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NORMZL DE!E‘E*!TIONS OF RATIONAL AND RULED SURFACES

Lucian Bidescu

This note is & preliminary report of an attempt to understand the structure
of the normal projective degenerations either of the rational surfaces with the
second Betti muzber € 1lo, or of the arbitrery ruled non-rational surfaces (see
theorems (1p) and (18) below). 4t the end of the paper some elementary oxamples

of degenerations are given and some open questions are discussed,

(1)  Tet?f:X ~—> 1T be a projective flat morphism of algebraic varieties
over the complex-field C J~Phroughout this paper we shall assume that:
~k dsia 3kfeld,
- T is a smooth connected affine curve with GF = O_ (where CO' .fZ 0
' ; i T T/C
— there is a distinguished poiat o€T such that the fibre Xo ' ( ) is a
normal surface, and

5 ; ) :
—for every t€T, t £ 0, the fibre Eat (t) is a smooth surface,

Since X is normal, X is also normal,.and if x€X is a singuler point of . %
o}
then '¥'is 'also a‘singular point of X (and in particular, X has only isolated, -
0

singularities)., In general we shall follow the standard terminology and notations,

(2) Definition, If Y is a normal projective surface we define:

—ithe irreoularithy Q(Y) of Y by q(Y) = hl(Y,O b

- the geometric genus p_(Y) o Y by 0 (Y) = h (Y,O,), which by duality on Y
coincides to h (Y CLY), where CLV is the: Grothandlekk dualizing sheaf of Y,

- for every n>»1, the n-genus p (Y) of ¥ By D (Y) =h (Y CU(n)), where CLY( )

xr

denotes the double dual (Ofmn)vv CL7 (1n partlcular, p (Y) = p (Y)). If n<o

(2 <>,O)

we define pn(Y) in the same way, with (LT = Hom_ (

(S

(3) Proposition.- I=n

1

he situation of (1§—wg_have D”(XO) =5 <Xt) and q(X ) =
(=} ! g O QO

= q(Xt) for every tET,

5 .
Proof. Since the function t ——=h (Kt,oX ) is upper-semi-continuous,
t
it is constant for t£ T general, Shrinking T a little bit, we can assume that



\

this function is constant on T-fo}. Denote by g this constant value, Then by the
3 0§ 1
base-change theorem (see e.g. [43], theorem 12,11, page 290), R f*(ox)/w_gbi is
locally free of vank . By the relative duality (see e.g E%i}) we have a canoni-
cal isomorphism
; 1 L 1 \
R, () ¥ Hom (R7F,£0,),0,).

; 5 3 : :
from which we deduce vhat R ix(Cd%} is Jocally free of tank q on. T,

Shaa

j::x’\c,()':‘s) = O,‘

1
On the other hand, since H‘(Kt,CU% ) = ¢ for every t€T and R %

t
the base change theoren (loc.cit,) shows that the canonical map

2s, (o )@ x(t) ———— Hz(xt,ag(t)
islaj isomorphism for every t€T. Again by the relative duality we have & canonical
isomorphism
R%E (@) % Hom_(£,(0.),0. ),
* 56 W
and since f_(0 jad 0,0 We get sz*(GU%)'g Op+” 4pplying once again the base change

v/
L

thecrem we infer that the canonical map

1

R £ b 1 (3 1=

R £ (w, )®x(t) = “ft?th) ,

is an isomorphism for every t € T. Recallingfthat R fx(cui) is localiy free of rank

a, this proves (via duality on Xo) the assertion about q(X ). The other assertisa
o :

of proposition (3) follows from the -first and from the invariance of the HEuler-

Poincaré characteristic. Q. E.D.
: 2 e i
(4) Remark, In characteristic zero this rusult is well known (see E?{]- €xposé

236, corollaire 3,6, where a proof based on the theory of the Picard schemes is
given). The above proof, included for the convenience of thé reader, is more ole-
WWQibhjﬁbecause it is based on the relative duality theory in its elementary form
as presented in Eﬁﬂ), and works in the case of surfaces in positive characteristic

as well,

(5)/Pr6§oéition. In the situation of (l)z'assuﬁé moreover that p (Xt) = q(Xt)=
| = == g , ’
= p er every t £ o, Then g>(KO)$f§(X£) for seveny t4¥ 0, Where g(&) denoteiﬁggi

ol SRS

£

rank of ic(Z)/Pico(Z) of a variety Z (see Ey?gﬁ,

lav]

the Néron-Severi group NS(Z) =

Proof. Using the exponential sequence we deduce that S(Xt) =b_ (X, ),se‘0(X )

L
c+




e e

—3—

is ;ndependent of £ # 0o et & = g(X.) and L ,...,L € Pic(X ) be such that they

define a base ot ma(x )G; @ (1see® muy1ma1 pumber Of 11near1y ; pdependent ele-
ments of hS(X )) Yote that DY pr09051t10n (33 q(Xo) LopelR Ju=i0 and insperbicts
18T, NS(A ) = Plc(ﬁ ), Using srtin's approximation +peory (see [4]) and ghe fach

- ghat b (Ox ) =8y e get the oxistence of Some Lys ..,L;é?ic(x) such that 1%
A0

%
\
i
: i
%’Li, o= RIS (evpnfually by replacing T with an approprlice gtale peighbour— ¢
hood of (T,o) see €. g.[ﬁ] propositlon 4 and its proof for éetalls) p+oposition E
(5) wild £ol low. 4 S i whetor 4 o the restrictions I /X (1= sl %
fine lipearly s pdependent olemernts of Plc(ﬁ ) = NS(X ). Assume the contrary, 1eSe E
there exist some integers nl,...,na, not all zeTr 0y such that Sy /X OX s W1th E
n
.t
L= 1 @ LBl e gince Bt (x Oy Yoo vel R apply [42/:((4 6.5) and deduce .

t -1
 4¢hat L' 18 triv1a1 in a neighbourhoou of the form I (T') of R s with T' e, {p}.

rv'r’ﬂ*,ww%ﬂ?"'“?“’ s

’Ylthout loss of generality e con assuis that L'/X<KO 0 /X—X . Since‘x is an

irreducible aivisor on % thexre is an integeT ol such thab L' =0 (mX ). Then we get %’
L11®...® L: ! /xo (mx )/x f‘:"o (the pormal bundle of X’o‘“in % 15 trlvwl)

L {

which is & contradiction because'Ll,.,,,L were supoosed to be:linearly indepepdenx %

in Pic(X ) Q.E.De » : o ' |

Now W€ want 1O get informations aboﬁt the pehaviowr of the” higheT plurigenerav
in an algebraic familye. First W€ note that ir Xo 19 smooth, @ result of 1itaka (see
[56}) jmplies that P (X = P (X ) for every n:>1 and TET. The algebraic part of
Iitaxa‘s resull pas been subsequently generalized to the case wheTre XO is Gorensteix
by Wilson (see{2.1 Imwever,'he has 10 aasume'that the Kodaira d:mension of the
general fibre. 0 £ .is not one). The case where X 3s normal put not gorenstein

seems 10 pe very complicated, and the rebults we are ablée 1O prove are very pérfia?
1-n) n u}ﬁl-—n

for every b ET and neZ

etar ———

: n -

Proof. since Cb and Cul ) are refWe 1ve,sheaves of rank One, the first is0-
‘Q«morphlam follows from [43 while the second one £ollovs in the same way remérking

"moreover that the douole dual of Cuﬁn)/x ijs just (n) Q.EwDe
t

(1) -« Bor-oVeEy LC P one has @ canonical map

:\f : f (HO"\ (Of ) w))®k(‘b)_____’——"'7'ﬁom O)(n)/}(t,a);{ N Mm

£
%

. +wa following way. First we ‘nhave

e



_4_.

oo (™20 > B, H°mx§w( g, ) = (by 10mma (6))
: t %
PR s G (x w‘l'n))

1-
Using again lemma (5) we have Hom (60“ () [J)’\"’CL}( n). Therefore we have to

define a mayp

1~ Jiim
WosE (af( “)>®k ik ke w‘ N,
t
and the latter is by definition just the composiiion of the cancnical base-change

map
£ (w(l"p))@(t) —— (1'“ /%)

with the map which is induced by the canonical homornornhlsm into the bidual
co'}({l n)/x S5 SERR T (w(l"‘l &) - w“"n).

- t
(8) If F is a coherent sheaf on T ard tET is a point, we have the following

cenonical map (defincd in an obvious way):

A (m) : 'Hom (F 0 )@k(t) F @K(‘t) —_— Homg(t)(ﬁ‘®k(t),k(t)} = (F®k(t-’?:"ﬁ~

In general A (F) issinjective; moreover At(F) is an isomorphism if and only
s local]v free near t. Indeed, since T is & smooth curwe we can write F =
P, w1+h F' locally free near t and Supp(F")g_{t}. Then we have At(F) =
= )\t(FV')@Xt(F"); and )t(’P"}) is an isomorphism aud. xt(F") = O,

“(9) +Since, Cl)’ = 0., the dualizing sheaf Ct)’ relative to' the mbrphism £ (seeﬁé]}

A

coincides to QU X’ cmd therefore the relative duality (with respect to 1) yields

£ (zon (00 (>wﬁ):*mm~< “%o)

4. e
or ¢lse (via lemma {K)):

s f«$1”)~Mmmf(w”Uo>

* : i

1
In particular; f‘%(())'; n)> is locally free,
(10) Consider the base-change map

% \n) : \UZ : (n)"
(,'Pt o fw )R k(t) _ '(zt,o.‘fx /X ).

Since the relat'iy_’é_“d‘i e 13 100; of%;he morphiszﬁ f 5_3-2; the base-~change theorem
inipliesthat tht is rulrf\:./" an 1s~qornhlsm We cl.aim that the maps 'Y/ are always
injective, and moreover: \][/ is an isomorphism if and only if R f‘ (CO")) is local-
ly free near the point %, *"‘hls comes from the foregoing __discussion an_d‘the/follo—

wing commutative diagram

7



chiE

f‘)‘ (ay;l’n))QQ w(t) /__"_/fﬁ._’_/——%h Hoth(w;n)/xt, th)

Gy o) IS

2 (n : e
}iginT(g f‘*(/ﬂ )),OT)@) k(t) S (vy d§a11ty on A._t> el

T
I

A

o - \ _

: 2oy < gis (n) :
5 k(t),k(t & R Hom B X e e
Homk(t)(R »*\Cuk )69 ( ), ( )) ~ k(t)( ( tﬁqjk ./ t)’ ( ))

{11 -If ngo and % 4 o then v is always an 1somorphisim. Indeed, DY & pesulbiemidig

2 ; 1=n.|
of Titaka (already mentioned above) +hé function ¥ ——=h (Xt,w’; ) = ho(xt,ayx i
; ' ;

= Py (Xt) ig constant o1 T-—{o}‘. Then by the pase—change theorem the sheaf
-n

i
: 1 ) : 1. !
sz* (C,O’}((n)) i:s\l’o*cally free on p-{o} of rank pl-—n(xt)’ end by (9 fx’(Q?‘}(( n)) is %
1ocally free of rank P, n(,}{*) everywhere (i,e».»gi_ncluding the point o). Since 121/0
js injective we get the jnequality : ~ i
pl_n(}it) r4 pl—n(xo) for every tET and n<o.

(12) If nyl the sheaf Réf;,‘((,d’;n)) ‘can-also be agsumed to pe locally free 1n
T-§0% (by shrinking wentielly T )iof rank P. n(xt)' qherefore, as in case ngo, T}
we also geb the jnequalitys i’

:
pl—n(xt) < pl—n(zo) for every nzl and tE€T general. i

Summing up the aiscussion of (6) - (12) we get:
: i : : e e (1‘5) ; ; 5
(13) Proposition. 3) For ever] n€ Z the sheaf i (. ) is locally free

iy Emaiery n G2 SRS o R o LT
of rank egual 10 the rank of R f*(w:( ) (and _2ls0 equal 1£0'P

e oif ng o, or for 4 ¢ T general if n7:l). -

ii) The natural map (see (7)) Gl

A f$(w§f““) YRx(+) ,/’—'-“;wﬂo(x.t,o

1-n

< (Xt)' for every

1-n))_
jve for every t€T and 1 & 7 . Moreeuer, (\}/t is an isomor-phisin if and

(
X

is inject

is an dSomOrBAL- . ——

5 e
only if the sheaf R f}((}J’;)} is

enlyilt oo ——=—

1ii) pn(Xt)é p (2)

Ve
B

for every nz?2 and . .4 o apd also for every <o and t €1

al, More = ] i d only i is ] 13 Ste
general. MOreover, pn(xt) pn(ﬂo) if and only if '\f/o is an isomorphism

is am 28 e

el atate. uhe finS result concerning the behaviour of the plurigenera
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(14) Broposition. In thf situation of (1), assume that Xt is a rational sur-—

face with Kdi>o for some t £ o, where Kt is a canonical divisor on Xt' Then
————E— e A - e—— -t -

o (7 )i=0 for eveny.n>1.
P50

“roof We distinguish two cases:

1) K "> 0. First we remark that z, is ravional for every t' £ o (see [25]).
Thareforc the particular poim, 1 does not play any special role in our considera—
tions becausé’the self-intersection number Ki' is constant in T—{?j‘ Yery i ait o £ o

2 : ; ;
and K£'>O, the Riemann-koch theorem gives

G o -L 2
<X1);; T Koo i

. 2

1-n

Lpplying proposition (1 iii) we get
T o S

e (x)>“‘1-l .

L 1, for every nzl.
l-n :

: o
let U be the smooth locus of A o The above inegualities yield h (Uo’
o

1, Assume that the conclusion of our proposi-

& O m
tion fails, i.e. there is a m>1 such that p (XO) = h (Uo,wU ) > 0. Usdng’ the
I

fact thet H (U 0. ) = (C =nd the above ineguality (within = 14m), we get an iso-

U
: Mo - s (m) m (m)
morphism CURI = O , cr else Cdk = OY (beoause cLy /U =‘Cﬁﬁ and (1?{
» o Yo o "o o 0
. . el
is a reflexive QX —module of rank one ). From this we deduce that (L7 §oE CX Lo

) o o O

(-m

~ oF a
every a(;ZZ , vandSin particular, h (X ,CLﬁX )) = 1 for every a>l, which, con-
“ 5 ok —ma) ,O :
tradicts the inequality h (X ,yU' )2 z{lima) > 02 as a——> 22, s
; o

YR e o. By Riemanu-Roch we have.;b(x (nKt)} = 1 for every n2l, and

*’X
$aking n = 2 we get D ](Xt) = h (Xt’OX (ZKt))>>O for every t # o. By proposition

¥ ; = (-—
(13) 114), » ()P 2 (K)> o (for te T general), or olse b2(x_ 00 L)
: 0

Assume by contradiction that p_ (X )> o for some m>1, Then we claim that C}%& ~

) > o,

> .Ao
@'Oxu. In fact, let o % Gin (U OJ ) be a non-zero sectlon, then o £ s L=

O 0
o}

(U LU‘ ), and henee the last complex vector space is not zero, Since H (Ub’OU )
( 0
; i O m - = : .
- @ i (UO,LDﬁ ) = H (XO,CUk ) # o, we infer that (U == 0, , and inspar-
0 0 o 0
i o ; s
ticular, s (y) £ o for every yé[ﬁf But this in turn implies that s itself is a

) -

nowhere vanishing section, i.e. GUﬁ’Z OU , and the latter isomorphism is equivalent

0 (o)



el RGBS <

~to the claim. From this point one can proceed.exactly as ih_ﬁéL page 29, in order

to get the conclusion, Q.E.D.

(15) Remark, The nioof of proposition (14) is inspired from the proof of
proposition 3.3 in Wilson,Eéqj, which deals with the case where the sperial fibre
XO is morsover Gorenstein‘(but without any restriction on Ki). We do not see how
the proof of'Wilson can be directly extended also io.the case Kf<fo and XO normal
(and non-Gorenstein), However, we suspect that proposition (14) remains still valid
in case Ki<fo (and X, rational), For example, if the general fibre X, is rational,
with Ki<’o, buf)moreoveyyp_n(xt) behaves like n or n2 when n——> 09 (i.2. the antd-
Kodaira dimension K—'(Kt) of the general fibre Xt is 221, in the terminology of
ELQ]), then we still have pn(Xé) = 0 for every n2>1, This fact can be proved using
 the same argument as in case 1) of the proof of propositibn (14). Un_the other
hand, fhere are many examples of rational surfaces S with K2<f0'and Kfl(S) e
take for example any surface Siebtained by blowing up n points of thelsurface

B> P(OP469OP1(—6)), with 96fn$fe+4 (see 4] B.L.2).

e

(16) Theorem, In the situation of (1), assume that X is a raticnal surface
: e

>0 (or equivalently bz(xt)Sflo, by Noether's formula) for one {(and hencc

) point + £ o. Then the following statements hold:

) = ever; 1 and (X < Jix F0o - 2.
p (XO/ 0 for v u" n} n Q\XO)\ bz(xt) o Kt

n
id) FEwER' ——— = ¢ dis the minimal desineularizatiion of X o othen X! g 8
= Q o : 0 0 .
; i 1
ruled surface and dim_R u_(0
i ‘E %®\Uy

cular, if X' is rational, then all ‘the singularities of X are ratiomal,
T Ca i) o =
5]
s wda

) = q, where q is the irrézularity of X', In parti-
O

iii) If X' is ruled non-rational, then X has precisely one non-rational sin-
T S

gularity x, and (possibly) finitely many rational singularities, The irreducible

-1
components of the fibre u (x) are: a section of the canonical ruled fibration

M :X' ———> B (with B a smooth curve of genus q) plus (possibly) some components
o ‘ e
of the degenerated fibres of T . The exceptional fidre of u over every rational

"singularity of X is contained in a degenerated fibre of e
< % q o —— . )

- iv)- bz<ié)t”,bé(xb> is equal to the number of the irreducible components of

=

-

all exceptional fibers of u,

Proof, Part’i) follows from propositions (14) and (5). To prove part ii) obser:

that if D 1is thé sum of all n-dualizing divisors of the singularities of‘§er(see
o e

[}{] for the definition of the dualizing divisors of a two-dimensional singularity



and their proverties), we have:

o 0 ) 0 (ol - O o -
H (x ; J % ) T H (Uo,(,oXo )= B (UO,CUXé )X B (Xo’“fx(')@Ox'o(Dn))’

£ 7 5 ~
where U' = u (U ) anxd U the smooth locus of X (the last isomorphism comes Irom
: o (e} 0 o
the very definition cf D, see loc, cite).
n

Theraefore the fact that p (X ) = o for every nz»l, translates into:
e

(%) L Dn) =@ - for every nzl, with K= X'
] e

Since:D ;?0 we ‘have in varticular that p (X') = o' for every nzl, and conse-
quently X' is ruled by Enriquesteriterien of ruloun ss (see EE] Ve note that the
o
fact that X' is ruled is also a consequence of E@ﬂ, sane?Q'(even without any res-
o

Lalin)
triction concerning X ). Bu}Yﬁ/'ll need the stronger information contained in (¥)!
[

On the other hand, the Leray spectral sequence of the morphism u yields the

exact qudncP
o= H (0 Yol s Hl(() ) ——— B e H?(O ) = o
' xo"-ﬂ 3 & x X' X ’

B ; S S : 2 Vo e ST
from:which we derive the formula dlﬁCR ur\07v> = q. This proves ii),
3 1 D
S Sy .0 : =
Assume rnow g>>o. The proof of part 111) igs quite ‘similar to the proof of a part

. s e ! _
of theorem 2 1rx£@p Wetll diwvide it into three steps,

Step 1. T%very singularity of X whose exceptional fibre is contained in a de-
LTS o 5 ;

generated fibre of

(and follows wusing standard arguments),

c<
B
e
n

Step 2. There is precisely one non-rational singularity x of X , and
e g € 'S

singularity has gtometric genus g.
Her s bhe  Tormule-dim R u_(O"') = q shows that X bhas at leazst one non-ratipnal

.

o
: -1
simonl avityia, Bydsteplithe “fibre (x) contains at least one irreducible compo-
nent E which is.not contained in any fibre of . Then E dominates B, and hence
o) » o
p%(Eo)>:p (B) = q, where P, (c) denotes the arithmetic genus of a curve C, On the
a & : :

s

Sl !
other hand, since p_ ) < dﬁwd? u \O ) = q, we get that pq(EO) = q and the geo-
a a3 :

metric genus of (X ,x) is q. This last fact together with the above formula imply
: o)
that the other singularities of Xo are rational, ﬁowvovor the exceptional fibre

S P Y
ularity of X 38 contained in-a degenerated fibre of If,

o
{1
[
=
VS

of every rationa

-1
Step 3. Let EO be the component of w (x) from-step 2, and E),...,En all the

-1 : | : : :
other components of u (x). Then E is a section of M, and Ei (1 = 1,...,n) is
O 5

contained in & degenerated fibre of .



_.9..

First we see that every of the components E_ ,...yE is contained in a (degene-
y 17 b n (&)

rated)Fibre of . Fof, if E (say) is not contained in any such fibre, the argu-

=

ment of step 2 shows that pa(El) = q, On the other hand, since the fibre uwlfz) is

(2

o 4 & s 8 el T “1 \

connected, one can find s+l distinct componenss Ei = EO,.O.,E_ = ml of u (x,

. 4

5] S
such-that B, mneets B, for every t = .0351440.58-1, Then an easy induction shows
it i :
‘t.ul
‘’ v

that:

Since the arithmetic genus of every curve with support in u-l(x) is less than
. . 1
or equal to the geometric genus of (xo,x) (= dimGR u%KOX')x) (which is an easy
consequence of Zariski'‘s holemorphic functions thcorem),o we get the desired con-
fradiction.

+ © Thercfore’ E_ is the only component of uﬂl(x) which is not contained in any
fibre of T ., In order to finish the pioof of step 3 we have only to show that E
is*a section of -4 . If g2, this fact is»ob&ious because~Eo dominates B, EO and
B have the same arithmetic genus (= q), and via the Hurwitz‘s‘formulﬁ.«Assume the -
vrefore . ai= 1, i.€,. E0 is an elliptic curve., Then Eo is just the,so-calied "minimal-
ly elliptic cycle"of the singularity (Xo,x) in thessense of Laufer (see [481). On
the other hand, {the l-dualizing divisor of‘every two-dimensional singularity of
geometric genus one coincides to the minimally elliptic cycle of that singularity
(see [4], proposition 3.5), and in particular, DIZ;EO. Since we also have Dn;anbl,
we get D Spni for every nl. Recalling the equalities (%) we infer that ‘n(K+EO
= § for every n>1, which - via Zégﬂ lemma 12~ implies that EO is a section of

(‘i\-’o

5}

41

‘his proves step 3 and thereby part iii) of the theorem, :
Finally, by i), ii) and iii) we get that pg(Xé) = pg(XO) (= o) and that every

irreducible component of the exceptional fibres of u is smooth and these'componcnt;

méet transverally and no three in a point, Therefore we can apply Ef], corollary 3

(39 (1a1) and LQ], lemma 9 to deduce part iv) of theorem (16). Q.E.D.

.(17) Remerks. a) In the assumptions of theorem (16) we have bz(Xo)'= S(XO),@;
“Phis follows from the exponential sequence of-XO, a GAGA-type result and the equa-w

lities pg(Xo) = q(xo) = o,

'b) If the minimal desingularization X of K is ruled non-rational, part iii)
___of theorem (16) shows that X has precisely one non-rational singularity x; this
. .

singularity is however pararational in the sense of EQ], as one can easily see,

°
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c) The assumptioh "Ki;;o” was necessary to apply proposition (14) in order:
to deduce that p (X Je=.0 for every n=zl, which i~ turn wes used to show that EO
is a section of the ruled fibration ’T",X' —————> B when R is an elliptic curve.
Pherefore theorem (16) is valid without any restriction about Kt (bust. X, rational)
83 soon as one knows kow to prove proposition (14) in case k2<:o. As we have remar-—
ked in (15), prcposition (14) ja valigeif Ki<’o b1t the anti-Kodaira dimension of
the general {ibre of t is greafer than or equal to one,

d) If we assume furthermore that X is Qorenstein, then more precise informa-
tion about the structure of X cen be obtalncd (see theorem (22) below),

e) Assume thet Kd >o0. Then p n(Xt)E}'Eig:ll Ki + 1, and hence K 1(Xt) = 2.

By proposition (13) 111) above and lemma 1.6 in [R4iwe get Kfl(X') = K—I(X ) =
mherefore it makes sense to spe2k about the anticanonical model of Xé in the sense
of , [24] (if X! is rational) and 2] G X! is ruled non-rational)., Recall that

the Aanti nonlcal model Y of A' is. a n““mal projective surface which is oozazned

‘from X' by blowing down dll 1TT9duClb1b curves B of K' with the property that, =

P.E = 0, where ;YK? P + N is the Zeriski decomposition of an anticanonical di-

*Vlsor of A' {loc. cits ), with P a numerically effective @z,—d1v1sor and: ei ther

N ; 0o, or if N >o, the inter .section matrix of Supp(N) is negative definite; more-
over, P.E}s‘c for‘eﬁery‘ C Supp(N). Then X and 1 are related in the folléwing
way: there exisis a corwutative diagram of the form

Xl_____,___y__—>Y
o] 0

X
0
where v is the canonical blowing-down morphism. To see +his it will be sufificient
to prove that every irreducible component of the exceptional fibres of u is con-
tracted. by v to & point., Let E te such a component. If pa(E))>o, then the genus'

2 L
formuls togsther with the fact that E < o shows that ~K.EL o (with X = Ko Js0r
2 | . .
else P. E 4+ N:B<o; Since P.k >0, We have N.E <0; therefore E is a component of the

effectlve divisor N, anﬂ conoequenuly P.E = o, In other words V(E) is a point.
5 i
Assume now thet P, (F) = 03 then B g because X' is the minimal desingularization <
(¢]

of X,. By the genus'formula £ 4+ K.E = -2. Thus -K.E£o, or else P.E + N.E< o.

This inequality again implies that P.E = o, &s required.

(18) Theorem, In the situation of (1), assume that X, is a ruled non-rational

surface for. one (and hence for all) tw% 0. Then the following statements hold:

AR
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1 p AR ) =0 forievery n>o,
n o

ii) Jf.q<xt) = qvﬁﬁﬁ U=Xé’““‘“f"?’xé is the minimal desingularization of X ot

L3

thenm: X' 45 a'ruled surface of drregularity .
0

s X has at most rational singularities and their exceptional fibres are

contained in the fibres of the ruled fibration -ﬂ‘:Xg-~—-—~e»B,

Proof, . The.faet sthat X is ruled follows (as in case of rational -surfaces)
from [20], page 77. However, one can also give the following direct argument. The

Leray spectral sequence of the morphism u yields the formula

=

0 ) ) - dmRafo. ),

and since )X(OX ) = )K(OX sl -0l b, we oot QQ(OX,) Op i )x X')<~’o, the clas-
o

ot

sification of surfaces c [fi]) implies that Ag is ruled, Consider therefor

the caoe_)K r‘) = 0y Which occurs iff g = 1 and XO has at most rational singula-
Pities, o proge that X' is ruled also in this case, consider the Albenese fibra-
tion Albl(X/T (of C5j proofusf the {theorem; see [a1]for the definition and the

'‘basic properties of Alb (X/T)), which fits in the commutative diagram

Wt

1 . b
Since £1b  (X/T) is compatible with the base-change, g (t) is isomorphic to

the Albanese variety Alb(X ) of the surface Xt' Since the general fibre of the

1
morphism h Xt—--——?-11b(x ) (induced by h) is P~ for every t # o, the general

o+

1 1
fibre of h istaloe P L .lheprefore.the peneral fibre of hO:XO-—~f~—~9>A1b(XO) HESTRRE

because it is at any rate smooth. It follows that the general fibre of the com-

it : :
position heu : X! ?'Alb(Xo) is P, and then the Nosther-Tsen criterion of
ruledness (see CG:] implies that X' is rﬁled' ~as required,
AS soon as we know that X' is ruled, part lll, follows easll In fact we hawve

1
din R .uf(ox;))f ) - /'x(ox, < —}(oxé % —-_l, where g' = q(X!).

in part*lil”r, X"ls not ratlonal s 86 Qoo ioL L E D X‘ WOul&‘haQeva non-rational
singularity x, 1t should exist an irreducible component E of the fibre u 1(x)
which is not contained in the fibres of the ruled fibration W’(see step 1 in the
proof of theorem (16) or lemma 7 in [2]). Then necessatily 1 (E)2rqa', and hence

1
dim¢R u*(o p (E)Y>» q', which contradicts the above inequality., Therefore X



L

has only rational sing ~ularities, q = q' and all the exceptional fibres of u are .

contained in the dugenerated fibres of x. %

1t remains to prove i). Since X hes only rational singularities and the di-
0

visor class group of a rational singularity is finite (se2 ¢€.g&. Eif}]), there is a

-

positive integer ay ! such that CL)"(, ) is invertible, If Da is the sum of the &a-
o

dualizing divisors of the singularities of ,A-O, we have (see [[}D

¥ na‘) r~ e} AN s
v ((,L)’X )= ® _‘(m;a) for every n21l,
o .
and Supp(Da) is conteined in the fi'ures of W . On the other hand, since X.' is ruled,
CU‘X| = Ox'(-»?.c)@OX (D), with D a divisor whose support is contained in the fibres
o o 0

of M, and ¢ & section of ey Comparlno' these two equalities we get

£ (n&\ s
1 (CU'X )= OX' (—2C+nD - nad).
o o

Since Suop(xJ) +neD) is cont2ined in the fibres of T and C is a section of W,
(
N =

‘nD +naD)!= ,&75 for every nyl,. or.else ’Ona (}’;_o) = o for every

S@ply 1) ave R ELD,

(19) Construction of certain normal de generations of surfaces, The method of
constructing normal degenerations of surfages we.are, going %o describe is classi-
cal and known in thé modern literature as the "sweeping out of the cone with hy-
perplane sections" method (see 241, page 45). e

S-térf with a smooth projective surface F, & very ample line bundle L on F and
a smooth curve Y belonging to the complete linear system IL\ We shall assume that
|L[ yields an arj thme‘;,iéally‘ Cohen-~Macaulay embeddir‘:g o= :’\_L:F o > PN (with

N = dim|L|). Then there is & nyperplane H of Pl sl ¥hat Y ~ B OM det c(F.1) e
the projeciive cone over F in PN+1 (i.e. with respect to the embedding i), and H'
the hyperplane "“at infinity" of“P +1. Then H is a 2 codimensional linear subspac

of PN+1, which generates the pencil {H%tc 4 of all the hyperplanes of PN o con-
taining H, We may assume that the parametrization is taken in such a way that H |
is the hyperplane 01" this pencil passing through the vertex _of G(F,;)' and H = H',
Then for every tCP {o} H, Nc(r,i) is momo*ph;c to ¥, while H f'} (F,i) is just
the cone C(Y,i') over Y wit-h respect to th nbeddlﬁg-af Y c_..--—————-—¢-H PN—l, Since

. ‘ N
we assumed that F is arithmetically Cohen—iacaulay.in P, Y is arithmetically nor-

—1
mal in PI\ , and hence the cone c(Y,i'): is normal.

1 ak
In this way we got a family f1X - > T = & =aRi= {00} such that X't =z F

for: & 0. and X 72 ClY,i'), 2nd moreover satisfying all the assumptions of (l)
9 o 8 9
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This family is in‘'fact an embedded family of surfaces in PN, 1.2, f fits into a

commutative dizgram of the form

-

: : N
X d > Ty P
1
\T

with j @ closed immersion,

2
(20) Normal degenerations of P In the constructlon described in (19) talke

P = Pz, L ;,OPz(s) with 321, end- Y a smooth plane curve of degree s, Therefore

we gct an embeddcd family f: K-—-—~"—+ =_Al of surfaces of depreﬂ,s? in P (Nlth

e .ﬁii_l )’ such that x P2 for every t #£ o, and X = C(Y,v ), where v, is the

6

: 2
restriction to Y of the s-fold Veronese embedding P <;———-%-PN, ILEE S e e
: , o
- :
of course (isomorphic to) P” itself.
We suspect that these cones ‘are (up to isomorphism) the only normal degenera-

tions,of'Pz.»For the moment we are only able “to prove the following result:

(21) Theorem, In the situation of (1), assume that Xt is {isomorphic to) P2

for one (and hence for all) 4 £ o, Then the conclusions i) - iv)' of theorem (16)

g : :
hold, K (X') =2, and X _ is the anticanonlcal model of X! (1n Yhe sense of [24]if

: Xé is rational, and EZC71f X! as ruled non—ratlonal). moveover, there is a posat“L

integer a 21 'such that ch( ig an a“Dle invertible ‘sheaf, or eauivalcntly (see

.[?J) the anticanonical rlng of" X' Q; H (X O (_

) is a finitely generated
n=0 »

X')/

g:_algebra; IR Xo'is Gorenstein, then XO is ;somorphlc edther to Pz. or to an eliip~

tic cone C(Y,v')_of degree 9 in P9 (with Y a smocth cubic plare curve).

Proof, The first part of the theorem follows from theorem (16) and remark (17)

e), observing that S’)( b (XO) = 1, Let us prove now tnat.vhere is a positive

a)®

/\

is .invertible. Let L be a f-ample line bundle on X,

>

integer a> o such that 454
: = Gitol : .
Then L, ='L®OX is of the form OPz(a) with a>o, and the base-change theorems imply
t -

' - g a
that.a is independent offit % 0, Consider.then the sheaf ¥ = (Jqé )QQQLB, which tg ye
flexive of rank one and f-flat, By the definition of F we have F g ¥ 0, for.every
fu
t £ o, Since H (OX ) = o for every t, by EGA III (4.6.5) we infer that s 8hrinking
‘ X f 't AN
T a little bity F/K-—X 2o /x-x .+ Let XseeasX be the singular points.of X,, and

CBet U = XX L. 3 and U = U(\x . Then U is smooth, U is an effective irredu-
: I 5} o 0 oF i

divisor on U, F/U is invertible and F/U-U & OU/U—UO. Therefore there is an integer
o .



m € Z such that F/UF O (mU ). Since o, (mX /U= o0 a(mU )y 0 (mx ) is invertible.,

Bas reflex1ve and X-U is a finite set of points, F is isomorphic to O (mX ), and

(a)

in particular; F is invertible, or else CLT is olso iuvertible. I% fullOWu that

, | -
(,L)’}((a)/xo is invertible, and recalling that ak)g ) is the double dual of a”( )/XO,

o
a : :
we infer that Ojé ) is invertible and coincides to (17; )/XO; Moreover, since

A : (a)

Oj(a)/Xt is not ample for every t # o, EGA III (4.7.1) implies that af

. : : (-2)

ample, On the other hend, since -g(xo) =1, CLfX
(¢
lary 8\inlfgj one can daduce once again that X is the anticanonicadl moael of X‘,

cannoet; be

O
is necessarily ample, By corol-

and, moreover, that the anticanonical ring of K' is a finitely generated € -algcora,
Assume now that Xo is Gorenstein ., First of all we show that XO cannot have

any rational singularity. If this is not true, every rational singularity of XO is

a rational double point because XO is Gorenstein., Then we can apply a result Qf‘

Brieskorn-Tjurina (see e. g. El5j§3) and get a simultaneous reswvluticr of all ra-

tional dbuble points of XO, i,e, we can find & cemplex neighbourhood T' of o ip. T

and a commutative diagram of complex spaces:

6 ?

—> T

such that g #s proper and flat, ?> igifinite and surjectiye,'Yf_is proper and sur-

; ) =3 ;
jective, and W, : g (t) = e > ! (Ll?(t)) = x o is the minimal desin-

gularization of all rational double points of X (+) (if any) for every t& 7", In:
paerticular, this means that X% is & projective surface for every t€T", and if Wt

is the locus of all rational double points of X then the restriction

¢(t)’

X! W )——————> X W is an isomorphism,
o i 5 (+)” ar - :
Returning %o our spo01al bltuathﬁ we get that for every tie P such thet TKt ) £
2
¥ (o] X' je 4AsomorphicitoiP , while for every o € T" such thzt %)(o ) = 0, %L s
o

the mlnlmal d681ngularlzat10n ofinall rational double points of X . We obtein a con-
o

s-

tradlotlon epplying (a sllghtly modified version of) propOS1t10n {5) together.with
the observation that ?(X' = § = 1, because then Xé' cannot fit in the
same family with P

Therefore XO is either smooth (in which case it.is clearly isomorphic to P2),

or has only: non-rational simgularities, In the latter case X is Gorenstein and
o

o is ample (because (er

- is invertible and we nave shown that there is an a2l

0. o e = |



=5
=85 4
such that CO’ is ample). But the classification of these surfaces is' krown (see

[?oj'or[%él Since X has at least one non-rational ﬁlngularlty, from *him clagsi-~
fication we read that X is an elliptic cone, (One could deduce that X is an el-
liptic cone also dlrcctly, by using only the information given by thcorem (16) to—
gether with the argument of the proof of theorem (22) below,) The degree of this

cone can be easily calculated:

2(3) = 9.

-1 -1 . -1 -1
d = ° == - ° X = 3
_ wxo w, W .y ()Pz,(j) 0,

o o 1
The proof of theorem (21) is complete, Q.E.D.

(22) Theerem, In the gltuatlon of (1), assume that XO is Gorenstein and the -

general fibre X, is @ ratlonal surface, Then X is either rational (i.e. X' 18 ra..
o

tional) with at most rationzl double points as Sipeularidtics or X'is muledien
; o

irregularity. one and X has precisely one simple elliptic singularity x and (pos-—
= 0

sibly) finitalv many rational double points. In the latter case the support of the

fibre u - (x 1s 2 section of the ruled fibration T , and.the fibres of u over the
e e, 2 =

rational double points of X are contadined. in the degenerated fibres of 7T,
: o e

ProofidisIf Xc; is Gorenstein we have pn()(o) = o for ewvery n}l (even if Ki<o,
see Wilson [Qéﬂ). Then theorem (22) follows from the classification of Gorenstein
surfaces with vanishing plurigenera (see [d], theorem 14, or [23]). Therefore the-
orem (22) is a simple consequence of some known results énd is igdépendent of thex
thecry developed in this paper, However, .this theorem was the starting point in
our investigation of normal degenerations of ratiocnal surfaces (more precisely; we
got interested in'such kind of problems by trying to answer a quéstion raised by
. Catanecse concerning the normal degen@rationé of PlfiPl)r

On the other hand, theorem (22) can be also deduced using only Wilson's result
quoted above, theorem (16) and a few standard arguments concerning the Gorenstein
non-rational singularities, as follows. mverythln is clear except the facts that,
16 Xé is non-rational and x is the only non~ratlond1 singularity of X o then the
irregularity of Xé is one and the fibre u (x) is 11redu01ble

To prove these two facts, let D be the 1-dvalizing:divisor of_(Xo,x). Since
(Xo,x) is Gorenstein D can be simply‘definednby;$basfdrmula (see [4])

X :
u (wx ) ';'CUX@OX,(;)_).

0 ) o
oo ek
Since CU% is invertible it follows easily that D>o, Supp(D) = Supp(u (x))
# :

and Cub’Z'O . By Wilson's result we can apbly theorem (16) even if Ki<fo. Let B

D o]



be the section of ft given by theorem (16)., Everything will be proved if we show
; =1
that D = E (the irr-ducibilisy of u (x) being clear, while the fact that Eo is
5 . ;

an elliptic curve coming from *he equality (15.= OD). In any case we have DZ&EO.

Setad = D_EO. If Y> ¢ we have the exact sequence (compars Withl}%], proposition 1.3)

e —> Oy(—-h;o) ,OD > OEO——-——‘—>,» Oy

which yields the exact =squence of cohomology

s el (s e Sl i
¥o—do D R
o} 0
Slnce the first map is surjective and the last one an isomorphism (since the

HO(OD)—-————‘%HO(OE Yol —————-—>H1(O (

geometrlu genus of (XO,X) is pa(Eo)), we get H (O :—L )) = o.
On the other hand, —Eb Y-D togsthpr with the def1n1tlon of D and the fact

Y bl invly that o (-5 ) EFL ® 0, (Y)®O , and therefore
O ]
‘ 1

X
. i 1
OY(_EO)/g CU% . Therefore H (O (—n }) = B \CU’), and by ﬂudllty on Y H (Oy(—E ))x

Q'HO(OY) % o, & contradiction. Therefore Y = 0, or else Eo = D, QB D,

B
L4

e Jeonl
(23) It is well.known that every smooth deformation of P X P is isomorphic to
the surface F2 = F(OP16}OP1(~2e)) for some e o. Theorem (22) together with a dis-
e

cussiorn which is quite similar to the lasi part of the proof of theoren (21) yield:

1 is
(24) Corollary. Thre only normal Gorenstein degenerations of P X P are (up to

isomorphism) the follcwing: F

: ; 3 heaty
} e>o), the quadratic cone in P or an elliptic
Je v 9 2) B 44

cone of degree 8 in P .

(25) Some open guestions., a) In the 81tuat10n of (1), is it true that P (X e
:%pn(Xt) fof'éyéry'rﬂal and t £ o ?

The answer to this question is yes in the following cases: XO smooth (even if
one deals with analytic deformations, see Iltaxa[}ﬂ), or K Gorenstein and the Ko-
daira dimension of Xt is £ 1 (see Wilson B&ﬂ), or XO normal and either n = 1, or
X, ruled and n3z 1 (but Ka>-o if X, is rational, see theorems (16) and (18) above).

b) Is it true that the only degenerations of P2 are the conés fron. (20).?

c)" The same question as b) but for P;X Pl.

" 'The answer to questions b) and c) is yes if X is Gorenstéin (theorem (21) and
corollary (64)) Question c) was raised by F. Catanese (private discussion).

Independently of thé problem of degenerations of surfaces, one can formulate:

d) Give a classification of all normal projective surfaces I with pn(Y) =.0

for every n2l (and eventually q(Y) = o) generalizing the situation from the Go-

renstein case (sega Eal o Df’:{ﬁ.
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