INSTITUTUL DE MATEMATICĂ INSTITUTUL NAȚIONAL PENTRU CREAȚIE ȘTIINȚIFICĂ ȘI TEHNICĂ

ISSN 0250 3638

NATURAL LOCALIZATION AND NATURAL SHEAF PROPERTY
IN STANDARD H-CONES OF FUNCTIONS (II)

by

PREPRINT SERIES IN MATHEMATICS

No.45/1984

BUCUREȘTI

11. 12.56

NATURAL LOCALIZATION AND NATURAL SHEAF PROPERTY IN STANDARD H-CONES OF FUNCTIONS (II)

N. Boboc and Gh. Bucur 2.

July 1984

by

¹⁾ University of Bucharest, Faculty of Mathematic, Str. Academiei nr. 14, 70109 Bucharest, Romania.

²⁾ Department of Mathematics, National Institute for Scientific and Technical Creation, 79622 Bucharest, Romania.

NATURAL MOCALIZATION AND MATURAL SHEAF PROPERTY IN STANDARD H-COMES OF FUNCTIONS (II)

· by

N.Boboc and Gh.Bucur

II. Natural sheaf property and axiom D on a standard H-cone of functions

In this part we deal with the study of the property that the map

$$G \longrightarrow S'$$
 (G)

given on the set of all open subsets of X is a sheaf. We call this property, natural sheaf property.

We prove that the fact that one of the maps

$$G \longrightarrow S'(G)$$
, $G \longrightarrow S(G)$

given on the set of all fine open subsets of X is a sheaf implies that the other is also a sheaf and this hapens if an only if S satisfies axiom D.

We prove also that the fact that the map

$$G \longrightarrow S(G)$$

given on the set of all open subset of X is a sheaf is equivalent with the fact that axiom of polarity and natural sheaf property hold on X. This result allows us to assert that for any open subset G of X the standard H-cone S'(G) of functions on G (and not S(G)) must be taken as the local structure on G associated with S.

We prove that if the natural sheaf property holds on X then for any two open subsets G_1 , G_2 of X such that $G_1 \cup G_2$ we have

$$_{\rm B}^{\rm G_1}{_{\rm B}}^{\rm G_2}{_{\rm =B}}^{\rm G_2}{_{\rm B}}^{\rm G_1}$$

We call this last assertion axiom $D_{\rm o}$ on X. We show that axiom $D_{\rm o}$ strongly depends on the representation of S as standard H-cone of functions, namely, axiom $D_{\rm o}$ holds on the set $X_{\rm u}$ for any weak unit u of S iff axiom D holds on S.

some other characterisations of axiom D are given. One of them go to the "old" meaning of this axiom introduce by Brelot in the framework of harmonic spaces. Namely, if S satisfies the natural sheaf property then axiom D holds on S iff any universally bounded element of S is the sum of a sequence of universally continuous elements of S.

3. Natural localization and axiom Do in standard H-cone of functions

In this part S will be a standard H-cone of functions on a set X. We remember that we denote by X_1 the saturated of X and by S_1 the standard H-cone of all functions on X_1 obtained by the natural extention of each function from S to a function on X_1 .

More generally if Y is a set such that

$$X \subset Y \subset X_{\underline{1}}$$

then any element ses may be naturally extended to a function son y and the set

$$S_{Y} := \left\{ \bar{s} : Y \longrightarrow R_{+} | s \in S \right\}$$

is a standard M-cone of functions on Y.

If A is a subset of Y and ses we put

Proposition 3.1. a) For any subset A of X and any s ∈ S we have

$$Y_B^A = (B^A s)$$
 or equivalently $(B^A \bar{s}) \mid_{X} = B^A s$.

b) If G is a fine open subset of y and ses then

$$^{Y}B^{G}s=(B^{G \cap X}s)$$
 or equivalently $(^{Y}B^{G}\overline{s})$ $\Big|_{X}^{=B}X \cap G_{S}$.

and any $s \in S$ we have

$$Y_B^{A_{\overline{s}}} = (B^{A \cap X_S})$$
 or equivalently $(Y_B^{A_{\overline{s}}}) \mid_{X} = B^{A \cap X_S}$.

proof. a) Let A and s as in the point a) and let t & S.
Certainly we have

and therefore

$$(\bigwedge \{t \in S \mid t \geqslant s \text{ on } A\}) = \bigwedge \{\overline{t} \in S_{y} \mid \overline{t} \geqslant \overline{s} \text{ on } A\}$$

b) If G is a fine open subset of Y then the fine closure $\overline{G \cap X}^f$ in Y of the set $G \cap X$ coincides with the fine closure in Y of G since in the contrary case we have the following relations

$$\emptyset \neq G \setminus \overline{(G \cap X)}^{\sharp} \subset Y \setminus X$$

which contradicts the fact that S is a standard H-cone of functions on X.

of Y \times X is polar with respect to S_{γ} . It is sufficient to prove the assertion c) for a borel subset A of Y. We know that there exists a borel subset M of Y such that A \wedge X \subset M and such that

$$Y_B M = Y_B A \cap X$$

Since the set A \ M is a borel part of y contained in Y \ X it is a polar subset of y and therefore

$$Y_B^A \leq Y_B^M = Y_B^A \cap X \leq Y_B^A$$
.

Corollary 3.2. If X is semi-saturated then the axiom of polarity holds on X iff the axiom of convergence holds on S.

S HA ...

proof. It is sufficient to use the assertion c) of the preceding proposition and Theorem 5.6.3 from [3].

Theorem 3.3. If X is semi-saturated with respect to S then the following assertion are equivalent:

- 1) S(D)=S'(D) for any open subset D of X,
- 2) S(D)=S'(D) for any fine open subset D of X,
- 3) the axiom of polarity holds on X.

Proof. Ine relation 3) \Longrightarrow 2) follows from the fact that for any subset A of X the map B^A is a balayage on S.

The relation $2) \Longrightarrow 1)$ is obvious.

1) => 3) Let F be a closed semipolar subset F of X. Since

$$S(X \setminus F) = S'(X \setminus F)$$

we deduce that for any ses, see we have

Noting β (F) the essential base of F we get

and therefore using ([3], proposition 5.1.2 and 5.1.4) we deduce that there exists $s' \in S$, $s' \leq s$ such that

Since F is semipolar we get $\beta(F) = \emptyset$ and

$$s-B^{F}s=s'-B^{G(F)}s'=s'$$
 on X.

Thus

$$B^{F}s \lesssim s$$
 (\forall) $s \in S$

and therefore

for any ses and any tes such that

t=s on F

Let now G be a fine open subset of X such that FCG. We have

(W) ses

and therefore

(Y) s & S

Hence for any ses we have

$$B^{G}B^{F}S=B^{F}S$$

for any fine open subset G, GDF and thus we get

$$\cdot B^{F}(B^{F}s) = B^{F}s$$

(Y) S.ES. " 5

· H H 9= 5 5

From this fact it follows that B^F is a balayage on X with respect to S whose base lies in F. Hence $B^F=0$ and therefore F is polar. Using Proposition 3.1 c)- and ([3]) Theorem 5.2.1; we deduce that for any Borel subset A of X we have

$$B^{A}=V\{B^{F}|F \text{ closed}, F \in A\}$$
.

From this fact and from the preceding considerations we get that any Borel semipolar subset of X is polar.

Definition. If S is a standard H-cone of functions on a set X we say that S (or the pair (S,X)) satisfies $\underline{axiom}\ D_O$ if for any two open subsets G_1 , G_2 of X we have

$$B^{G_1}B^{G_2}=B^{G_2}B^{G_1}$$

whenever

$$G_1 \vee G_2 = X$$
.

Remark. In the sequel we shall prove that if X is nearly saturated with respect to S then the H-cone S satisfies axiom D iff for any two fine open subsets G_1 , G_2 of X we have

$$B^{G_1}B^{G_2}=B^{G_2}B^{G_1}$$

whenever

$$G_1 \cup G_2 = X$$
.

Proposition 3.4. a) If axiom D holds for the pair (S,X) it holds also for the pair (S_1,X_2) .

b) If axlom D_0 holds for the pair (S_1,X_1) it holds for the pair (S_Y,Y) where Y is an arbitrary semi-saturated subset of X_1 .

of Proposition 3.1.

b) Let Y be a semi-saturated set with respect to S_Y (YCX1), let G_1 , G_2 be two open subsets of X1 such that YCG1UG2 and let p be a finite continuous element of S_1 . Since the set

$$M:=X_1\setminus (G_1\vee G_2)$$

open subsets of X, such that

$$\bigwedge_{n}^{1} B^{D} n_{p=0}$$
 and $M \subset D_{n}$ (W) $n \in \mathbb{N}$

For any n EN we have

$$(G_{1} \cup D_{n}) \cup G_{2} = X_{1} ,$$

$$1_{B}^{G_{1}} (1_{B}^{G_{2}} P) \leq 1_{B}^{G_{1}} \cup D_{n} (1_{B}^{G_{2}} P) =$$

$$= 1_{B}^{G_{2}} (1_{B}^{G_{1}} \cup D_{n}^{D_{n}} P) \leq 1_{B}^{G_{2}} (1_{B}^{G_{1}} P) + 1_{B}^{D_{n}} P .$$

and therefore

$$||\cdot||_{B}^{G_{1}}(||\cdot||_{B}^{G_{2}}p) \leq ||\cdot||_{B}^{G_{2}}(||\cdot||_{B}^{G_{1}}p)$$

The element p being arbitrary we get ${}^{1}B^{G_{1}}({}^{1}B^{G_{2}})={}^{1}B^{G_{2}}({}^{1}B^{G_{1}})$.

The assertion follows now using Proposition 3.1, Point b).

<u>proposition 3.5.</u> Suppose that X is semi-saturated with respect to S. Then the following assertions are equivalent:

X such that GDF we have

$$B^{G}B^{F}=B^{F}$$
.

b) For any open subset G of X and any subset A of X such that G) A we have

$$B^{G}B^{A}=B^{A}$$

c) For any open subset G of X and any $x \notin G$ the H-measure $(B^G)^*(\mathcal{E}_x)$ doesn't charge any semipolar subset of G.

proof. a) \Rightarrow c). Let G be an open subset of X and let for any x \in X \subset G, $\bowtie_{\mathbb{R}}$ the H-measure $(B^G)^{\#}(\mathcal{E}_{\mathbf{X}})$. Since any totally thin subset of G is contained in a Borel totally.

metrisable then for the proof of c) it is sufficient to show that

$$\mu_{x}(F)=0$$

for any closed totally thin subset F of X, FCG. In this case if P is a bounded generator of S then

$$B^{F}p(y) \angle p(\theta)$$
 (V) $y \in X$.

Let now $(G_n)_n$ be a decreasing sequence of open subsets of G such that

$$F \subset G_m$$
, $G_{n+1} \subset G_n$, $\inf_n B^{G_m} p(x) = B^{F_m} p(x)$

If we denote

then we have gon Fp ,

$$\mu_{\mathbf{x}}(\mathbf{g}) = \inf_{\mathbf{n}} \mu_{\mathbf{x}}(\mathbf{B}^{\mathbf{G}}_{\mathbf{n}} \mathbf{p}) = \inf_{\mathbf{n}} \mathbf{B}^{\mathbf{G}}(\mathbf{B}^{\mathbf{G}}_{\mathbf{n}} \mathbf{p}) (\mathbf{x}) = \inf_{\mathbf{n}} \mathbf{B}^{\mathbf{G}}_{\mathbf{m}} \mathbf{p} (\mathbf{x}) = \mathbf{B}^{\mathbf{F}}_{\mathbf{p}}(\mathbf{x}).$$

Since by hypothesis

$$/ \lambda_{\mathbf{x}} (\mathbf{B}^{\mathbf{F}} \mathbf{p}) = \mathbf{B}^{\mathbf{F}} \mathbf{p} (\mathbf{x})$$

we get

$$M_{*}(g-B^{F}p)=0$$
,
$$M_{*}(R^{F}p-B^{F}p)=0$$
,

and therefore

$$\mathcal{M}_{*}((P-B^{\Gamma}p)1_{F})=0$$
,
 $\mathcal{M}_{*}(F)=0$.

c) \Longrightarrow b) Let A and G as in b). Obviously we may suppose that a closed subset F of X, F G such that

ACF.

In this case we consider an open subset G_{0} of X such that

For any p.c.s. we chose a decreasing sequence $(\mathcal{G}_n)_{n\in\mathbb{N}}$ of open subsets of X such that

$$A \subset G_n \subset G_0$$
 (\forall) $n \in N$

and such that

We have from ([3], Corollary 5.1.7)

$$B^{A}_{p} = \bigwedge_{n} B^{G}_{p} = \inf_{n} B^{n}_{p} \quad \text{on } X \setminus \overline{G}_{0}.$$

From hypothesis we deduce that for any $x \notin G$ we have

$$B^{G}(B^{A}p)(x) = \mu_{x}(B^{A}p) = \mu_{x}(\inf_{n} B^{n}p) = \inf_{n} \mu_{x}(B^{n}p) = \lim_{n} \mu$$

where \mathcal{M}_{x} means the H-measure $(B^{G})^{*}(\mathcal{E}_{x})$.

Theorem 3.6. Let S be a standard H-cone of functions on a semi-saturated set X. Then the following assertions are equivalent:

- 1. S satisfies axiom D ...
- 2. For any closed subset A of X and any $x \in X \setminus A$ the H-measure $(B^A)^*(\mathcal{E}_X)$ is carried by the natural boundary of A.
- 3. For any open subset G of X, any tes, tem and any $s \in S'(G)$ such that

$$\lim_{C \to x \to \hat{y}} \inf s(x) \ge t(y)$$

the function $s-B_t^{X \setminus G}$ belongs to S'(G).

- 3'. The same assertion as in 3) but for any $s \in S'.(G)$ of the form $s=u \mid_{G}$ where $u \in S$.
- 4. For any open set G of X, any $s \in S'$ (G) and any $t \in S$ such that

lim inf
$$s(x) \ge t(y)$$
 (V) $y \in \partial G$, $G \ni x \rightarrow y$

the function

$$s'(x) := \begin{cases} t(x) & \text{if } x \in X \setminus G \\ \text{inf}(t(x), s(x)), & \text{if } x \in G \end{cases}$$

belongs to S.

the form s=u $\Big|_{G}$ where $u \in S$.

5. For any G, s, t as in the proceding point 4) we have

$$s(x) \geqslant B_t^{X \setminus G}(x)$$
 (\text{\text{\$\text{\$Y\$}}} x \in G.

5'. The same assertion as in 5) but for any $s \in S'(G)$ of the form $s=u \mid_G$ where $u \in S$.

proof. 1) \Longrightarrow 2) Let p be a finite continuous generator of S and let D be an open subset of X such that $\overline{D} \subset A$. Since $p=B^{X} \setminus \overline{D} p$ on $X \setminus \overline{D}$ then the function $\overline{B}^{X} \setminus \overline{D} p$ is continuous on a neighbourhood of A and therefore, using axiom \overline{D}_{O} , we have for any $x \in X \setminus A$,

$$B^{A}(B^{X \setminus D}p)(x) = R^{A}(B^{X \setminus D}p)(x) =$$

$$= \inf \left\{ B^{G}(B^{X \setminus D}p)(x) \middle| G \text{ open, } G \supset A \right\} =$$

$$= \inf \left\{ B^{X \setminus D}(B^{G}p)(x) \middle| G \text{ open, } G \supset A \right\} =$$

$$= \inf \left\{ B^{G}p(x) \middle| G \text{ open, } G \supset A \right\} = B^{A}p(x).$$

Since for any x \in X \A, (B^A)* (\mathcal{E}_{x}) is an H-measure carried by A from the above considerations we get

$$(B^A)^*(\mathcal{E}_x)(p-B^{X\setminus\overline{D}}p)=0$$

and therefore the measure $(B^A)^*(\mathcal{E}_X)$ doesn't charge the set $\left[p>B^{X\setminus\overline{D}}p\right]$ which contains D. The open subset D being arbitrary we deduce that the measure $(B^A)^*(\mathcal{E}_X)$ is carried by ∂ A.

2 \Longrightarrow 3. We suppose that t is finite, continuous and we denote, for any n \in N,

$$G_{n} = \{x \in G \mid s(x) + \frac{1}{n} > t(x) \}, \quad D_{n} = G_{n} \lor (X \land G)$$

Obviously \textbf{G}_n , \textbf{D}_n are open subsets of X and

$$\partial D_n \subset G$$
, $\partial G \subset \overline{G}_n$

We consider an open set ${\tt G_o}$ such that $\overline{{\tt G_o}}\,{\tt C}\,{\tt G}$ and a sequence ($\overline{{\tt V_n}})_n$ of open sets such that

$$\overline{V}_{n+1} \subset \overline{V}_n$$
, $\overline{V}_n \subset D_n$, $\overline{V}_n = X \times G$
 $\overline{G}_0 \cap \overline{V}_n = \emptyset$, $\overline{N}_n \subset \overline{V}_n = X \times G$

Using Proposition 2.3 [1] we have for any $u \in S$, $u < \infty$

$$V_{n_{u=B}} V_{n} \cap G_{(u-B} X \setminus G_{u)+B} X \setminus G_{u}$$
 on G.

For any $x \in G_o$, let \mathcal{M}_x be the measure on $\ensuremath{\,\overline{\!\mathcal{O}}}\xspace \bigvee_n$ such that

$$\mathcal{M}_{\mathbf{x}}(\mathbf{p}) = \mathbf{B} \mathbf{V}_{\mathbf{p}}(\mathbf{x})$$
 (\forall \text{p} \cdot \mathbf{p} \in \mathbf{s}.

Using proposition 3.5 we deduce

$$\overline{V}_{n}_{(B}X \cdot G_{u)}(x) = B^{X \cdot G_{u}}(x)$$

and therefore

$$\int_{B}^{\sqrt{u}} G(u-B^{X \setminus G}u)(x) = \mu_{x}(u-B^{X \setminus G}u).$$

Hence

$$\widehat{B}^{V_{n} \cap G}(p|_{G})(x) = \mu_{x}(p|_{G}) = B^{V_{n}}p(x). \quad (\forall) \quad p \in S.$$

since $s+\frac{1}{n}>t$ on $\sqrt{n} \cap G$ and using ([1] Theorems 2.1, 2.4)

we get

$$(s+\frac{1}{n}-B^{V_{n_{t}}})$$
 | $G_{o} = (s+\frac{1}{n}-B^{V_{n}}G_{t})$ | $G_{o} = (s+\frac{1}{n}-B^{V_{$

and therefore

$$(s-B^{X \setminus G}t) \setminus G_o \in S'(G_o)$$
,

From the remark at the proposition 2.2 we deduce

If tes is arbitrary, two then we take a sequence (t_n)_n in s_0 , increasing to t. We have

$$(s-B^{X \setminus G}t) = \inf_{n} (s-B^{X \setminus G}t_{n}) = \inf_{n} (s-B^{X \setminus G}t_{n})$$

i.e.
$$s-B^{X\setminus G}t \in S'(G)$$
 . $s-L$

3) \Longrightarrow 4) and 3') \Longrightarrow 4'). Suppose t finite and continuous. We consider a sequence $(\nabla_n)_n$ of open sets such that

From hypothesis we have

$$(s-B^{X \setminus G_t}) \mid x \setminus \overline{V_{n+1}} \in S(X \setminus \overline{V_{n+1}})$$
 (Y) $n \in \mathbb{N}$

and therefore there exists u ←S; u ← ∞ such that

$$(s-B^{X\setminus G}t) \wedge (t-B^{V_n}t) = u-B^{V_n}u$$
 on $d(B^{V_n})$

Hence, we have $u-B = V_n = V_n = V_n$ tes and therefore the function

$$\frac{s_n(x) := \begin{cases} \inf (t(x), s(x) - B^{X \setminus G} t(x) + B & \nabla^n t(x) \end{cases} \text{ if } x \in d(B^{V_n})}{B^{V_n} t(x)} \\
\frac{s_n(x) := \int_{B^{V_n} t(x)} d^n t(x) & \text{if } x \notin d(B^{V_n}) \end{cases}$$

belongs to S. Passing to the limit we get

$$\lim_{n} s_{n}(x) = \begin{cases} \inf (t(x), s(x)) & \text{if } x \in G \\ t(x) & \text{if } x \in X \setminus G. \end{cases}$$

Since the function on X

$$x \rightarrow \lim_{n} s_{n}(x)$$

is a finite lower semicontinuous fonction, from ([1] Lemma 1.3), we deduce that it belongs to S. If t is arbitrary we consider a sequence $(t_n)_n$ in S_0 increasing to t and for any new we denote

$$s_{n}(x) := \begin{cases} \inf (t_{n}(x), s(x)) & \text{if } x \in G \\ \\ t_{n}(x) & \text{if } x \notin G \end{cases}$$

From the above considerations $s_n \in S$ for any n and therefore, the sequence $(s_n)_n$ being increasing to the function s' on x defined by

$$s'(x) = \begin{cases} inf(t(x), s(x)) & if x \in G \\ t(x) & if x \notin G \end{cases}$$

we deduce s' 4 S.

The relations $3) \Longrightarrow 3'$, $4) \Longrightarrow 4'$, $5) \Longrightarrow 5'$, $4) \Longrightarrow 5$) and 4') $\Longrightarrow 5'$) are obviously.

 5°) \Longrightarrow 1). We show that $B^{\circ}B^{\circ}B^{\circ}S > B^{\circ}B^{\circ}S \wedge B^{\circ}S$ for any $S \in S$. Indeed, the inequality is obvious on G_1 . Let $u \in S$ be such that $u > B^{\circ}S > C$. By hypothesis the function

$$t(x) := \begin{cases} inf(u(x), s(x)) & \text{if } x \in G_2 \\ s(x) & \text{if } x \in X \setminus G_2 \end{cases}$$

belongs to S and the B s. Hence

$$u(x) \ge B^{G_1} s(x)$$
 $(\forall) x \in G_2$, $G_1 G_2 s(x) \ge B^{G_1} s(x)$ $(\forall) x \in G_2$, $G_1 G_2 s(x) \ge B^{G_1} s(x)$ $(\forall) x \in G_2$, $(\forall) x$

and therefore $B^{1}B^{2}=B^{2}B^{1}$.

Corollary 3.7. If X is semi-saturated with respect to S and if S satisfies axiom D_0 then for any closed subset F and any open subset G of X, Fc G we have

$$B^{G}(B^{F})=B^{F}$$
.

proof The assertion follows from Theorem 3.5 (1) \Longrightarrow (2) using Proposition 3.5.

Theorem 3.8. If X is semi-saturated with respect to S and if S satisfies axiom $D_{\rm O}$ then for any open subset G of X the standard H-cone of functions S'(G) on G satisfies also axiom $D_{\rm O}$.

<u>proof.</u> From ([1], proposition 2.5) we deduce that G is semi-saturated with respect to the standard H-cone of functions S'(G). Hence it is sufficient to show that one of the assertions 1) — 5) from Theorem 3.6 holds for S'(G). We shall prove that S'(G) verifies the assertions 4). Let U be an open subset of G and let $t \in S'(G)$, $s \in [S'(G)]'(U)$ be such that

$$\lim_{U \to x \to y} \inf s(x) \ge t(y)$$

where ou means the boundary of U with respect to G. We consider the function f on G defined by

$$f(x) = \begin{cases} inf(s(x), t(x)) & if x \in U \\ t(x) & if x \in G \setminus U \end{cases}$$

and we want to show that $f \in S'(G)$.

Since any tes'(G) is the limit of an increasing sequence of elements of the form $v-B^{X} \stackrel{G}{\longrightarrow} v$ where v is a bounded continuous element of S (see [1], Theorem 2.1) it is sufficient to show that the preceding assertion holds for t of the form

where v is bounded and continuous. Let now v' be an element of S such that v' > v on X . G. We have

lim inf
$$(s+v')(x) \ge v(y)$$
 (\forall year) $(\forall) y \in \partial U$
 $U \ni x \rightarrow y$

where OU is the boundary of U in X. Using the assertion 4) for the standard H-cone S we deduce that the function f, on X defined by

$$f_{v'}(x) = \begin{cases} inf(s+v')(x), v(x)) & if x \in U \\ v(x) & if x \in X \setminus U \end{cases}$$

belongs to S and

$$f_{v}$$
, $-B^{X^{N}G}f_{v}$, $=f_{v}$, $-r_{s}$ X $^{N}G_{v}$

Since on the set G we have . On the

$$\inf \{ v' \mid v' \in S, v' > v \text{ on } X \setminus G \} = B^{X \setminus G_{V}}$$

$$f = : \inf_{V'} (f_{V'} - B^{X \setminus G} V) = \begin{cases} \inf (s(x), t(x)) & \text{if } x \in U \\ t(x) & \text{if } x \in G \setminus U \end{cases}$$

and since f is lower semicontinuous we get that f belongs to $S'\left(G\right)$.

The following Lemma will allows us to improve Theorem 2.4 from [1].

Lemma 3.9. If the standard H-cone of functions S on a semi-saturated set X satisfies axiom D_0 then for any two subset A_1 , A_2 of X and for any ses we have

Proof. Obviously it is sufficient to suppose that $s \in S_0$. In this case we may assume also that A_1 , A_2 are G_0 —sets. Since X is semi-saturated then from proposition 3.1 c) and from ([3], Theorem 5-2-1) we deduce that for any Borel subset A of X we have

$$B^{A}s = V \{B^{F}s \mid F \text{ closed, } F \subset A\}.$$

Using this fact we see that it is sufficient to show that

$$_{\mathrm{B}}^{\mathrm{A}}_{1} \cap _{\mathrm{SVB}}^{\mathrm{F}}_{\mathrm{S}} \cap _{\mathrm{S}=\mathrm{B}}^{\mathrm{F}}_{\mathrm{S}}$$

for any closed set F, $F \subset A_1 \cup A_2$. Replacing $A_1 \cap F$ by

$$F \setminus (A_2 \cap F)$$

we may suppose that Alar is an Faset. Since

for any increasing sequence $(C_n)_n$ of subsets of X then we may suppose that $A_1 \cap F$ is closed. Repeating the preceding procedure we may also suppose that A_1 and A_2 are closed.

Let now slis265 be such that

$$s_1 \gtrsim s \text{ on } A_1$$
 , $s_2 \gtrsim s \text{ on } A_2$

and let f be the function on $X \setminus (A_1 \cup A_2)$ defined by

$$f = B^{A_1} s \sqrt{D^{A_2}} s + (s_1 - B^{A_1} s) + (s_2 - B^{A_2} s)$$

From ([1] Theorem 2-1 and Proposition 2.2) it follows that

On the other hand for any i=1,2, and for any

we have

Tim inf
$$f(x) \ge \lim \inf S_1(x) \ge S_2(x) \ge S_3(x) > S_4(x) >$$

Using Theorem 3-5 we deduce that the function t on X defined by

t(x)=
$$\begin{cases} inf (f(x),s(x)) & if x \in X \setminus (A_1 \cup A_2) \\ s(x) & if x \in A_1 \cup A_2 \end{cases}$$

belongs to s and moreover

$$t \geqslant E$$
 $A_1 \vee A_2$
s on X.

Hence

$$B^{A_1} S \vee B^{A_2} S + S_1 + S_2 \ge B^{A_1} \vee A_2 S + B^{A_1} S + B^{A_2} S + B^{A_1} S + B^{A_1} S + B^{A_2} S + B^{A_1} S$$

and therefore, the elements s_1 , s_2 being arbitrary,

Remark. For the case where S is the cone of all superharmonic functions of on armonic space the above Lemma was proved in [4].

Theorem 3-10. If the standard H-cone of functions S on a semi-saturated set X satisfies axiom $D_{_{\hbox{\scriptsize O}}}$ then for any two open subsets G_1 , G_2 of X, G_1 \subset G_2 we have

$$[S'(G_2)]'(G_1) = S'(G_1)$$

proof. Theorem 2-4 from [1] asserts that we have

$$[s'(G_2)]'(G_1) \subset s'(G_1)$$

As for the converse inclusion it is sufficient to show that for any $s \in S$, $s \leftarrow \infty$ we have

$$S-B = (S-B) - (G_2 \times G_1) \times (S-B) = (S-B) \times (S-B) = S$$

or equivalently

$$\begin{array}{c}
X \setminus G_1 \\
B
\end{array}$$

$$X \setminus G_2 \\
S + B$$

$$(G_2 \setminus G_1) \\
(S - B$$

$$X \setminus G_2 \\
S)$$
on G_1

The inequality

follows from ([1], Proposition 2-3). Let now t be an element of $S'(G_2)$ such that

$$t \geqslant s-B$$
 s on $G_2 \setminus G_1$

From ([1], Lemma 1.4 b)) we deduce that there exists $s' \in S$ such that

$$X \times G_2$$

 B $S \leq S' \leq S$ and $S'(x) = t(x) + B$ $S(x)$ (\forall) $x \in G_2$

Hence

$$X G_2$$

s' $\geqslant B$ s and s'(x) \geqslant s(x) \Rightarrow (\forall) $X \in G_2 \setminus G_1$

Let now $(F_n)_{n\in\mathbb{N}}$ be an increasing sequence of closed subsets of X such that $\bigvee_n F_n = G_2$. Such that Using the previous lemma we deduce Different sequence of closed subsets of X such that $\bigvee_n F_n = G_2$.

$$s' \ge B \xrightarrow{X \setminus G_2} s \vee B \xrightarrow{G_2 \setminus G_1} s = \bigvee_{n \in \mathbb{N}} (B \ge B^2 s \vee B^{F_n \setminus G_1} s) = (X \setminus G_2) \vee (F \setminus G_1) = X \setminus G_2$$

$$= \bigvee_{n \in \mathbb{N}} (X \setminus G_2) \vee (F_n \setminus G_1) \sup_{s=B} X \setminus G_1 s$$

The element t being arbitrary we obtain

and therefore

We remember that a standard H-cone satisfy axiom D if for any two balayages B_1 , B_2 on S such that $B_1 \vee B_2 = I$ we have

$$B_1B_2=B_2B_1$$

We give now new characterizations of axiom D in three different ways.

Theorem 3-11. If S is a standard H-cone of function on X then the following assertion are equivalent.

- 1. axiom D holds on S,
- 2. for any two fine open subsets ${\bf G_1}$, ${\bf G_2}$ of X, such that ${\bf X} = {\bf G_1} \cup {\bf G_2}$ we have

$$\frac{G_{1}G_{2}}{B_{1}} = \frac{G_{2}G_{2}}{B_{1}}$$

3. for any two fine open subsets G_1 , G_2 of X such that $X=G_1\cup G_2$ and such that there exists four bounded elements s_1 , s_1' , s_2',s_2' in S which satisfy the relations.

$$s_1 \leq s_1'$$
 , $s_2 \leq s_2'$, $G_1 = [s_1 < s_1']$, $G_2 = [s_2 < s_2']$

we have

$$_{\rm B}^{\rm G} 1_{\rm B}^{\rm G} 2_{\rm =B}^{\rm G} 2_{\rm B}^{\rm G} 1$$

proof. The relations 1) \Rightarrow 2) \Rightarrow 3) are obvious, 1; 3).

3) \Rightarrow 1 Let B₁, B₂ be two balayages on S such that B₁ \vee B₂=I and let p be a bounded generator of S. For any n \in N we put

$$G_n := \left[p < (1 + \frac{1}{n}) B_1 p \right], G_n := \left[p + B_1 p < (1 + \frac{1}{n}) B_2 (p + B_1 p) \right]$$

Obviously the sequences of fine open subsets $(G_n)_n$ and $(G_n')_n$ are decreasing and we have:

$$b(B_1) = \bigcap_{n} G_n$$
, $b(B_2) = \bigcap_{k} G'_k$, $G_n \cup G'_k = X$ (V), $n, k \in N$,

$$B^{G_n} p \le (1 + \frac{1}{n}) B_1 p \qquad (\forall) \quad n \in \mathbb{N}$$

$$B'(p+B_1p) \le (1+\frac{1}{k})B_2(p+B_1p)$$
 (\text{\text{\$\text{\$V\$}}}) $n \in \mathbb{N}$,

$$B^{G_{K}^{1}}B_{1}P \leq (1+\frac{1}{k})B_{2}B_{1}P+\frac{1}{k}B_{2}P$$
 (\text{\text{\$V\$}}) $k \in \mathbb{N}$,

$$B_1B_2P \leq B^{G_1}B^{G_k'}B^{G_k'}B^{G_n}P \leq (1+\frac{1}{n})B^{G_k'}B_1P \leq (1+\frac{1}{n})(1+\frac{1}{k})B_2B_1P + (1+\frac{1}{n})\cdot \frac{1}{k}B_2P$$

 (\forall) $n, k \in N$

Passing to the limit we deduce

$$B_1B_2P \leq B_2B_1P$$
 , $B_1B_2P=B_2B_1P$

From the last relation one can easily shaw that

Theorem 3.12. If X is nearly saturated with respect to s then the following assertions are equivalent:

- 1) axiom D holds on S,
- 2) for any balayage B on S and for any $x \in X \setminus b(B)$, $B^*(\mathcal{E}_X)$ is an H-measure carried by the fine boundary of b(B).
- 3) for any fine closed subset F of X and for any $x \in X_{Y_F}$, $(B^F)^{*}(\mathcal{E}_X)$ is an H-measure on X carried by the fine boundary of F.
- 4) for any fine open subset G of X and for any x \in X\G, $(B^G)^*(\mathcal{E}_X) \text{ is an H-measure on X carried by the fine boundary of G. }$
- 4') the same assertion as in the preceding point but only for all fine subset G of X of the form

$$G = [s < t]$$
, $s, t \in S$,

- 5) for any subset A of X and for any $x \in X \setminus A$, $(B^A)^* (\mathcal{L}_X)$ is an H-measure on X carried by the fine boundary of A.
- <u>Proof.</u> The relations $5) \Rightarrow 3) \Rightarrow 2)$ and $5) \Rightarrow 4) \Rightarrow 4'$) are obvious. The relation $1) \Leftrightarrow 2)$ is nothing else than the assertion $1) \Leftrightarrow 2)$ from ([3], Theorem 5.6.10).
- 1) \Longrightarrow 5). Using ([3], Theorems 5.6.8, 5.4.6) we deduce that for any subset A of X the map B^A is a balayage on S whose base is b(F) where F is the fine closure of F. For $x \in X \setminus b(F)$ the assertion follows now from the relation 1) \Longrightarrow 2) and from the fact that the fine boundary of F is contained in the fine boundary of A. If $x \in (X \setminus A) \cap b(F)$ then obviously x belongs to the fine boundary of A and on the other hand we have

$$(B^{A})^{*}(\mathcal{E}_{x}) = (B^{b(F)})^{*}(\mathcal{E}_{x}) = \mathcal{E}_{x}.$$

 $4')\Longrightarrow 1)$. Using the preceding theorem it is sufficient to show that for any two fine open subsets G_1 , G_2 of X such that $X=G_1\cup G_2$ and such that there exist s_1,s_1',s_2,s_2' bounded functions in S for which

$$G_1 = [s_1 < s_1'], \qquad G_2 = [s_2 < s_2']$$

we have

$$_{B}^{G_{1}}_{B}^{G_{2}}_{=B}^{G_{1}}_{B}^{G_{2}}$$

Let now G_1 , G_2 be two fine open subsets of X with the above property. We shaw that for any $p \in S$, p bounded we have

$$_{B}^{G_{1}}(_{B}^{G_{2}}p)=_{B}^{G_{1}}p$$
 $_{B}^{G_{2}}p$.

Chviously this equality holds on G_1 . If $x \in X \setminus G_1$ then G_1 is an H-measure on X carried by the fine boundary $\bigcap^f G_1 \text{ of the } F \text{ set } G_1 \text{ . Since }$

$$\mathcal{O}^{\mathrm{f}}\mathbf{G}_{1}\subset\mathbf{G}_{2}$$

we deduce

Hence

$$G_1 G_2 P = G_1 P P P$$

Similarly we have

and therefore, p being arbitrary, we get

$$^{G_{1}}_{B}^{G_{2}}_{B}^{G_{2}}_{=B}^{G_{2}}_{B}^{G_{1}}$$
 ...

Theorem 3.13. If X is nearly saturated with respect to S the following assertions are equivalent:

- 1) axion D holds on S,
- 2) for any fine open subset G of X such that X \G is a basic set, for any s,ttS such that

fine
$$\lim \inf s(x) \geqslant t(y)$$

 $G \Rightarrow x \longrightarrow y$

for any point y of the fine boundary of G we have

$$B^{X \setminus G} t \preceq s = (1, 2)$$
 with respect to $S(G)$;

s' on X defined by

$$s'(x) = \begin{cases} inf(s(x),t(x)) & if x \in G \\ t(x) & if x \in X \setminus G \end{cases}$$

belongs to S,

4) for any s, t as in the preceding point 2) we have

$$B^{X\setminus G}t \leq s$$
 on G .

2'), 3') respectively 4') the same assertions as in 2), 3) respectively 4) but for any fine open subset G of X.

proof. Obviously 2') \Rightarrow 2), 3') \Rightarrow 3), 4') \Rightarrow 4). The relation 1) \Rightarrow 2) follows from ([3], Theorem 5.6.1) and the proof of the relations 2) \Rightarrow 3) \Rightarrow 4) \Rightarrow 1 is similar with the proof of the relation 1) \Rightarrow 3) \Rightarrow 4) \Rightarrow 5) \Rightarrow 1) in the above quated theorem.

Hence $1) \implies 2) \implies 3) \implies 4$. The relation $2) \implies 2'$, $3) \implies 3'$, $4) \implies 4'$) may be obtained remarking that for any fine open set G there exists a basic set F such that

(where fG is the fine boundary of G) and moreover if S satisfies axiom D we have

$$S(X \setminus F) \mid_{G} = S(G)$$
.

Theorem 3.14. If X is nearly saturated with respect to S the following assertions are equivalent.

- : . 1) axiom D holds on S,
- 2) the map $G \longrightarrow S(G)$ defined on the set of all fine open subsets of X is a sheaf,
- 2') the map $G \longrightarrow S'(G)$ defined on the set of all fine open subsets of X is a sheaf.

Proof. The relation 1) (3), is the assertion from ([3], Theorem 5.6.12).

The relation 2) \Longrightarrow 2') follows from the fact that if S satisfies axiom D then axiom of polarity holds on X (See [3] proposition 5.6.8) and therefore for any fine open subset G of X we have

$$S'(G) = S(G)$$

To finish the proof it is sufficient now, using Theorem 3.14 to show that for any two fine open subset G_1 , G_2 of X such that $X=G_1\cup G_2$ and any $s\in S$ we have

$$G_{1}$$
 G_{2} G_{1} G_{2} G_{3} G_{3} G_{3}

Obviously we have

$$G_{1}$$
 G_{2} G_{1} G_{2} G_{3} G_{2} G_{3} G_{3} G_{4} G_{5} G_{5

$$t'(x) = \begin{cases} \inf(t(x), s(x)) & \text{if } x \in G_2 \\ s(x) & \text{if } x \in G_1 \end{cases}$$

belongs to S. Hence

$$t' \geqslant B^{1} s \text{ on } X$$
, $t \geqslant t' \geqslant B^{1} s \wedge B^{2} s \text{ on } G_{2}$

The element t being arbitrary we deduce

The following result shows how much axiom $D_{\rm o}$ on a standard H-cone 3 depends on the representation of S as standard H-cone of functions. More precisely if we suppose that S is a standard H-cone of functions on a semi-saturated set X such that axiom $D_{\rm o}$ holds on X then, taking another weak unit u of S and the representation of S on the saturated space $X_{\rm u}$, axiom $D_{\rm o}$ may have no place on $X_{\rm u}$.

Theorem 3.15. The standard H-cone S satisfies axiom D iff for any weak unit ueS the axiom D holds for the standard H-cone of functions S_u on the set X_u .

 $\underline{\text{proof.}}$ If the H-cone S satisfies axiom D then, obviously, for any weak unit u of S axiom D holds on X_1 .

We suppose now that for any weak unit u of S axiom D holds on X_u . Let u be a fixed weak unit of S and let G_1 , G_2 be two fine open subset of X_u such that $G_1 \cup G_2 = X_u$ and such that there exist $s_1, s_1', s_2, s_2' \in S$ bounded functions on X_u from S for which

$$G_1 = \left[s_1 < s_1'\right]^* \cap X_u , \quad G_2 = \left[s_2 < s_2'\right] \stackrel{*}{\cap} X_u$$

where for any s,t \in S the set $[s < t]^*$ means the subset of s^* defined by

Let now v be the weak unit on S defined by

$$v=u+s_1+s_2+s_1'+s_2'$$

In the representation (S,X_V) the element v is equal 1 on X_V and the elements u, s₁, s₁, s₂, s₂ become continuous functions on X_V. Since

$$u \leq v \leq \alpha u$$

for a suitable positive number α we deduce that the sets G_1' G_2' defined by

$$G_1' = [s_1 < s_1']^* \cap X_V, G_2' = [s_2 < s_2']^* \cap X_V$$

are open subsets of X_{V} and

$$G_1^{\prime} \cup G_2^{\prime} = X_V$$

Hence, using axiom D_{o} on X_{v} we have

But from the preceding considerations the maps B $^{'}$, B $^{'}$ B $^{'}$ B $^{'}$ may be considered balayages on the standard H-cone S and we have

$$B_{B}^{G'_{1}} = B_{B}^{G_{1}}, \quad B_{B}^{G'_{2}} = B_{B}^{G_{2}}$$

Hence

$$_{\rm B}^{\rm G_{1}}_{\rm B}^{\rm G_{2}}_{\rm =B}^{\rm G_{2}}_{\rm B}^{\rm G_{1}}$$

The open subsets G_1 , G_2 of $X_{\mathbf{u}}$ being arbitrary we deduce, using Theorem 3.10, 3) that axiomD holds on S.

4. Natural potentials and natural sheaf property

Definition. Let S be a standard H-cone of functions on a nearly saturated set X. An element $p \in S$ is called natural potential (on X) if for any sequence G_n of open subsets of X such that $\bigcup_{n \in S_n} G_n = X$ we have

$$(L_{11}L_{2},...L_{n}) \in \mathcal{F}$$

$$\begin{array}{c} X G_{1} & X G_{1} \\ B & & & \\ X G_{1} & & & \\ B & & & \\ D & & \\ D$$

where ${\mathcal F}$ is the set of all finite systems of natural numbers.

Proposition 4.1. a) The set of all natural potentials of S is a solid convex subcone of S with respect to the natural order and for any sequence $(s_n)_n$ of natural potentials of S the function $\sum s_n$ is also a natural potential if it belongs to S.

b) If G is an open subset of X, p is a finite element of S and f:= $p-B^{X\setminus G}p$ then the restriction of f at G is a natural potential in S'(G) iff for any sequence $(G_n)_n$ of open subset

of X such that $G_n \subset G$ for any n and such that $C_n = G$ we have

$$B^{X \setminus G} p = \bigwedge B X \setminus G L_1 \times G L_2 \dots B n_p$$

$$(L_1, L_2, -L_n) \in \mathcal{F}$$

proof. The assertion a) may be drown from the fact that the map B^{A} is additive on S for any ACX.

b) Let $(G_n)_n$ be a sequence of open sets of X such that

$$\bigvee_{n} G_{n} = G$$
 , $\overline{G}_{n} \subset G$ for any $n \in \mathbb{N}$.

Applying now ([1], Proposition 2.3) we get for any $(L_1, ..., L_n) \in \mathcal{F}$

on G, where, for any subset $M \subset G$, \widehat{B}^M means the balayage on M relative to the H-cone of functions S'(G).

Hence we have

From the above formula and using the fact that any open subset D of X may be writen as a countable union

$$D = \bigcup_{n \in \mathbb{N}} D_n$$

of open subset $D_n \subset X$ such that $D_n \subset D$ for any $n \in N$ we deduce the assertion b).

proposition 4.2. Let S be a standard H-cone of functions

on a nearly saturated set X. If there exists a natural potential in S which is also an weak unit (or equivalently if any $s \in S_0$ is a natural potential) then X is semi-saturated.

Proof. Let (S_1, λ_1) be the natural extention of (S,Y) and let F be a compact subset of $X_1 \setminus X$. We show that F is polar .

Let p be a natural potential of S such that p is an weak unit of S and let \bar{p} be the natural extention of p to the set \bar{x}_1 .

Let now $\mathbf{F}_{\mathbf{n}}$ be a decreasing sequence of closed subset of $\mathbf{X}_{\mathbf{l}}$ such that

$$\bigcap_{i \in \mathbb{N}} F_i = F$$
, $F_{n+1} \subset F_n$. (\forall n \in \text{N}) $n \in \mathbb{N}$

We put for any $n \in N$,

$$G_n := X \setminus F_n$$

Obviously we have $X=\bigcup_n G_n$. Since X is nearly saturated, using proposition 3.1, b), we have

$$(^{1}_{B}\overset{\circ}{n}_{\overline{p}})|_{X}^{B}^{\circ}n^{\cap X}_{p}$$
 (\forall) $n \in \mathbb{N}$

and therefore

$$(^{1}B^{F}\bar{p})_{X} \leq \bigwedge_{n \in \mathbb{N}} {\overset{X \setminus G}{\underset{n \in \mathbb{N}}{\text{on}}}} p=0$$
.

Hence F is polar.

is power

Definition. Let S be a standard H-cone of functions on a set X. We say that S satisfies the natural global section property (N.G.S. - property) on X if any function $f:X \longrightarrow R_+$ such that for any $x \in X$ there exists an open neighbourhood G of X for which

we have fes.

We say that S satisfies the natural sheaf property if the map

$$G \longrightarrow S'(G)$$

defined on the set of all open subset G of X is a sheaf.

It is easy to see that S satisfies the natural sheaf property iff for any open subset G of X, S'(G) satisfies N.G.S property on G.

proposition 4.3. If X is nearly saturated with respect.
to S and S satisfies N.G.S.-property on X, then we have:

- a) S satisfies axiom D on X;
- b) X is semi-saturated with respect to S;
- c) any element u & So is a natural potential.

 $\underline{\text{proof.}}$ a) Let G_1 , G_2 be two open subsets of X such that $G_1 \cup G_2 = X$. It will be sufficient to shaw that

$$E^{G_1}(B^{G_2}s) = B^{G_1}s \wedge B^{G_2}s \qquad (\forall) \quad s \in S.$$

If s(S,obviously we have

$$B^{G_1}(B^{G_2}s) \leq B^{G_1}s \wedge B^{G_2}s$$
 on X and $B^{G_1}(B^{G_2}s) = B^{G_2}s$ on G_1 .

Let $t \in S$ be such that $t \geqslant B^2 s$ on G_1 . Since $B^{G_2}s = s$ on G_2 we deduce, using the hypothesis, that the function

$$t'(x) = \begin{cases} inf(t(x), s(x)) & if x \in G_2 \\ s(x) & if x \in G_1 \end{cases}$$

belongs to S. Moreover, we have

$$t' \geqslant B^{G_1}s$$
 on X, $t \nmid t' \geqslant B^{G_1}s$ on G_2

The element t being arbitrary we get

$$B^{G_1}(B^{G_2}s) \geqslant B^{G_1}s \geqslant B^{G_1}s \wedge B^{G_2}s$$
 on G_2

From the preceding considerations we have

$$\begin{bmatrix} G_1 & G_2 \\ B & (B^2 s) = B^{G_1} s \wedge B^{G_2} s \end{bmatrix}$$

b) From the preceding point and using Proposition 3.4 a) we deduce that the pair (S_1,X_1) satisfies axiom D_0 . Let K be a compact subset of $X_1 \setminus X$. We shaw that K is polar. Let $(V_n)_n$ be a fundamental system of open neighbourhoods of K such that

$$V_{n+1} \subset V_n$$
 (Y) $n \in \mathbb{N}$.

Let now $p \in S_0$ and let \overline{p} be its natural extention to \overline{x}_1 . Obviously we have

$${}^{1}_{B}{}^{k}\bar{p} = \bigwedge_{n \in \mathbb{N}} {}^{1}_{B}{}^{V}_{n}\bar{p} = \bigwedge_{n \in \mathbb{N}} {}^{1}_{B}{}^{V}_{n}\bar{p} - \bigwedge_{n \in \mathbb{N}} {}^{k}\bar{p} = \bigwedge_{n \in \mathbb{N}} {}^{1}_{B}{}^{V}_{n}\bar{p} - \bigwedge_{n \in \mathbb{N}} {}^{k}\bar{p} = \bigwedge_{n \in \mathbb{N}} {}^{1}_{B}{}^{V}_{n}\bar{p} - \bigwedge_{n \in \mathbb{N}} {}^{k}\bar{p} = \bigwedge_{n \in \mathbb{N}} {}^{1}_{B}{}^{V}_{n}\bar{p} - \bigwedge_{n \in \mathbb{N}} {}^{k}\bar{p} = \bigwedge_{n \in \mathbb{N}} {}^{1}_{B}{}^{V}_{n}\bar{p} - \bigwedge_{n \in \mathbb{N}} {}^{k}\bar{p} = \bigwedge_{n \in \mathbb{N}} {}^{k}\bar{p} = \bigwedge_{n \in \mathbb{N}} {}^{k}\bar{p} - \bigwedge_{n \in \mathbb{N}}$$

and

$${}^{1}B^{k}\bar{p}(x) = \inf_{n \in \mathbb{N}} {}^{1}B^{N}\bar{p}(x) = \inf_{n \in \mathbb{N}} {}^{1}\bar{v}^{N}\bar{p}(x). \tag{Ψ xeX}_{1} \times K$$

Since for any n,m < N, n < m we have

$$(p-B \xrightarrow{V_n \cap X} p)_{X \setminus \overline{V_m}} \in s'(x \setminus \overline{V_n})$$

it follows, using Proposition 3.1, a),

$$\frac{(\bar{p}^{-1}B^{k}\bar{p})|_{X_{1}\bar{V}_{m}} = \sup_{m}(\bar{p}^{-1}B^{V_{m}}\bar{p})|_{X_{1}\bar{V}_{m}} = \sup_{m}(\bar{p}^{-1}B^{V_{m}}\bar{p})|_{X_{1}\bar{V}$$

Using the fact that (S,X) satisfies N.G.S-property we have

$$(\hat{p}^{-1}B^k\hat{p})|_{X} \in S,$$
 $B^k\hat{p} \preccurlyeq p.$

and therefore the element ${}^1B^kp$ is universally continuous. Since the pair (S_1,X_1) satisfies axiom D_0 , from Corollary 3.6, we deduce

$${}^{1}B^{N}n({}^{1}B^{K}\overline{p}) = {}^{1}B^{K}\overline{p} \qquad (\forall) \quad n \in \mathbb{N} ,$$

$${}^{1}B^{K}({}^{1}B^{K}\bar{p}) = \bigwedge_{n} {}^{1}B^{N}n({}^{1}B^{K}\bar{p}) = {}^{1}B^{K}\bar{p}$$
.

From the fact that ${}^1B^K\bar{p}$ is universally continuous and from the last equality we obtain, using ([2], Theorem 2.4), that the carrier of the element ${}^1B^K\bar{p}$ is contained in K which

is a semipolar subset of X . Hence

$$^{1}B^{K_{p=0}}$$

The element peso being arbitrary we deduce that K is polar.

of X_1 such that

$$X \subset \bigcup_{n \in \mathbb{N}} G_n$$

and let, for any $n \in \mathbb{N}$, $F_n := X_1 \setminus G_n$. Using the fact that X is semi-saturated and Proposition 3.1, c) we get

$$\binom{1}{B}^{F} \widehat{s} = \binom{F}{N} \widehat{s}$$
 (\forall) $n \in \mathbb{N}$, (\forall) $s \in S$

We denote

where $(\ell_1,\ell_2,\ldots,\ell_n)$ runs in set \mathcal{F} ; of all finite systems of natural numbers.

Obviously, for any n EN we have

$$(u-v)$$
 $G_n \in S'(G_n)$

and therefore u-v (S. Hence v (So.

From Theorem 3.5 we deduce that for any $m \in N$ and any $x \in G_m \cap X$, $(B^m)^{\times}(\mathcal{E}_X)$ is an H-measure carried by the boundary (in X) of the set $G_m \cap X$ and therefore

$$\begin{array}{ccc}
F_{m} & X & F_{m} & X * \\
B & (V) & (X) = (B & (E_{X}) & (V) = (E_{X}) & (V) & ($$

$$= (B^{\text{Fm}})^{\times} (\mathcal{E}_{x}) \left[\inf (B^{\text{Fp}})^{\times} \mathcal{E}_{x}^{\times} \mathcal{E}_{x}^{\times} \right] = (\mathcal{E}_{1}, \mathcal{E}_{2}, \dots, \mathcal{E}_{n}) \in \mathcal{F}$$

$$=\inf_{(B_{1},B_{2},\ldots,B_{n})} (\mathcal{E}_{x}) (B_{1},B_{2},\ldots,B_{n}) \times (\mathcal{E}_{x}) (B_{1},B_{2},\ldots,B_{n}) \times (\mathcal{E}_{x}) (B_{1},B_{2},\ldots,B_{n}) \times (\mathcal{E}_{x}) (\mathcal{E}_{x}) \times (\mathcal{$$

Hence, the carrier (in X) of the element $v \in S_o$ is contained in $F_m \cap X$ for any $m \in N$, i.e. v=0 and therefore u is a natural potential.

Theorem 4.4. Let X be semi-saturated with respect to S. Then the following assertions are equivalent:

- 1) the pair (S,X) satisfies N.G.S.-property,
- 2) the pair (S,X) satisfies axiom $D_{\rm o}$ and any element ueS $_{\rm o}$ is a natural potential on X.

 $\underline{\text{Proof}}$. The assertion 1) \Longrightarrow 2) follows from proposition 4.3.

2) \Longrightarrow 1) Let $f:X \longrightarrow R_+$ such that for any point $x \in X$ there exists an open neighbourhood G_X of X such that

$$f \in S^{\mathbb{Z}}(G_{X})$$

We show that if $p,q \in S$ are such that

inf
$$(f+q,p) \in S$$
,

and G is an open subset of X such that

then for any open subset G_1 of X such that $\overline{G}_1\subset G$ we have

$$\inf(f+B^{X\setminus G_1}q,p)\in S$$
.

Indeed, for any such open subset \mathbf{G}_1 there exists an other open subset \mathbf{G}_2 of X such that

$$\overline{G}_1 \subset G_2 \subset \overline{G}_2 \subset G$$
.

since

$$(f+B Q) \in S'(G_2)$$
 and $G_2 X G_1$ $g=f+q$ on $X G_1$

we deduce, using Theorem 3.5, that the function

$$t(x) := \begin{cases} \inf(f(x) + B^{-1}q(x), p(x)) & \text{if } x \in G_2 \\ \inf(f(x) + q(x), p(x)) & \text{if } x \in X \setminus G_2 \end{cases}$$

belongs to'S. But obviously

$$t(x) = \inf (f(x) + B q(x), p(x)) (\forall) x \in X.$$

Let now for any $x \in X$, G_{X} be an open neighbourhood of x such that

$$f|_{G_x} \in S'(G_x)$$

and let $(V_n)_n$ be a sequence of open subsets of X such that $\bigvee_n V_n = X$ and for any $n \in N$ there exists $x_n \in X$ such that $\bigvee_n C G \times n$. If $p \in S_0$ we have

$$\inf(f+p,p) \in S$$

and therefore for any finite system $(\ell_1,\ell_2,\ldots,\ell_n)$ of natural number the following relation holds:

$$\inf_{\mathbf{f}+\mathbf{B}} \mathbf{X}^{\mathsf{N}} \mathbf{V}_{\underline{p}_{2}} \dots \mathbf{B}^{\mathsf{N}} \mathbf{v}_{\underline{p}_{n_{p,p}}} \in \mathbf{S}.$$

The element p being a natural potential we get

inf(f,p) es

and therefore, p being arbitrary

£ E.S. ·

Theorem 4.5. Let X be semi-saturated with respect to S. The following assertions are equivalent

- 1) the pair (S, X) satisfies natural sheaf property,
- 2) the pair (S,X) satisfies axiom D and for any open set G of X there exists a strictly positive potential on G.

 $\underline{\operatorname{Proof.}}$ 1) \Longrightarrow 2). From 1) it follows that N.G.S.-property holds for the pair (S'(G),G), for any open subset G of X. From the preceding proposition axiom D_O holds for the pair (S'(G),G) and any universally continuous element of S'(G) is a natural potential on G (with repect to S'(G)). The assertion 2) follows now using Proposition 4.1 and the fact that the function

is a nearly continuous element of S'(G) for any $p \in S_0$.

2) \Longrightarrow 1). If axiom D_o holds for the pair (S,X) it holds also for the pair (S'(G),G) for any open subset G of X (See Theorem 3.7). From hypothesis and from proposition 4.1 we deduce that for any $p \in S_O$ the function

is a natural potential on G (with respect to S'(G)). Hence any universally continuous element of S'(G) is a natural potential on G. The assertion 1) follows now from the preceding proposition.

Theorem 4.6. If X is semi-saturated with respect to S then the following assertions are equivalent:

- 1) S satisfies the fine-sheaf property,
- 2) S satisfies the natural sheaf property and the axiom of nearly continuity,
- 3) S satisfies both axiom $\mathbf{D}_{\mathbf{O}}$ and axiom of nearly continuity.

proof. Using ([3], Proposition 5.6.8) and Theorem 3.13 we get 1) \Longrightarrow 2). The relation 2) \Longrightarrow 3) follows from Proposition 4.3

3) \Longrightarrow 1) Let p be an universally continuous elements of S and let B_1 , B_2 be two balayages on X such that $B_1 \vee B_2 = I$. If $b(B_1)$ (resp. $b(B_2)$) denotes the base of B_1 (resp. B_2), then we have

$$b_1 (B) \lor b_2 (B)$$
=I, $b(B_1) \lor b(B_2) = X$

From hypothesis the function B_2p is a nearly continuous element of S and therefore

Since $p \in S_0$ there exists a decreasing sequence $(D_n)_n$ of open set such that

$$b(B_2) = \bigcap_n D_n$$

If G is an open subset of X such that $b(B_1)\subset G$ and x is an arbitrary point of X there exists a measure μ_X on the fine closure of G such that

$$\mathcal{H}_{\mathbf{X}}(\mathbf{s}) = \mathbf{B}^{\mathbf{G}} \mathbf{s}(\mathbf{X}) . \tag{\forall} \mathbf{s} \in \mathbf{S}.$$

particularly we have.

$$B^{G}(B_{2}p)(x) = \mu_{x}(B_{2}p) = \mu_{x}(\inf_{n}^{D}p) =$$

$$=\inf_{n} \mu_{x} (B^{D}np) = \inf_{n} B^{G} (B^{D}np)$$

Dince $G \cup D_n = X$ for any $n \in N$ we deduce

$$_{B}G_{B}^{D}n_{=B}^{D}n_{B}G$$

$$B^{G}(B_{2}p)(x) = (nfB^{G}B^{D}np(x) = (nfB^{D}B^{D}p(x))$$

$$\geq B_{2}B^{G}p(x) \geq B_{2}B_{1}p(x)$$

and therefore

$$B^{G}(B_{2}P) \geqslant B_{2}B_{1}P$$

The open subset G, G > b(B,) being arbitrary we have

$$B_1B_2P \ge B_2B_1P$$
 , $B_1B_2=B_2B_1$

REFERENCES

- 1. N.Boboc; Gh.Bucur: Natural localization and natural sheaf property in Standard H-cones of functions (I),

 Rev.Roumaine Math.Pures et Appl., Tome
- 2. N.Boboc Gh.Bucur; A.Cornea: Carrier theory and negligible sets on a standard H-cone of functions, Rev.Roumaine Math.pures et Appl. tome XXV, no.2, 1980.
- N.Boboc; GH.Bucur; A.Cornea: Order and Convexity in

 Potential Theory: H-cones, Lecture Notes in Mathematics, 853, Springer Verlag, Berlin-Heidelberg
 -New York.
- 4. N.Boboc; A.Cornea: Nonnegative hyperharmonic functions.

 Balayage and natural order. Rev.Roumaine Math.Pures

 et Appl., Tome XII, 1963.