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ON FLOWCHART THEORiE% (D

By Gh. Stefdnescu
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Deserte idealuri-

Cind valuri afld un mormint,

Ré&sar in urm3 valuri, *
(Eminescu)

Abstraci. We define an equivalence .rala-tion on FIE,T y the theorysof

3 ~flowcharts over a theory with'iterate T ,“and shiow that the quotient structure,
denoted by RFi 5T is a theory with iterate. "t T is an "almost syntactizal
theory with strong iterate", RFIE,T is the free theory with strong iterate,

genereted by adding 3, to T.
0. Introduction

A flowchart is one of many possible natations of a- computation process. This
notion:was strongly analysed, ten years.ago, especially. by C.C.Elgot [7,8), by~using

algebraic methods, with the aim to make it more precise from the mathematical point

\
\

of view. ,

Mai(ingiuse of the ideas from [3], V.E.Cdz&nescu and C.Ungureanu made one
more step by allowihg undefined arrows and by defining, in a ratural way, the i;;tet"a-te of
a flowchart. They introduced a pure algebraic notion, called theories with iterate,
which'is a non-ordered generalization of:rational theories [4]. Similar ideas-was used’by
Z.Esik [_9]. In-{€] was given a theory of flowcharts, denoted by FIE,T , over.such a
theory T, with threé basi~ operations: composition and:tupling, as in ADJ, and the new
iterate. The main result of Cazdnescu-Ungureanu is to gi'v.e. .an algebraic structure
(called T-module with iterate) for which Fl ST is the structure freely generated by %
On the basis of the above facts, the starting point of our paper was the following
question: Why FIE,T is not an algebraic theery, eventually’ with iterate? We shall
examine the axioms of algebraic theories, having in mind that the polynomial ring
becomes really a ring only if, after a "syntactical" definition of sum and multiplication;

we allow reductions of similar terms.

-~
—_—— ]

* For it is man alone, who, blind,/ Build castles in.the air;/
When waves have found their grave, behind/ Waves simmer everywhere.
(translated by Leon Levitchi) _ S o
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The theory of usual flowcharts is' obtained by using. as connection between
vertices, partial functions from the initial theory with iterate & o Where

Fae (m,n) :{f : 31w, myswil,nilf  partial defined function] . We shall use the

m
picture ri"‘:i for a flowchart fEFl»z ) (m,n), with m inputs and. n outputs.
n ; :

The basic operations have the following intuitive meaning,

] m-+n
ol 1“\ o

e Fisdoi B o
N e
5 | i "n“. 5 see”
iy ! y | P i e
= ol e R\ o) L)
| = | -

In order that such a theory becomes an algebraic theory, it has te fulfil, among others,
two axioms, in which xr? denote the j-th distinguished morphism from 1 to m.
a) For any D€ Flo gun(1,n) , j = Lsymuit follows xr?'<f1,...,fm> gl
49 =

In‘the pictural mode! this needs an identity as
1

P-.,;».,,_--_m-__..1 iE

—
j

i

based on the fact that the left flowcharts fk, k # j are unaccessible from therinput.
b) For any f€&F]

This means

. m m
E,Sﬁ,(m,n) it follows <x ) f,-...,xm 5 =1, i

Hi

n

CEiswhich intuitively works as we 'may identify all left flowcharts, being similar.

' The conclusion is: "We must consider as equivalent two flowcharts if one can,be.
obtained from the other by deleting some unaccessible vertices and by identifying -some
vertices with the same label and such that, after identification, they yield the same.

transition function”. At the syntactic level this gives an elementary reduction;
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definable for every theory with iterate T and, based on a fact as Church-Russer
property, this leads to an equivalence relation #: even compatible with the basic
operations. Hence we have a quotient structure of the recuced flowcharts Fl 5 T. / =y
denoted by RHZ,T ,» Which is itself a theory with iterate. Every ﬁowahar’t has a
natural unique interpretation in a theory with terate Q , if one gives the meaning of
T and % inQ, as was shown in [6]. The basic problem is : are two syntactical-
equivalent flowcharts semantic equivalent ? This fact was proved only if Q is a theory
with "strong" iterate. So, we come back and ask when RFi = is with strong iterate, if
T+is so. Unfortunately, we are able to prove thisronly. when T is "almost syntactical".
Hence the main result of this paper is : RFI T s the theory with strong iterate,
freely generated by adding % to T, eachtime when RFI .. o is with strong iterate, in
particular if T is an almost syntactical theory with strong iterate. As a corollary, we
point“here that RFI o Qe is the theory with strong iterate, freely generated by % .
Hence by Z.Esik resuli [9] and because every thecry with strong iterate is an iteration
theory, RFI R has to be isomorphic with the theory of rational 3 -trees.

All faetsrare proved for many sorted theories. ;

Finally, I want to express my gratitude ip V.E.C3z&rescu for helpful discussions

and for the continuous scientific and moral support..

PART 1 : ALGEBRAIC THEORIES WITH ITERATE

1. Notations, definitions.

As usually the free inonoid generated by‘a sort set S will be denoted by $* .
Its typical elements' are a, b, ¢, d, p, g« If [a] is the length of theustring a ahd
[1al] :{1,2,...,§'ai}, then the string. a-= alaZ"'a(ai is aleo cons%.dere_d_as a function
a:l[jajl—S, given by the relations af1) = a;, for ief|all. o

Let PStrg (or PStr , when the meaning of S is clear from context) denote .the
S-sorted theory in which PStrS(a,b) is the set  of partial defined functions
x : [lal]== [Ibi] , such that a = xb , thatsis x preserves sorts.  The typical elements of
PStr are u, v, %, y, z. With 0_ we denote the unique morphism from the empty string
brla,l +Oa> :ab .= ba.

By restricting to total defmed functions we obtaini:d subtheory of = PStr

<

A to a, and with SZ the morphism St = <0

]

denoted by S‘crS , which is the mmal S-sorted theory. Thus' every morphism of StrS

can be considered as a morphism in an arbitrary S#sorted theory V , through the unique

theory morphism F : Strs-—> v y and we agree to omit.the wr-iting.of F.
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In an S-softed theory T , suppose thai -t is given, for every a,beS™ , an
application

4 : T(a,ab) == T(a,b)

called iterate | The following axiom
14) iF ygt if feT(aac), geT(b,be) and yé;Stv:vg(a.,b) are such that fly+ E.C) = Y8,

gives other axioms by restricting y to a particular subset of functionss.

14-\W) I4 only when y is a transposition S’Cj,
I4-1s) I4 only when y is a bijeétive function
14-§) I4 only when y is a surjective function;
14-1) 14 only when y is an injective function.

1.1 Definition. A theory T is with iterate if it is given an iterate feifer

which the following axioms hold.

1) f<.f'*“,1b> S e

12) (f(la+g))+ = f'{’g , for f€&€T(a,ab), g €T(b,c);

4

13) s <f‘,’é‘>7‘”.~;"'<f+<(g<f“7',1bc>)“f’,1C>,‘ (g<f+,l Vi for feT(a.abe), geT(b,ab_c); )

b
14-W).

1.2 Definition. A theory with iterate is with strong iterate. if 14-S) holds.

Every theory with strong iterate is an iteration theory of Esik and every
iteration theory is 2 theory with iterate. Two examples of Esik'[10] show that these: .
three types of theories really differ. These types of theories differ only by axioms of
type 14). In the case of theories with iterate and of iteration theories the used axioms
of type I4) are equational, hence by a well known result such free teories exist. This is

no longer true for theories with strong iterate.
2. I& holds in a theory with strony iicrate.

‘1t is known {one proof may be found in our Appendix A) that in a theory with

iterate I4-Is) holds.

2.1 Lemma. In a theory with iterate I4-I) holds.
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Proof. Every injective functicn y&Stz(a,b) can be written as y = (1a+0,,,?z ;

cl
whete.  z is an isomorphism. The equality i{y-+ic) = yg , Wwritteni as
Yh ', whete

a’
he=ze( IHC)., Since I4-I») is satisfied in a theory with iterate, then i z;{"-’ge ~khe

i(‘y+lc)(z‘“i+lh) = yznlzgl’z"hic) , shows that f<la+'oa"%"lc) = (La-e»O

N e
last necessary-fact is :ff = (la4-03)n' ?

¢
<

The equaldity £(1_+0. /41 )= (1 _+ liows us
| Yy \ a-& o C’) (18 Oa,) hia QWEUS
to write - hi#as the tuple h= <f(j‘a+0~‘+lc)’ h'>. By means of axiom [3) the first

e
component of h' is

St ,_"E‘ Siic or \'?" (ol f L \v;# 5/fu =
(la'ua')h = (J.(laT()a,H,C), <\:1<\L(1a+0a,,1 i ]‘a'c:>)' ; 1C> =

c

2 f"f‘(oa’,v1C)<(h'<f‘f‘(oa‘+1c),1a,c>)+‘, 1> = it Gl

2.2 Proposition. In a theory with strong iterate I4) holds.

Proof. We put together I4-I), I4-S) both valid in a theory with strong iterate.
Every function f€&Str(a,b) can be written as a composition of a surjectiue. ome
u€Str(a,d) and ofian injective one v e&Str(d,b)s dow the proof is finished if we can
“define a morphism heT(d,dc) such that f(u+l )= uh and h(v+1 ) = vg. It is natural to
take the j~th component of h to be hj = fk(mlc) y wnere ké€l[lal] is sachitbat u(k) = j
(fk is the k~-th component of f).

1. The definition is correct as shows the following chain of implications
ufk) = ulkil-=> vlldi=a(ld) —=> By(k) = By (k) ==> fk'(y:«» LC) = fk,(y+lc) ==5

S ; Yy = 16 AT T T ‘
==> {k(u+.lc,\\+lc) = fk,(u+LC)(V+1C) ==> f U"Ic) = fk,(u+1c) =

*
where the last.one is based on the fact that v , being an injective function, has a right
inverse, i.e. there exists v such that vV = Ly
2. The relation f(u«*»[c) = vh is just another writing of the definition of h. s
3. The relation h(v+lc) =.vg will be shown by components. 1f j€[ld|] and -k¢([fal] are
such that u(k) = j, then : :

hj(v+lc) = fk(uHC)(w 1 C) = fk(y+lc) = gy(k) = 8y(u(k) = gv(j)' &
Now our aim is to look for an identity like 14) for a partial function y. In this
process we rieed something to say what is the "domain'" and the "image" of a morphism.

3. The initial theory with strong iterate.

If we can show that F’S'crs is the initial theory with (strong) iterate then, as for

Str , every partiai“dunction of PStrS can be considered as one in an arbitrary S-sorted
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theory with (strong) iterate. Naturally, a morphism between two theories with (streng)
iterate is a theory morphism which preserves the iterate.
3.1 Froposition. Every w-continous theory is a theory with strong iterate.

Proof. - In a w-continous theory T , if ‘J‘”a 4 denotes the least element.of
3
T(a,c), then the iterate of feT(a,ac) is defined by

t*= V1
: e
where fO = “Lé,c and f ., =1Ll 0> Jfor nyl. We know (see [4,5,9)) that every

rational theory is with iterate, hence so is every ws-continc:'s theory. With a proof of
" 14) , the proposition is concluded.

: Typically, suppose f&T(a,ac), geT(h,bc) and ye&Str(a,b) are such that
f(y+lc) = yg. An easy induction shows that fn 3{@{) , for every nyo. Indeed, for n=0

the defintion

I =K r..,.‘.,...L C> and 8y~ "Lb,C = <..l.b C,...,..L >

: 5 o .
0 5C S aials |’ blb{’c
allows us to see that the morphisms y L, ande. 1 = have the same, components,
19 Cig
ramely :
- b vigd :
X _ - T “s = = ; f, e .
Xty Xo (i) Fb,c b N Lo e v dan {c[taﬂ

i
The inductive step is
Y&, = ¥BSE 1 O = f(y+lc)<gn,lc> =fyg, 1> =Kl 2=t 0o
The last argument is the continuity of composition which yields

e an=f+. L’“}

ygt =y Vg = Vyg
no

n
no no

Corollary. PStr is a theory with strong iterate. [

This corollary and the fact that PStr is the initial theory with iterate (see [6],
or compute, using as the meaning of the undefined morphisms 1 b frem - PStriy the
b

morphisms li Ob in an arbitrary theory with iterate) lead to the following theorem.

3.2 Theorem. PSir is‘the initial theory with strong iterate. o
4. Domains and Images.

Heréi-\‘rielf‘give, for a morphism of a theory with iterate T , something like
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domain and image of a partial function. A sulwiring of a string a is a function
x &PStr(a,a) included in 13 » that is x(j} = j or’x{j) ‘is undefined. Then there is a
natural identification of substrings of a with subsets of [lall, which is used to define
inclusion, union and intersection of substrings. In fact, the subset of {fai] corresponding:
to x, denotad by [} x{], is its definition domain.

For a morphism [€T(a,b) the set of substrings x of b such that fx =f .is
closed under intersection. ‘Indeed, if fx'=f and fy=f then Xy =fodpd xy = xav
Similarly with the set of substringss: x of a 'such that, xf=1. These show the
correctness of the following definition.

The imoge' of fe T(a,b), denoted by ImT(i) y is the minimal substring x of b
such that fx = f. The domain of f, denoted by Domy(f) , is the minimal substring x
of a such that.xf = f.

In the particular case of PStr , we see that ﬁh‘nPS”,(y)[] is the usual image of
f , and similarly for domain. In addition the squalities y = y Impstr(y) = DomPStr(Y) y
are still valid in“T'. So, for y&PStr(...), the inclusions :

im(y) € Impe, (v),  Domi(y) €. Dompye  (y)
hold. Let us point also three easy observations, i g : 3

ILE Imr(f) € y then fy=1;

: ) =x ,if x is a substring
2 ImPStr(y) x ,if x is a substring;

% ImT(yf) = Im.T(f) if y is a surjective function (for this we see that yix = yf
iff fx =1 , where the left-right implication is based on the fact that, y has a left

inverse =z, l.e.zy = 1)

A substring x of a=a'a" has aunique decomposition as x = xi .+ x with
= la’ ?

[ o

fa”

X[ar 2 Xfgn subsirings of a', a" , respectively. We use the convention that unspecified
a

irmages are computed in T.

4.1 Observations. : :
1) Im(f(y+g) < ImPStr(Im(f)/b y) +Im(g), for fé& T(a,bc), g€ T(c,d), y&?PSﬁr(b,e):
Ip) Im(fy) & Im[‘Str(Im(f) V), witr; equality if y is an isomorphism;
2) Im&f,g>) = Im(f) U Im(g); '
3) Im¢™) <), for feT@ab);
4) Im(f+g) = Im(f) + Im(g);

5) _In}(f(lb+~0det1c})‘:Im(f)/b +‘l‘d,d + Im(f)/c, for- f € T(a,bc).
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" Prox E

1). The equality: f(y+g) = f Im(f)(y+ g) = £ Emu;g} y + Im{f) f( g)  and the observation
Irri,r(lm(f)éb y) <& My, _(Em(f)‘by) show that

i

\\wg)(lm Y(Im(f) m(.f)J‘Ag} = fly+g).
L&

Now 1p) is a particular case of this, {or g = 1y..~The reverse inclusion, wheni y_ is an
4N

isomorphism, is a conclusion of the following implications

“

fy = fylmlfy) == = Eyir'n(fy")}’~1 2= Im(—f.) = }'im(f}’)y*l ze

= -lv* L et | 7} o i
==>y "Im(Dy € Im(fy) ==> Imp Sir

2). The obvious equivalence Chigho = <’,v> ¢==> fx = f and gx =g , leads to
2 Imi<E,g>) <==> x 2 Im(f) and x 2 Im(g) <==> x 2 Im{f)VIm(g)

which yields the c’esucd equality.

(Im{f)y) = in ID, r( d:’,rn(’?)g)g Im{fy).

~

JI—" 1,?
’b (£(1 L Hm(f )jb)) =fl,
4). When one of these morphisms is 0. .and thesether is < ..T(a,b) the relation holds

3). All we need is to apply axiom [2). Indeed, 'fzk{hn
because Im(O'CJ?f):' ‘"Lc,c 2 Imf) « and - Im(fJ.-()C) = Irtlf) + “s"'c,c' In the general case,

for f€T(a,b), g€ T(c,d), the writing of f+g as a tuple gives a proof.

Im(f+g) = Im(<f+04,0b+g>) = Im(f+0 { Im(ob+g) s

d) _
= (Im(f)+ L ) U (_i_ plm(g)) = Im(£)+Im(g).

Z+l %

1) = Impd (0 g+ 1, ) (sbue)_‘z_.-.,

5). The proof 1s based on 1p_) for the,xs-@morphism S

(51 ) o
Im{£(} +1C)) m‘(f(Qde )(5

o d

= m‘PSt (irﬂ(o "“i)(s l+1c)>r~ pStrK( Ld d+Im\i))(S “Ll )} =

e (Im(f)] d 14Im(f)fc) = n(x)‘ + Iin(f) o &1

L!d

5. The extension of I4) when y is a partial function

Let us note that the axiom I4) for partial function youdt iélpossible pot to..-
work. We improve I4) by our demand that there are the same undefined components in
yg and £7, that is '

Dom(y) it o yg'}‘.

One more tricky condition is that the equations from Dom(y) f must not depend on

variables that there are not in Dom(y) , that is

Im(Dom(y) f) & Dom(y)+1c‘
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The special case when y isa substring is separatelv proved in a lemma.

5.1 Lemima. If f:a->ac isa morphism in a theory with iterate and u is q

substring of a such that Im(uf) < uv'-l(, , then
uf’ = wp.
Proof. We choose an isomorphism Y t a~»3a'a" , such that y‘}'uy = ia,,wn,'.i,,h,., s
5 a ,a

By using I4-Is) . we get

o : 2 : - e
(Uf)y% = '\'-"l”a:"“-‘("anaw}y 1£ (y+lc}j'\y j’f‘l \) =

<

o

:'H>g)ﬁm 9

=)
26

e
> - »\’.,
= }‘((I_a,-i~ J».,a,,a,g)y lf (y+1c))T = y((}_a,-r "l”a”

- ; -1 5 e = : :
where g is a notation for y f(yHC) . The condition Im(uf) € u+lc » Written.in g,
looks so,
Im((za.+..’L = a”)g) = Imiy

as,

&k (uf)X C I o Al Yys b)) = ; e
oo LT}PS'{:["(I”,(-LL)\Y+1C)) I { Pf)“'(( I+ ] AY 1(:)) Iaﬁ ,.I.mau’an‘ 1 =

This makes the a'-component of g s denoted g' , to fulfil the condition
i+ ~Lan’an""1c)°

We are ready tc prove the equality,

\

(}-ay*“ Jwan,an’gf = ((1a|+ »Lan )g\{

©

i
58

If g=<g' o> S dhen the a'-component of gl is
Q-‘Al

C sl o G L Cnia o N
£ <(g <g ’121"C>) 5 ’C> (-— (g(larr«Lan,anﬂc)) <(g <g ’Ia"c>) 5 jC>— %

Sl o
=8 JEE T 0T, 10 2 g Tl 1,
and so the left morphism is

(la’+ “’La“,a“)g‘? = <g' [ “La",C’IC')’ "La",c’\'

.

> , and so, the

For the right morphism we see that (1o ‘La”,a")g: <ol La.,,a.alnc

components of iis iterate are
. { :
!+ ] l";@ ' af* S i = |+ .
& A anc$8 ihan PVa 10 = g'T< Lo e 1¢> =g <L 51> and
'tLaH’C'

Now we come back to f and finish the proof&

2 x s b
LY L A BN LS CU O s L S S
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5.2 Propssition. In a theory with strong iterate, if f:a~»ac, g: b~>»bc are
such that Dom(y) f (y+1 ) vg , for one y&PSirfa,b) , and f fulfils the condition
Im(Dom(y) f) € Dom(y) + J‘c then

@& £
Dom(y) fliz pg T,

Proof. A first step is given by the above lemma, namely we have

= 0
Dum(}’) I%‘ )om(y) ‘1

]

The proof goes on with a choice of an isomorphisra z:a=-rata" such.that:
Yoz z(v+ »-i-an"}\
with the a"-comporent ..,
= z"l(Dom(y) f)(z+1c) = (z"lDomz’y)) f(m‘_lc) =<z
= <htl ok

), with veStria',b)y This transform Dom(y)f to a canonical form h

L s
ia d 4a (&

§

a',a'a'c

Now we show the following identity

(vl ,,’?‘) = Z lyg =z Dom(v) flz+l )(v+ i, At )\+1 )= hiv+ _L o )\«sl )

To a particular fact from this, namely to the equality of its a'-component, -

vg = h'(v+ ‘La",)\H ) = h'(l i | ,,’)\ )(v+l )

apply - 14) ‘using 2.2 . Therefore, vv’f' =« hh(L 5 +1 ) = h"‘<._§_, At 1C>. An easy

computation of ht , gives bt = <hrte l_ A al > 5 At e hence,

C

. i
h'= <vg ’“La",c/ = (v+ L 0

The conclusion that the proposition holds is now obvious.

Xg O>H\v+i.y‘2)o -

Dom({y) i (Doml(y) £} LI i -k)g's* = me £l
Sy

6. Some properties of a theory with iterate

We are giving for the begining three properties of a theory with iterate T.

6.1 Obs servations. :

51 ) <<f,'g(0a+1bc)>+, L <f+,1bc><g’f',1c> > for f € T(a,abe), g€ T(b,abc);

Mol o, o1 000 il b <ft,gt> , for feT(aac), géT(b,bc);

3) (g 1 peisher ) <ot )T, 1, 0%, 1> = (@< 1p T for feT(a,abe);

g &€ T(b,abc).
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Proof. ;
1) The second compenent of <f, g(D #l P »T s (g{{}aﬁ'lbc)q%’ibc»%: g{ and the
first one is ﬁf‘(g: sl > Therefore ‘
<<t g(0_+) )>",1 >—<<f"f"<g1 L5 g, 5 o=
- <ff“<g ot >>~<ff‘1 boxefl .
. = S
2) The second component of <‘-‘1a+0b+1c)’ 3(03+}.bc)> e
- . & efa &
; ( : i ey
(g(0a4 lbc)<(f\la+0b+ lc)) v 1bc>) =g
and the first cne is :
(101 +0,+1 0P egh1 > Mo, 1 gt > = 1.
3) The axiom 14-W)  applied to <f g>(S +1 ): «\(S +1 ) f\s +1 D . Bives

<f g>+ 5D <g(J +1, f(S +1 )>+ Based on 13) the equcmty of the seconc’ component

L of & g>+ thh the first of <V(S +1 ) f(S +1 )>f1 gives the desired identity. [0} -

This part dedicated to theories with iterate is nearly finished. One more fact is
ancther axiomatic system. We shall use the following notations with the hope that , in

fact ambiguous, this'notation will be clear evertime when it will be used.

abc e
X =1 +lb+0

1t 1oat : 1~
f' - leex abca'c' abca'c am,av»'f‘

» Xy » X , for T€T(abc,abe).

6.2 Proposition. In a theory. T , if the axioms.. Il) 12);14-W) hold, ther. the
axiom I3) is‘equivalent with the following couple of axioms,
V1) (f.fa) : =f’fa , for f€& T(ab,abc);
V2) < ,g>N xZC,g><f72,IC>, for f€T{a,ac), g€ T(b,ac).

Proof. Our proof begins with the implication V2) ==>V2') , where V2" is

VoY <fe>TP . <fx S<gt1 >, for 1€T(a,bo), geTibbo).

Indeed, using 14-W) in the second equahty, we have

st,gtP - Sb(f(f) 1y b 80,y = <pty 0 a1 ), 101 p#0 41 T =
' +b bc . '
=g, f0 <xb ,f>\g+,lc>.

Now suppose'ﬁi&rt- ‘'V2) holds, hence also V2'). Then we can write V1) more precisely,
i.e. for f = <g D& T(ab,abc),

<, s THTP - (<x abc h><gt,1 SHb et h<g+,1bc>>+b =
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% L3 » a
= <5 ,xi% g1, ), 1> =<5 <<h<g%’ 21, 1. thegh,1 Fs,

So V1) is identical with I3). Thus the only necessary implication is 13) ==> V2). The

following computation shows its validity.
. : +
<qeote - <1 40,41 ), g1_+0, 1 1T
=i + ; 3 o : 'ﬁ“{w \ + S
— i (Obe—JC)<...,lC>, (b(1a+0b+lc)_<1. (Ob+1c"lbc>) >'_
= <fT, (g<f“‘”(o +1.),0, +1 >)+> = <fT, (g<f‘f,1c>(ob+lc))'f“> =

= <t get o> - <>\(“,g><f+1 5. i)

PART Il : FLOWCHART THEORIES
/. Flowchart operations

If one ipys“to construct a flowchart theory, he needs a labéling seti T 5 forlz
internal vertices, and something to connect them. For this we use- an.S-sortedstheory
with iterate T. The particular interesting case of connecticn with, possible undefined,
arrows is that of PStrS. In all that follows. we suppose. %, is endowed with two

functions

(S ¥
et : 2. =-»S
in¥out % 4

where rin(v‘) gives the number and the sorts of’ inputs into the "statement:box"
represented by ¢ , and similarly: roﬁfﬁ)a,‘ for jis outputs. The monoid extensions of

* % e ¥*
them are denoted by 1”, i w5 .

7.1 Detinition. A 3 -flowchert over T ., with input = a' and output b

e : S :
(remember a,b& 5%) is & triple (i,t,e) , where:

ieTla, r?n(e)b) - is its input morfismj ,
teTln’ (e),.r* (e)b) - is its transition morfism;
out in ,
gest - isthe 'string of labels of the ordered set of internal vertices.
The set of ¥ -flowchart over T between a and b , will be denoted by Fl (a b,

“irlts typical elements are f, f', ... and their cofresponding components are (1 t,e),

(el ... -For every internal vertex j&[lel] , denote by tj its transition component;:

g e
: (e) ;
iey tadzax “out For (e) r (e) .. use typically p, p', ... and identicaliy:

out(e )

with q for F ut™ The last convention given here is to denote by
3 L 3
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C PR et PR [ *
Yin l‘)J“S(rin("“)’ rin(e')) o Yout PStLS(ruut(e)’ rout(ei»

the extensions of y€ PSt’rey (e,e") to the inputs and outputs, respectively. For exampie,

the quite difficuit, writing of ym is ym = ‘(Z!‘,..,.,Z!ei> where, Putting p] = rin(ej)’
ph.=r (e.), z are
J VR ) ] :
[ o, ks =0 . if y(i)=k (hencep = pli)
= el 00 Pi Bl e Pl W TEL
s |
°LP'j’P' ~if y(j) is undefined. -

i

¢

1
Z)E\
B i
'

i i
i

Laat IR
! N\

t . e :
I - !
i Si\m:’
il
I~ |

Now the basic operations on flowcharts have the following exact definition.
fhe compr)sition of f:a-—=b with f':b~»c is
£ =il +1), <HI #1960 +1 | Vi e€l)
P 9 p 5 UP. P‘C 3 :
- The tupling of {ra-sc with f':b-=>c., making use of the riotations x =-la@ sl

et T

and x' = op+lp'c is

CRAD = (i, iy, <IxtIsis, eel),
The iterate of f:a —>»ab is

gt e B

b

J
8. Fiowchart accessibility

In a flowchart f:a-»b , the set of substrings: z@;le , such that their

extensions z; ., Z . fulfil the condition

) j0d ¥1 & &=y
ac) Im(i) U Im( out't) & “m”b :

iifs .alosed under intersection. It is more clearly, if we write this condition.by
components using #.3-2, l.e. ‘
ac-i) Im(i) € 2+l
- c e
a€-t) Im(tj) C z, +1 ,for jellz .

This makes consistent the following definition.
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8.1 Definition. The accessible part of f is the minimal substring of ¢

denoted by Ac(f) , with the property ac).

In orcer to help the intuition we point “cre that z fulfils ac), as a set, if each
vertex, which is effective reachable by the input morfism, is in 2z and, for every vertex
from 2z it contains all vertices which are effective reachable by its transition
morphism. :

Some properties, connected with the behaviour of accessible part when one
malkes a basic operation, more or less lituitively clear, are proved here, with the help
of 4.3.

2.2 Propesition.

1) Aclhif) e Aelf)+ Aclf');
2) Aclf,f'>) = Ac(f) + Ac(f');
3) Ac(ft) € Ac(p).

Proof.
B YeFer fva-+b , f":1bep»c the substring Ac(f)+Ac(f') fulfils ac) in ff', more

precisely ac-i) and ac-t). Apply #%.3-1) to prove ac-i).

e : A : i) C ' i) ;
Iz.n(x(lpﬂ')) < 'I__m(x)’p + Imfi'). € Ac(ff)m + Aclf )m a1

Fof ac-t) ,if jell Ac(f) ] , the proof is as before and if je[l Acf)] , as follows

Im(t’j(OpHI ,C)) = Imi0 +‘t'j) =

n(t'.) L Ay :
5 b P,P+Im(tj' c Ac(f)m 4 A’"(f’m + 1(‘_

2). In a similar manner it may be shown that if f:a-»c and f :b.»¢ then the
substring Ac(f)+Ac(f') fulfils ac) in <f,{'>. In order to conclude that it really holds an
ecuality one has to show that Zfq fulfils ac) in f , and Zie' fulfils ac) in f' , where

z = Ac(<f,f">). Spiitted in parts the condition ac-i) ,

(< 3 o
Im\<1(lp+0p,+lc), 1'(Op+1p,c)>) & -\Zin’ﬂ:‘c’ ;

gives the validity of dc-i) for 2 in f and for Z,e' in f'. Indeed, by 4.1-5)
Im(i(lp+0p,+}_c)) = Im(i)ip+ "Lp',P' + Im(i)‘c» , and
l; i i s
Im\"(OPf' P'C,)) J‘p,p + Imii).
Similarly ac-i) for z in <f,f> e,

7 -~ e Fae :
Im(‘tj\lp+0p'+1c)) S ozl s it ;eﬂzieﬂ and
Im(t'j(0p+lp,c)) € zowl it )G[]z‘e,l] :

proves the validity of ac-t) for z‘e in f and for lee' in £



page ~i5-

»

3). We shall show that Ac(f) fulfils ac) in f . An easy proof of ac-i) is

JT ( + c s e SN f :
Im(i )f = Im(( 1\8 41,0 | & Im (bpfzb,)gp,zmm{p c Aclo), . }
Cn the other hand, if j€[[Aclf) , with the convention that Im(t )[ =u, In'z(i‘};ﬁ}}f =y

| D,
the following computation

«.Pb .ta = L o +a e 2
tj \’\p o ,x >(\\1€J el )m <(UU~)‘) ; Ob’ i ((uUwAb), Op-+£b>_
- ol pb .ta \,pb el ha. nb
= L}.((uu v) *iab) <xp s 1, x> = ‘tj\xp R >
leads to the desired conclusion, i.e.
“{m ph i =
Im(t. </P : e (uUv) + 1,) c A.Q"f)in €l |

9. Syntactic equivalent flowcharts

Our introductory words lead to the conclusion that we have to consider as
equivalent two fowcharts if one of them may be obtained from the other by deleting

some unaccessible vertices and by identifying some vertices, with the same label-and -

“#rsuch that, after identification, they yield the same tramsition component. Here we are

able to say precisely what this means.

. 9.1 Definition. We say that the surjective partizl function y€E fStrz(e e')
“reduces the flowchart f:a—b to ff:a—=> b 5 and write fk)—/—a«»i' , if the following
conditions hold.

wac) Ac(f) € Doml(y);
co-i) i'= i(yin+lb);
co-t) Dom(yOuf) t(yir+1b) = youtt'

Remarks.
1. The condition wac) says that y is total defined on the accessible nart of f
and is obviously valid if Dom(y) fuliils ac) in f.
2. The:condition ¢o) = co-i) + co-t) correlates the connection of f to that of
', In particular, co-t) , written by components as
co-tc) t. (y +1 )_ 2! 96} for jeliDom(y)ll ,

only
shows that y Las to 1den‘my two vertices if they yleld the same transition component,

namely
co-t') tj(yin+1b) = tk(yin”b) o3 yli) = yille),

3. When'they are given only a flowchast. f. and a surjective partial function
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yE PStr.}:‘(e,e') such that wac) and cu-t') hold, one can find a unique flowchart f', to
which ytreducc:s f..in fact, for ' the input is i'= 1(‘/ 1) , and for ke&lle'l] , the
k-th component of its transition is ¥, - L}( +1, ) whuo }t::[s‘el] is such that y(j) - k.

4. If the partial function vyé€ DStr ?,2‘ is total defined, then wac) s
obviously valid, and when y is injective co-i! ,; is obvious.

5. Some examples of reductions are given in the Appendix B.

The basic question is now to see what is happening when one makes more and
more possible reductions. The first remark is that ”Ehu*F‘ are somie trivial reductions;
given by isomorphisms. Such a reduction only permutes the-writing order of vertices,
If f}-w—);-—‘)«-f' and y ‘is an isomorphism, then we say that f is fsemorphic with f', and
write f 2 f'. Another reduction is effectivc , l.e. really reduces the number of
vertices. A flowchart is said to he.reduced (or minimal ) if it has no effective
reductions. Now it seems to be clear that every flowchart has a finite chain of
reductions to a minimal one. A more difficult problem is to show that different chains
give isomorphic minimal {lowcharts. This problem:is similar to that solved by Church-.

Rosser theorem in the case of A-expressions.

Remember that [ x [ ‘is the subset'of [|aj] corresponding to the substring x of
a. Thereiore, if yePStr(a,h) , then y({x[)- is the usual image of the set [Ixl by

means of y.
9.2 Lemma. If ffm)-;#;"-f’ then ImPStr(A'c(f)y) fuifils the condition gc) in oft
As its corresponding set is Yl Ac(f) [) we hove
QAc(f I < yUl Ac(f) .
Proof. The similar proofs of ac-i)-and ac-t) are based on 4.3-1p) , whichu
allows us to use ac) fer Ac(f) in f:a->b.
Im(i') = Ims’,i(yin+lb)) =l (Im(l)\y flb)) =
< . ; T :
- ImPStr((AC(f)inklb)(}inﬂb)) = (I.mPStr(AC(f)y))in wl
i jeyQAcH)]) , thatis j=ylk) with ke[[Ac(f)] , then
= Tralt ; (o < £ : 4
‘Im(tj) = Im(tk(yin+lb)) C ...E (ImPS‘Lr(AC(",)y»in sl | =

The reduction is a reflexive relation. It .is not always a transitive one.

Howe;/er, the following result holds.

+9.3 . Observation. If fi—;é* fies /"'}‘)‘,’)’f" and ‘ImPSt (Ac(f)y) € Dom(y!). ,.hen

for every u%‘:le- which fulfils ac)in f, one has ffd-}-}—y——:?- f"" . In particular fi;;}—);—?»,/ e
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Proof. The function yy' is surjective. From the supplementary condifion,
written as y([I Ac(D 1) < IDom(y) ] , and [ AcEHT S IDomy) [, Aclf) < u it follows

that uyy' fulfils wac) in f. An easy computation shows the validity of co-i) for uyy’

~Z
0

3

where as usually b is tlie cosource of f.

St s = 16y 1 tesies = ] w1, ) : Jee il 4
LTy in“b) =¥in ‘b)(y inflb) 1(u'm Ib’winyiﬂ”b) “(Uy}')m”b)'

No more difficuit is to see that co-tc) holds. Indeed, for j€[l Dom(uvy) il , namely

j€ [l Dom{uy) | and y(j)€ [ Dom(y) 1] , remark that

| Tt -t S { i o
(uyv)\}) y\)(})) y(j)(yin'ib) 1;3(ym+lb)\ym+lb)

= ',rj(u 4 ‘f\)\ e ) = tj((uyy')inrlb). &)

9.4 Lemmaea. If f{~3-)-'~;~f", ~§ >f' and there exists y"é& PStr (el,e") such that
y = yy!" then f’f;;r‘@r i

Proof. From the equality y=y'y" it follows that y" is, as y, ., suzieative.

With 9.2}, y" fulfils wac). Indeed,
-1 Dom(y") [l =y Dom(y'y") [) = y'@ Dom(y) ) = w0 AcE) D) 2 [ Aci)il).
The inputs of ' f' and f" are correlated by y",
S O IR = atlol - S R
iy in’ lb) = ily in’ in”b) > 1(yin“b) =l
where . b is the cosourceof f . For the.last neceﬂxary fact, i.e. co=tec), let

je 1 Domly") I , namely j=y(k) with kel Doml(y'y")l=[Dom(y)ll . The following

computation finishes the proof,
i 55 1 " ot N = it g
tj(y in+1b) - tk(y in in+lb) 7 tl.f.(yin“l:w) =t y(k) = t“)’“(j) 2 -

The basic fact of this paragraph, somethmg as Church-Rosser property [12,13],

is contained ini the following lemma.

9.5 Mdin lemma. If ff“%»f’ and ff-)’;;‘,—‘rf” then _there exists f such that
fiiesf and f—>F.

A) Procf of 9.5 when y', y" are function (hence total defined).
Let ~ be the least equivalence relation on «[lel]x[fel] which contains ~' and ~",
where o' :.K_ef(‘y"“) = 1 (3, |j,kellel] and y"(j) = y'(k)] and "= Ker(y"). For ~ use
the following constructive definition
: ( there is a sequence of elements from [le|], j=nys-een =k such that
Jovile =

L forevery l{p{m or np ! np+'] SHOR nP ~" np+l‘
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This allows us to see that o~ , as ~', A" may not identify elements of different
sorts. Therefore o~ has a representaticn as P Kevr(y) , for one surjeciive
y € Stry . (e,8). Before trying to show that y yields‘a reduction, i.e. fulfils co-t") , let us
deriote by z', z"- the functions z'¢ S‘trg (e'e); Ve shz {e";&) such that y'z!' =y = y"a,

Use co-i') for y' in the feilowing wa
g way

) g ! = b =
05 & Bl 2 % (yin”b) th (y in*! o=y
z p+l
:_‘:’\ % i -7\' Ak = i‘ 2‘1' 4 :_;“5 % i : 22 3
Lnk(y inEain Ib) tn by in i j'b) Gy (y1n+1b) tn (yinJ’ lb"
p p+1 p p+1
where as usually” b is the cosource of f. Similarly for ~'". These two types-of

implications and a glarice at the definition of v , yield the necessary implication, i.e.
S == +
e T] ;, o) (y1n+1 ) ’
~ 3
The remark already given shows that there is a flowchart f such that ﬁ.{éz;’-‘,l%f 1. By

lemma 9.4, z', z" have to be reductions. [J
The reduction of the general case to this one is based on the following lemina.

9.6 Lemma. Suppose that ff~z~-~?»~f “is-.a reduction of [ Dby an. injective

z€ PStry (e,&) with Dom(z)="Aclf) . For every reduction. fi—>f" , if: . fit ”‘z“’f’ Bd ..

‘reduction-of ‘' by an injective: "’éPSlr‘;.(e e' with [ Dem(z)]] = }’([’Ac’f)ﬂ) , then

f’l-__-:~>f' , where y is a totel defined function.
Y

Procf., *There exists a surjective function y’ PStr te,e') induced by v , such
that zy = yz' (the restriction of y -to corresponding donmm- and coderain, ordered

according to e;%el). By 9.3 z' is a reduction and now by 9.2, V is a reduction.
b ) b

B) Proof ci 9.5. In the following diagram

f'*"“““"""}"f!
: oo /\ t
1 1 yl U\
€-w«-«>»f %Y
A 2 N ‘
Y -Q,{f" PR f"\ " e

the drawing of the parallelograms 1, 2 are based on 9.6 and that of the paralldogram
3, on case A). -The two steps teductions f'iw«“a-f')-—«»f and f" é-~,r>-f”-i~»-—->>f may be

done even in one step, as shows 9.3 (u', u" are total defmed). [:]

It is clear-that the isomorphism relation is an equivalence. With ~X>» , the
standard notation for the transitive closure of 43, the following proposition gives a

positive answer to the starting question.
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- o %o R e = -
9.7 Propesition. If fl~f" o, fr=>f" and fj , /7 are minimal flowcharts,
: 1 L . o ;
then f~ and f~ are isomorphic.

Procf. Clearly, we have to apply the m=2in lemma in an inductive way. Suppose

el e s bt ot and. fefRes et Ll A0
m,n>0. The inductive variable is m+n. If m=0f{or n=10) itis Obvxom, becausgifi= "'i
(f = fz') is minimal and all reductions are made by isomorphisms. If m2l and n>l apply

the main lemma, in order to obtain the **° morphisms from the following diagram,
L1 12 m-1 I
£ et £ Tl L d f ) e 110
i - I_ }
shae 71{m-1 1

/ \/’ e e e e
S st
f

p
\"f"zzgmw}... il g
. { L
f

s

f"l{w—u‘;ﬁw fzzi-mj.:» ...l——“:« 1)%'-— i
3 NSRRI Im 1 1
Remark that f y as'reduction-of f ' ={f , is minimal and momuphtc with f°,

~Im ~ on

Similarly for ?ch By the inductive Hypothesm 1 ,hence " & fz v !:]

A minimal flowchart f' such that fi*>{' is called a total reduction of f
(by 9.7, two total reductions of f are isomorphic). We say that two flowcharts are

equivalent , and write f == f' , if they have a common total reduction.

Finally, we remark that = is indeed an equivalence relation.
10. The theory of seduced flowcharts

The aim of this paragraphi is to'introduce operations on quotient sets

5% ('\ Yos ‘
RFI1 5T (a,b) = Fl 5T (a’b)/:ﬁa,b o

where = is thie.restriction of = to Fl 5 T( ;b) , in order to yield a theory with
ey 29
iterate. These operations are induced by those of Fl ST In order to show that this
makes sense we have to prove theicompatibility of = with the operations of Fl.. T
= -1-\’

10.1 Lemma. The reduction () is compatible with composition, tupling
and iterate.
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Poof. 1) Composition. If f:a-=b and f': b~>»c have the reductions fl— >f
and f'i—;—-éff we shall prove that f { k};—-;/-—*rf f The partial function y+y' is suq@&;ye

and by 8.2-1) ifuvliils wac) in f f'. An easy computation shows that. co) holds.

out

i(lp+i’) (y. b+l ): i(y; +1b) (1..+i’(y'. -:31; )) :—i-(lr) i iy
Dom(yOuf ou*i:) <t(1 +1) t(O +1 x )> (ym+y +1C)= - S
= <Dom(y )t(y. +1 )(1._ +1(yin+lc)), Dom(y out) t'(y'in”'c)\oﬁ’J'lfa'c)}:

( ) _— : :
Your? ybUt <L(1~ 50, t(oﬁ +1~ )> -y O

2) Tupling. In a similar manner, using 8.2-2), ore can show that, if fra-»c,
f':b>c, fi>T and Pigrt , then Bt D,
i+ o

3) Iterate. Let f'r-;,-’->'f' be a reduction ‘of f: a-» ab. We claim that f iwy»»- f! =i The
third point of 8.2 shows the validity of wac). For co) use the following computation.
S _ (i(cQ L \ iy +
i (yin”b) = (1(Sp+lb)) (yin”bl {K Jp+1b)\1 s +lb))

= iy + 1 NSTI N = ((STe1 0P = P2, o
ety pb . ta
D‘)m\yout) ’t<xp il

1

pb R ,+a, \ L
Xy >(yin' lb)'“ Dom(y )t<y RUNS ity Op'ﬂ"b =

. Fa b .pb . ta hi ‘
= Dom(yout) 't(yin+la+1b) <xP = , pta xp >=y t<>\;. ,_1+\__, ‘Xp‘ > tj &

b b

a8

cut

10.2 Proposition. The equivalence relation = is compatible with composition,

tupling and itercze.

" Proof. By a usual trick we shall equlize with identities the, Jnumber of

' elementary réductions (+~3) which appear in £ *+>1 and f +¥>%. This extends the

compatibility with composition and tupling from 3 to F> . The compatibility of.

X3 with iterate is an easy consequence of 10.1.

We shall now prove the compatibility of the relation = with composition. If
f=Ff:ra>bandf =T :b->c , then there exist two minimal flowcharts ¥ anf P
such that fr»f <71 and  f'+%> fleXyT.  The above note shows - that
fERE>f <341 f' | hence f f' = f f'. The compatibility of = with tupling and iterate
are left to the reader. b

This proposition allows us to introduce, in a consistent way, operations in

£ ] SR
T

-Definition. The result of an operation ( composition, tupling or iterate:).in
RFIZ T is the class of corresponding operation in FIZ'T , computed withi-some
9 ? i 3

representation of its arguments.



page -21-

10.3 Theorem. RFl) T is a theory with iterate.
24

Proof.” Fls . is a category with asscciative tupling (see [6], or compute
g

directly). The distinguished morphisms are
a a " e
x = (x5, 0, A) , for kellajl,

where A denotes the empty string. Hence -<xl ""’Xial> ia.

In,order to<5ee that RFI is an algebraic theory we have to prove the

T
validity of two axioms.
- 1
e Py glaly = gk

for kellal]l , where a= al'”aial”and - (@, ¢, &) aj-‘> b , for jellall. In fact we

have tc nrove formally what we intuitively know, i.e.

a b Ia! k.,
X\, <fv, o >;——7\.,-f ', where y=<1 | el k,...,_!_lal 1
3 e 4€ e e e
. 1 lal
Remark that y is a surjective, partial function. The notaiion x! = x P»j st o lb ;
p

(remember p=r) (e)) allows us to write the left exprésion as

k<f1, = ,f'a‘> L GG R e Ay ‘
At the begining we show that  Dom{y) fulfils wac)-in xﬁ <f1«,~...,fial> , splitted in ac-i)

and ac-t). Indeed;

b

‘ ‘ joud : j .
and similarly for [[Dom(y)ll oy = Iel...e}“ Vaorn , with me[lel}] , because the j-th

S P g k_k
component of the transition morphism is the m-th component of t 'x “...

Im(ikxk) c Im(xk) < Dom(y)’in:rl

= < 0 ‘-""'f :
For co) remark that x (‘yin+1b) = lpkb , thercfore |

Kok K
i (yin+lb) =i , and
el lal lal
Dom(yout) St Lt >(y w1 )—
=iy 1 k,.(.,tv.(y.+l’) ..L* el ko a4,
rout(e ),p b in" b e t( ),p.b out 'k
b) = <x L ,xl ‘
SHon f:anavb With its intuitive meaning in mind jwe ook for a proof of
<X?f g X la |f> ¥~—y—%>f , where, making use of the notation w(n)‘— w...w by n times, y

(ial) _____

is given by y-= <1e,...,le> g —+$e. This is-ausurjective, total function. We.only

have to show co). A direct computation of the rignt expresion gives

<XT f,. o'yx |f> = (<X 1x1,.. ,XI ‘l ‘a’>, thlv,.}}.?tx‘aI), e(la‘))
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k
g = + -0 R " th T :
where x 0 r(‘k_” l, 4 (M_!)u! Remark that yl Ll 26050,

1 a
<>( i lal> (<1 b .,.lp>»:-lb~) = <:<£;‘ iy Dzl . and

Ml

i
1>\<‘ ek O+l ) vty s
P p

9

<tYl,. lJ
The second step is to show thattin RFl ST the axioms of iterate hold, in the

5 it

equivalent form of 6.2, L.e. 11),12), V1), V2), 14-W). In the Appendix C we show how

look some axioms written for partial iterates.

1) 2 1. >5 ¥

) & :
for f:a-»ab. More precisely, f<f+,l >h—>f} , whereuy =<1 ,1 >:ee~>e. Of
y e'te

b
course’y is a surjective, tota! function. By computing the right hand side we cbtain

the follwing representation,

b
Remark that y fulfils co). Indeed,

b
ok +<1f AR S )—1<pr, e g

= i(S +1b) (i(S +lb,)+, b> e ;

st L (0 +<= e, <l +<1+a,pr>) t<xgb, e Pb>(o +1 P o).

> =

Ja
—A(S lb)<1 ’lpb

<l +<ﬁ'a,pr>) t<xgb,1+a,pr>(0 >R 1P>+1 i

D . b b .4 b b« b
= <t<xg 3 = g > t<xg 2L »a }l; 2= Yoo ‘t(x? J ,XE 28
12) holds in FI (see [6] or compute), hence also in RFI
b
ol x,T

Before trying to'prove V1), V2) we remark that the partia. iterate for-gt f : abc -+ a'bc’
can be computed with the tollowing formula.

‘ *}*b palc! = _abc i+b Jpac'y

_(',t<xp,,xb » X e .

for f:ab—»abc , holds even in Fl 57" Indeed,

(éa)'f'b (+a, oy gbc ab -{4a pbc )yb

*be e ) '
i ((.+a)f~b L pbc ab %«a pbc\ <ch lab( +a)fb pc> e
p 'Xa e D
- (1}-ab’ t<xgc’ ab ta <ch, ab(ﬁ a)ﬁ« xab(lvfa -}~b’ ch>’ e

SRS el xgt«ﬁaﬁb, xgbaﬁiﬂ‘b, ng>, ) =

- (i.{aab’ . <xgc’ (i'ra)'f‘b’ xgc>’ & fbab - f+
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vy «mte s o f”><f+l o

for f:a-»ac and 1':b->»ac. We shall compute in turn the left and the right side.

<f,f'>+u = (<i(lp+0p'+lac>,i'(Op+lp, ”')\, <t(lL 40 41 o >, 110 ”pac»’ ee)T7 2

" o ; pC ab_ pp'c i

: = (g, <t(1p+(,p,+1ac>,t(0p+1 = )\ <‘(pp ) X 8 *c >, eel);
whnere

: = a
= e e 1 g
g (<1(1p;op,+1ac>,1\Jp+.p,ac)> ; :
e ) & PR'C Gl i ol R P
a P’ PP ppl A ¢

R s Ve C -1 IC
=t (1P+OP'+ I.C), ;1'<xg,P ; 1%1 (1p+op'+1ac)’ xgp o
Hence the transiticn component is ;
y! £ ; '~ 3
CrbBC 80 g o ) SPPCL m«PC itag 0o xPP'C> 5
P pip ac’'c P

On the other hand because 1 <i ! a,xP“> G ‘3 ?,‘i i (op,u s x” PCs | the right side
is A

e _(<xPaC,1'> 1t o) (<iT2, =5, t<xgc,+a PL: 5 i

= ( <™ '+II ot 1<><:PC M(Opnp )s xrpc)> |

<t'<xP,PC, it30 i) P B = ‘t<xppc %a(O +1 ), xP'PC>.>, e'e).
p plape ¢ P < :

Now it is clear that the isomorphism S: s ee'—>ele reduces the-;:lle-ft to the:right
flowchart. 'As V.E.C3z&nescu remark, V2') holds even in , Fl
replaced with V1), V2'), as well.

s ¢ and 13) may be
)

4 g
14-1s}  yly 1f(y+lc))‘ = f

for any f:a=-»ac and any isomorphism y:a-»b . A direct computation gives
oL e~ il A o
yly I(y+lc)) =y(y i (lp+y+lc)’ t(lp~,y+lc), e) -
=y (g, t(lp+y+1c)<xgc,g,xgc>, e)
where ‘ ;
e b -1, b
g =y 1(1p+y+1c)) =1y 1(1p+y+lc)(5p+lc))b}w=
. ca e ol oa + -1 .4a
S S = e
= (v LSS )X el = ST T =y T
Therefore
y(y"l_xf(y:rlc))+ S g t(1p+y+lc)<xgc, gyl e xPC>, e) =

= (yy“l i+a, + <xgc, yy—1 i+a, xgc>, e) = f+ 5 D
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11, When is RFI w7 @ wneory with-strong iterate ?
9
For futher reasons (an answer of following question: When two syntactic

equxvalen+ flowchart are semantic equivalent 7) we ask when RFI T is a theory with
9

strong iterate. - Obviously, T must be a theory with strong iterate. But, unfortunatc! Vs

we are able to show that RFl.i.;T is with strong iteratc only when T.., in addition,
<y !
fulfils the condition

AS) lrr,-.ls(f y) = ImPStr(ImT(f.) y) , for every yePStr(...),
and then call it an almost syntactical theory. Firstly a lemma.

11.1 Lemma. If T is an almost syntactical theory with iterate, then the
* reduction is even a transitive relation, i.e. ==

_ Proof. By 9.2, 9.3 the only obstruction for the equality §—23 = jouxe is
y( Ac(f) D<A, if N—y—)-f‘ and f:a~—»b, We shall prove this in its equivalent

- form y~ ([l AcEVD 2 DA ,keeping in mind that Ac(f) is the minimal substring.of ¢ .

e which fulfils ac) in f. Using AS) in

el fei ) o H N es 1), :
Ln(l(yi L‘i-ll b)) Im(1 ) e AC(f )l +1
one has an inclusion

(v. n+1b)(nrrm)[l)€: Ac(f') +1|] e

equivalent with ac-i),
§im)0 67 QA D, +1,
For ac-t) if jey"l([! Ac(f) ) , that is y(;)e 0 Acf) ] , as before e T g
Im(t. (y +1b) = Im(t' )) o Ac(f') S+
leads to the desirated ir.ciusion. E -
" 11.2 Theorem. If T is an almest syntactical. theory with st'rong iterate, then
RF1 5T is with strong iterate.

Proof. We have only to show 14-S)

4 :
= y(f}" if f:a-—sac, f:b->bc and yeSefla,b) is a surjective function

such that f(y+l ) =yt

Let us suppose that f, f' are minimal ﬂowcharts. Then y{f' is also a minimal

ﬂowchart Indeed, if it is not so and u€PStr(b,a) is a left inverse of v, i.e. uy ““‘b“ 3

then .every effective reduction yfhz-r;-f" are still effective reduction_ jger

f—u f'}———> f" « but f' has no effective reductions. Hence the equivaizuice
1 ; g
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f(y+1 )= yf' is in fact a reduction f(yel )%“ﬁﬁ-yf’ This requction 1s al=u:good fex f.+ .
i.e. f+f~—z~3v~ y(f.')"f ."The first remark is Lhat z {fulfiis ac), making effective use of the
condition  AS). Indeed

C

1m(1+a)‘ < Im(i)l ---—) Im(l(lpwrl )‘i < Dom(z; ) i e
AS £

and for j€[] Dom(2)[],

Imftl<y§C +a P‘C>)| e il )I U Im(ﬁ‘ ), s

P AS)
Shenn i A9 Bemte .
‘m(tj( p+)+lc))'PU Im(i )IP c Dommzin).
The reduction f(y+lc) }-Z—> yf' , shows that
i(lr,+y+i )(z. +1 )= yi" and
Dom(z )t‘lp+y+1 ;(z +1bc) =z .t
Let apply 14-S) to the first eqality written as
re@ : ey : o
[1(SP+1C)(1a+zin+lC)] (y+lp,c) = [i (Sp,+lc)]. - S
This gives co-i). i gy
+b
- 1
(zm+lc) Wi
For the transition compcnent, the computa’uon looks as follows. G Bl

"D"c")m(zfo'dt) T<xgc, 1+a’ xg > (Zin+l ) = Don‘x(z )t<4 +0s 1+a(z i ) xp C)) =

. N inTh. pc
= Dom(zout) t(zin+l )<xp | , y(i")

< Dom(zout) t(zin+1 )1 ,+y+l )<x (1‘-'?, xPc‘

; Cx
g iioy o ple kb p! C
22 ! <xp, S Xe > |15

12. Semanr’ic equivalence (the main result)

We are now attaining the .main question. If one prescribes a morphism .
Qr: T=>Q worand” a rank-preserving  function P51 >Q . e,
‘ every flowchart of Fl has a natural semantic
CFS: ¥)e Q(rin(q’)_,rout((f ), then y f ‘ f 5T
interpretation in a theory with iterate 'Q , defirzd by

gt = (g @ cme)“'",l >

» f'c>>r (i,t,e)éFl (a b) , where Cp\.. : ( 2¥,:) = (Q,+) is the unique monoid extension of
sz . Have tw«J 8yntactic equivalent flowchart the same interpretation? This is the

point where we need Q to be with strong.iterate. . -
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12.1 Proposition. If T is with iterate, thzn.two syntactic equivalent flowchart

of FlZ' . are semantic equivalent in every @ with strong iterate. Formally, for every:«»: suz
’

(551, : C,DT; , the above exiension <’J’7 fulfils
f=f == C,/(f)~ Y

-Procf. [t is enough to prove this for elementary reductions, i.e. for f,f':a-—=h,
. ’;F ol - ‘ﬁ.! :
Schliss o ¢ oy 1
f#—-}—;—»f ==> ¢ &) = ¢ ")
Let us suppose that Doml(y). fulfils ac) in f. We trv to apply the most general I4)
made in 5.2 . The passing from e to €' may be done with-the following forinula -
—-— *‘ ’4
Dom(y )*fz' (e)you = (e

) , one can’obtain a first

Q

king’use of th ark. Im _( ly. ) et (e
Making’use of tievremm In .Dom(ym) ¥si (e) < Dom(yout

relation
' Dé’m('-);ig)‘* ﬂf;« (e) (fT(t)(ying) = Dom(y. ) (7[’)": (e) Dom(y ) (ij(t)(ying) =

out P18 = v G2 (@) e

In order ‘té show that the restriction ;t('t-sDOI’ﬁ()’in) gives an itself system, we prove the

= Domly, ) 93 (e) y

second condition :
Irﬁ‘Q(DCm(yin) ((; (e) LPT»(t)_)Tf——'1mQ(Dom:(ym-)f .(p;f; (ey Dom‘(yout) <FT(t))§

€ Imo(¢7Domly, ) 1) & I (Domly, ) 1) S Domly; Jelye

out
ac)

Therefore, we may use 5.2 in the following compuration
¢ = prli) < @) prent, 1
= @) <y (9F (o) ¢ (et L= by 5.2
= @i <omly, ) (g% D pranT, 1>

I
-

= (7D (Dom(y, )+1) < (@ @ o0ty 1>
: * N # i
| = @) <(9F () Pt 1> = ¢,
where the passing to the last line is based on
p 7 Y c
mQ( »fTu)) < ImT(l,: c Dom(yin)+1b :

In the general case, if Doml(y) € Ac(f) and f' !’-z-%i" is & reduction by an injective z
with Dom(z) = ImUSt (Ac(f)y) , then by 9.3 f g -—rg—-%»fﬂ—: Remark that Dom(z; and
Dom(Ac(f)yz) fulfil ac). The above proof give o i) = ¢ *&m and <f Fgr) = @Y,

hence the proposition is concluded.  []



page -27-

12.2 MAIN THEOREM. If RFI 5T s with ctreng iterate, tiien RFI 3
¢ —11
the theory with strong iterate, freely generatedby TV % . In particular, this is true if

is
T is an-almost syntactical theory with strong iterate.

Proo?.. We have to show that there exist a rank-preserving function

o Z —>RFE} T and a morphism of theories with strong iterate I'I' S = RF,AX;T ;

such that, for every rank-preserving function cff : 70 -=>» RFI and morphism of

25T

theories with strong tteram P T~»Q , there exists.a unique morphi ¢m of thﬁone"

with strong iterate . 4«( : RF 12".1.—-} Q , such that- IZ'. “f’ (Pz and IT Cf L)OT
Clezrly the application

i) = (1,0,,2)
for i€T(a,b) gives even a theory with strong iterate morphism. I ¥ » defined by

Fi (a0)i= 1 g
7z .

+
rin((}’) (Q‘)’ r ((r) ut(q),
is obviously a rank-preserving funCnO,n. By 12.1 the extension

is well defined even in RF] ST The remained proof is r~produce here from [6] making
7 z

use of 6.1.
=) Whsh= g a->~b and f': bt aré two flowcharts in FI ST cne can see that
A 23]

tﬁ(.f ) :.(_FT(i(l +1) <( 43 (ee) Cﬁ.{.(<t{1;+i‘), (0 s+l »t, 1> =

= Pl +i) <<¢h(e) t{'T(t(l +1) , ¢ (e) ¢ 100 flp,c);x?:., 1> =
= PrldUp e D <Cgp (@) PrtttaeMF, 1> < ¢k () prtv »‘f I
= @) <( ¢ (@) cpT(t)u - )T, @ <( cog(e) @ _(enF, 1 57
= @r) <(9F @ @ L), P (k) Pl ))+
= (i) <(Cya (e) frmﬂ“ 1> cpT<1)<( P (e) cp ant, 1> -

- o) ¥ . |

2) In the tupling case, for f:a-—>c and 'I?,j:vb—%vc -making usc of the following

e

S , T Sl S st
' notations x = 1p+op,'+‘.c ol Op+lp‘c , the compu.tatlon is

F o= @ ([Cinitnt>) (0 (ee) @ (<rx, N, 1 5=

({’ : (PT ('PE (\DT C
= Prl<inix®) << hle) P x, e Py T, 15
= i, Prlidx> (Ggde) C{’T(t)){‘;'( s (&) Pt 1>
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1

< (i) < cp:, @ qrant, 10, ¢ <@hte) ch(w'” 15> =

1

<, pFE.

3)'I £:a-»ar, then the following computation <lows that preserves the iterate.

C{/#

gt - QFT\Ja) (6 (o) P oleal®, 12, BT, o

(e 1)\ ))'i’ <( kf* ) ¢ (t)(S L) <CPLlixs +1b))'%‘“, 1pb>)”*, 1 it

() « ¢ (e) prtent, ab>>* (U‘)#(f))

Remark that for ge T(a,b) ’
G = Fe0, M= i) 1>+ G0l gl

andif p=r (¢),q=r_ (), then

out

‘# = '#' g {re N\ + N :
(I?1 C(J Wy ) = (.P (1P+Oq, up+lq )= (lp+0q)<( (F,i“\”:}')wp«&lq)) 'y ‘lq>"‘"'

= (10 ) < \1/‘..(:;’),1 s,

““The last step 6f the proof is the uniqueness of the extension and is a direct consequence

of ine representation

_ G,48) = L) < (@ )Y, 1> ,
making use of the 'equalities I (19# =%, IZ«({# = (s and the preservation of

composition, tupling and iterate by any inorphism of theories with (strong) iterate. []

The interesting particular casc is that of PStr. : ‘ 15 Hhge

12.3 Corollary. RF1 5, PStr ‘is the theory with strong iterate freely generated:;
9
by

On the other hand, by Esik result [9]. when X has [rin(ti‘)] =1 for every
T€ %, , the iteration theory freely generated by % is that of 3 -rational trees,
denoted RTZ. Hence

2.4 Corollary. If [r, (0’)/ 1 for every - 0’62' then RFI1

and RTZ
‘ are isomorphic lte,atlon ‘thecries. {j

3, PStr
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T Appendix A
Proposition. In aity theory with iterate T °, I4-Is) hotds.

Proof. let feT(a,ac), geT(b,bc) and yeStr{a,b) be such that :f(y+ic) = Vg .

Supposc that y is an isomorphism. We construct the following system

<y€0a+lb+OC), &l J'1‘?(1a+0‘i_j+lg:)> : ab > abpc .
Using 13), the b-component of its$ iterate is

“ 0 o i
(y f(la+0b+lc) <(y(ba+1b+0c)) : Lbc>) e -
»—i \ ‘%‘ —1 e " =
= (y f(la+Ob+. LY 0 ), 1y )T = (7 <yl +0,), O )
= (y—lf(y+lc})'r = g+ . ;
In order to use I4-W), let us permute with S:,‘ the.components
-1

<y f(Qb+1aC)), y(1b+OaC)> : ba -»bac. '

Again 13) allows us to coinpute the b-component of its iterate, as follows .

i i
N, 1aC>) il >=
1 1

"l.- \.’?‘ i -.].
(y 1(Ob+lac)) \(y(1b+0ac)<(y ’f(Ob*lac

y"If <(y(lb~t--0ac)<y_lf, lac>)+, 1C> =y i <y<y”

o = G e gl sth1 >yl
Using 14-W) these morphism are equal, i.e. ff‘..—. yg’f".' =

Appendix B
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Suppose 1 is a one-sorted flowchart : 3~>4.. Then [ Ac(f)[l={1,2,3,4}.

& IPasd ol b 6
fr—af'" where y = 4 4 & & & L
y 39 2
loie2e 350 5 06
A total reductionof  f 'is fi=% 1" where y = W& 4 & & &
y LS 20

e e

(= A
/V W‘!l }\%{)@J ]

-
L] © @

! e
The funetion y#a= do not give a reducticn.
s 1 i3
Appendix C

We shall suppose that T is a theory with iterate. . . | sman.

10} f’:‘b—(m 5 +1~>)7Lb~(f(1 439+1 g Ee f: abe -\G'bc" g

a'=ad and ¢ = &d (thza means that no matter where b is in cosource).

r'-~ 1= 1oy e e
Proof. 1102 (¢ <X§'bc3 éc , x;1bca ec , xgléca LC>)+___ -
e “._N .(\ ';N 4 ';r‘v -~
= i'f(la‘+5§+l;»j) <x:,%ca - 2 ng\,a = . Xg})ca ey (I(la,+Sg+IF))+b

and similarly for left shifts. BE

el ah b éé&@ac b.
(IC,x Cf+s : >_f+

Il) f<x,, for f:abc ~>a'bc'.

Proof. Let fa fb f. be the corresponding components of f. Making use of

the isomorphism v = l £S5 the second component of f+b is the third-¢f the permuted

C’

system .

abca'c! bca'c bca'ct C
0 +Sc)f<x, 2 ,xﬁ e ,xi, a > (L +Sp+l ) =

5 achba'c’ _acba'c' acbha'c “id
=< f X > = P
. ;fay c’ b < a' 3 Xb ’ xcv 4 : R
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e ( b
= <<Ia,fc>,fb> (uac+sa‘+lc‘) =

With 13) the b-component of its iterate is (fb(Sgp&iC,))‘% . Hence xi St fnils the
identity
abc, b b _abc tb abe. ..a'ct. abe fb . abea'c
e fb(Sa,+1 ,)<xb £ L2 = X, Xy f+” » X = .

The ac-component of permuiegd system now is
b 1o b 4 a'c® abe kb - abea'c
: N oo c
<fa,fc>(Sa,+}AC,)<\1b(da,+1C,)) ’ la‘c" = <fa,Ic><xa‘ s Xp i X 2
Return to the starting system and write

: g alet
f{ =l +5 }<<f f > fb><xa,C " ngc ff‘b . x%bca‘c‘,\ = KxZ,C 3 xgbc f+b

With similar methods can be obtained the following identities.
- S b T e Piaat
Zp) (f(g+1b+h)) =ft(gth) ,for- f r@be.—>a'bc’;g:a' ->a", h:c -»c’.

v2) <f,g>"”‘1:<x§ac f*“,x S, for f:a-»dac, g:b—+dac.
Apperdix D

Remark. If [fl€ RFI,., T(a b) denotes the class of  f&€F! 51 (a,b) then

T2 () < Im ® < Im ()|, Y Im 0k
RF] 7 Bl o} 9
: 2'« i A’T : l ; .
Lemma 4. If T 1is an almost syntactzcal theory, then for one minirnial
2o

feFI (a,b), we have

Imp, dfh = Im (f)
R Bl

and for any fé& FlEf r(ab),
&

‘( = i )
i <4 (f) =ImpQ)f U Imp(Qf, .
£y

Proof. An identity [fly =[f] , means fy ={ , more precisely fy}>>1, As
z & PStr Z(e e) is surjective, it follows that z is even an isomorphism. The reduction

Jeads to two ideniit res ins
i= i(lp+y)(zin+lb) = iz, +y)
t = t(l +y)(Zin+lb) = t(zin+y).

Using AS) we obtain two equalities
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Im.f(l) = Im (ImT(i)(zin+y)) and ImT(t) = ImPStr(m.}“{';'t)(zinq'y)). 2

RStr
which give ,
!mT(i)h_} = ImPStr(I nT(l)! y) and Im t)!b = Imy, (Im (t)iby)

i +hat ‘ . Yoo i o !
This says that y 2 ImT(l){b U ImT(t)‘b , hence ImRFlz - (- ImT(l)Ib U Im,r(t)ﬂ'.bﬁ,

The second part is a particular result from this pioof, for z = ‘lé gl

Lemma 2. If f}—;’;‘»f’ and vy is a totai furction, then

f) = Im, (") ,
”z; FZZ‘,T

everytime when T is ai: alinost syntactical theory.

Im

Proof. As i is surjective it follows that

Im (£ = ImT(i')ib U ImT(t')lb = ImT(i‘)'b U Imi(youtt')'b =

El
2T

e ImT(l(l +y)) |,V Im.(t(1 +y))‘b = Imr(l |b U Im t)’b =Imp, - el

,PrOpGSiﬁon, If T is an almost syntacticql theory, then Fl 5T and RFI ST

are almost syntactical theories,

- Préof.  For: Fl

given in this appendix,

ST the proposition is easy concluded, making use of the lemma 1.,
St T :

Im (fy) = Im (1(‘ +y))gb U Im (t(l +y)"b =

FIVT

e

D ((Im (i) !b U Im (t)lb) y) = =Impe,, (ImFl . T(f) y) .

In' the case of RFI , if f is minimal, then fy is an accessible flowchart«(its:

20

accessible pariis 1 ). Indecd, if z €1,
'ImT(i) (ool zin+lb {==> ImT(i(lp+y)) < zin*"‘b and

R ; { % (o _ﬂ 3
ImT(g) A ImT()%(llf y) & z, +1y , for every ]Eﬂz[]..
If f'elfy] is minimal, then {fy 13-3— f' and z is-a total function. Using lemma 2, we

finish the proof,

([f]y)Jml () =img,  (fy) = Ime, (g @)=

E, S AR 5 T TFlsip
= Al (B R | |

MR

m
RHZ’T
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