(e,0) 1

The relation 6.4) is a first kind Volterra integral equa-
tion .whose kernel has a weak singularity fer:t' = t, The exig-:
tence and uniqueness of solutions of thelintogral equation (644)
is guaranteed under the following conditions,

Theorem, The integral equation (6.4) has an unigue: conti-

fuous solution f(t) for t €fo, T] if

Ly a(t), b(t) are contiouous for % &[0,T}

2) alt) # alt ) e A e e
T

2y B e 0 H(i“ i : . = o~

5Y Bty e S -8l ) gte is continuous for t<€10,T) .«
0

The theorem follows from the theorem given in {l4]pp.80»6?.
The condition 2) requires that tne profile doesn't intersect the .
line of vortices,

dnalytical solution of i’e equation (6.4) can be obtained
only in very particulsr cases, Therefore, in order to obtain the
“function f£(t) we must recourse to numerical computations, 4 nu-
merical method Iof generalised Abel integral equation was deve-
loped in [15]9 The equation (v.4) can be transformed such that
we use this method. mowever ror large time intervals (as is our
case) the resulting algorithm is slow, In order to avoid thls
ditficulty we considered some modifications to the product inte-

gration wmethod which give a faster algorithm,
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{. Unoteady rectilinear motion of ‘the flat plate

In order to verify the above given theory we consider the
case of the fliat plate which moves with constant velocity @Zand
changes the incidence by the rule

©) : for ¢ <0
o) = E%( ~3+2p/to}~t2/t§ for Q st ot
i et hat

For t £ 0 the function F(z,t) is vanishing identically. For

; (1.3)

t5 0 we have

Bl me et b(t) =1 - t
8, (t) = = (8+ 0.258), a (t) = =25 (.2
e 05, a; =0 ,p3

and the inteszral equation (6,4) becomes

: s e L ‘ .
Pren) ) SR att = g(t) b L S

t o :
g(t) = g a,(t' )l m\[§%§%$i>atv +
. / : (7.4)
8jft’}{t'«t+Vthtf)(2+t~t’)}Jdt’ - 5(1)+0.5 %(t)

e

—
.

b

Qe ¢t

The integral equation (7.3) is- just the Wagner's integral equa-.,
tion for the unsteady rectilinear motion of the thin profile, For
pumeriual computations we took b = % and the solution of the
integral equation was obtained up to T = 100, The overall 1lift . . ;
coefficient ,.
cf, = Cp, / (253, (7.5)
was plotted in Fig.2 and 3,
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Tt islobe remarked tvhat first CL, increases up to the va=

lue 0.82 and then decreases duc to the second derivative g(t)@
When the rotation of the plate ceases Ci reaches the value 0,07
and then incrnases monotonically to the steadymstate veoue GL_: de
The convergence to this final value is slow, Thus, for t = 100,

-

i

which corresponds to the time necesary Ffor the aerofoil %o cover
a distance cqual to 50 chord length, the difference of this 1ift
coefficeent and its value frcm the steady case is sbout 0.01,

3 e

8. The motion of the flat plate on a circle

et us suppose that the point Ol hag.a circular motion gi-

ven by relations

X == R sinwt
f5.1)
¥y = R(l=-cos wt) ;

The plate starts from rest.at t.= 0 and its incidence $(t) = wESO

is constant during the motion, we have

=dwt -Gt

a(t)
b(t)

) - e

i
e
=1
—~
=
i
®

(8.2)

It
t}.

In order to avoid the singularity of the solution at the
moment t = O we took forew a time dependence of the form (l.1)on

a very short time interval‘tc. We have w,R =1, (In dimensional

variables 83()% = VO : ?/'; being the velocity of the pqizlt_ Ql and R

the circle's radius), (Fig.4). Consequently we Have

a (t) = ,.8+g0.25cu0d9 ; ETL) o w
: ] . (Bu3)
ay(t) = 0.25 w w ; zﬁtw =@ - Jen’

There ave two dimensionless parameters of the problem 80 andcoo.

We have



: di2 : -
C. = 24 ’8 e,wO) * 0.5 aqﬁ ) (eﬁwo)}, &=Lt (8,4)

dae 2 :
The coefficients C(l), bi‘) were computed icrcmb = 0,05 and

I
W, = 0.1, Both of them oscillate around the value 1 but:the
amplitude of the second coeificient is smaller such that for
-
ﬁ # 0 we can put Cé o 1. in Fig.5 we plotited the variation

& e b . \ i _,L - o
of the coelflicient Cf ) with respect to 8,
3 4 :

In order to estimate the influence of the two terms in
(\ f viagh e
3,4) to the 1lift coefficient we take 05 = 0,2,6&5 = 000, I
5,
we would consider the motion of the plate as being uniform with

o~
A

V, the maximum error in CL‘wiﬁh respect to.theswalue gi-

velocity
ven by (8.4) would be 18%. The error done by neglecting the term
G g boundary condition (3.,5) is 8%. The west of 10% is the

influence of the frec vortices,
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