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MONGDROMY AND BETTI NUMBERS OF WE tTGHTED CON“L““V

INTERSECTTIONS

by

Alexandru DIMCA

Let (X,0) be an isolated singularity of complete intersectian

gl

dn-C dcfi ied by the welghted homogeneous polynomials f, of de=.

gree di with respect to the positive integer weights'wt{xj)mwj
for i=1,...,p and j=1,...,m.

Let f:(X,0)~—>(C,0) be a function germ induced by a weighted
homogeneous polynémial of degree d with respect to the.weights
w (vl,.ac,w Y .such that (XO,O}m(fml(O)”O) is again an isolated
singularity of complete intersection with n=dim %, =dim Xml}l;
'»Iff§G denctes the "Milnor fiberqu the singularity (Xo’o)’ then
there is a natural (complex) monodromy operatoyr h:Hﬁ(ﬁopg)—mm»

nifo,g) associated teo the function £ [8].
In the first part of this note we show that-this monocromy

operator is diagonalisable and compute its characteris tde polyr.,

nomial
A\ (A)=det (A.Id~h)

in terms of the welghtq w and the. dpqroes d= (d],..,,d Y and d.
In the wﬁec*al case of Brieskorn-Pham sinqu]arltjes this resu:

is‘ﬁué‘to Hanm {9], not te mentlon the case when ¥ is smooth,

treateé“already by Milnor and Orlik [11] and Briéskorn [2],

Our-proof depends on the relation between the monodromy ope-

rator h and the Gauss-Manin connection of the function f (as



\ l
suggested by an example in Loo ij enga |1 O} .166) and or the
¥ . ; 7 > - " e
knowledge of the Poincaré series <Q; /&Q computed hy Greiel

and Harm [7] i
In the second part we derive some topological coasaquenc&aQ
Namely.® there are two spaces natufally associated to the sinqula-
rity-(X,0): its link %=X (1.8, where S is the unit sphere in C
and the guasi~smooth weighted complete intersection Y defined by

the pclanmials fé in the weighted projective space Pig}[élc

We show that €he results in the first section allow one. tc compu-
te the (middle) Betti numbers of K and Y in terms of Wpdiy Bquis—
valently, we determine the rank of the intersection form of the
Milnor Iattice of (X, 0),

Wealso prove that all the quasi-smooth weighted complete

intersections of the same iype (w; d) -are homeomorphic.

1. The monodromy operator

#3 : ; o i e 3
Iet.CQ denote ‘the C-algebra of germs: of holomorphic functions
: oo o i : Cf
at the eoriginm of.«¢ ", 1X the ddeal generated by f ,o,apr in 2
. s g e
; o : : . C} 3o e
The ‘weights w give rise to & filtration on the m~m0@ule3@;

of gérms of holomorphic k~forms at the:origin of g“y such that

a monomial form

?:xad}{j Ao .‘Adxi
- G

had degree deq{T)zﬁeg(xa}+wi toat, whére_deg(xa)z~~
: 1 %4 :

=a IVJ +o ° n+arn‘fvm ;
This filtration induces a filtiation Jlcompatible with the deri-
vations) on the stalk at the origin of the sheaf of holomorphic

' . . akook . Lk, ool k=1 ~k-1
k~forms relatlveAf.j1f~9~/IX.ihudflﬂfL 4...+dprD“ “+dNAfZ 5

It is known that



) (A0S s (via £)

a ee O’ ~nodule of T("l’i}flf.f\“[n}-\}( g, the
Milnour nimber of (X 0)[ 1 [10], 3 :

: o An=1 N 4! Chie b : -
(1i) Ai*si¢/§§é~ T(Tifl¥m{§ /552 is & ﬁ«“ﬁ?MQBQ :al vactoy
1 3 KSR i s g
: ] -

ot 5
“o o
ace*over C'with a natural grading A= @ A, coming from the

kx0
iltration. Moreover, the Poincaré series of A

P{ﬁ)&}w (dim A, ,gh
k30

is computed in'[?] and in our case is given by

W, 2 a v
Pls j =reg i ; :Emw { w;._,.w.’.;“:,m | e -z 4+ t
; 1+t o’ W, St a.
‘ (}"' gt TG 14ts- 5

whcre d lfd,

w1y B e Qe e ot Qafirt]

where us denotes tue coordinate on C(! G}, Proposition 8.24).

Our main result is the following.

Theb¥em 1, The complex monodromy vpnratov h is diacgonalisable
and: its eigenvalues are d-roots of the unity. The multiplicity

of the root eZWlk/d is

E::T . ; . -

3 ‘=:{- 3 el
: / dim Aj ¢ Zﬁm¢ P(s)s .
- SCL:Jl‘m 5

Proof. Chose  a homoqeneoua maﬁrﬁwﬁq,.,., y’ for A. Then by
Lf over G%.

The vector field qﬂ ujw cn*(g,0)<can be lifted tq.the vecto:

(1) they form a basis otﬂ /aF

-



&)
field 1>MN WyXy s7m= On (X @),
K=1,m 7K

The l-parameter flow generated by § is obviously
"

. Eﬁ/d Wﬂt/d

¢ (Ki=(e Hireoor® % T
The lie derivative L?\ is easy to compute for a homoce n<uus
form cf S

F?ﬁ ( ,)}( ,;f;
LT(T;ﬁ 1AM e = dog ()3 gf
S t~30 t ; !
Using this and (iii), it follows ‘that a (multivalued) hori=
. - S (Q cnfad g :
zontal section of R x&C v/ over X Of is given by
: .—mdeg(v¥)/d Bt
‘ Wy W {“F .
Taking %’x %Ef,«e, %9 welget a frame in each fiber. Thus,
A,
o e g e AT G i
i1f weput uxfe and “let U go fTron 0 tc 1, then we: find that
: ZWngg!v

the monodromy operator h muitln}les if with e E %Y’/d o
This ends the proof of the Theorem,, D

Example 2,2Consider the simple space curve sinqularity
w=l] . e ....“.-z'.‘.-wv .-mo 3 O -y ™y 2 /l = 5=
X "l7°ql“” ryz=0, g,= =xy+27=0 correspending to w=(4,5,3) and

Then a direct computation using the formula for P(s) given
in (ii) shows that
e i 15 a0 58
.Let.ﬂifﬁ) be the characteristic polynomial of the menodremy
operator of the function qérm gi:({gi:o}; 0)==>(C,0) for ifi. 4§

Then Theorem 1 gives us

Ay =(8-1) a+1)7h, A, (H=(X-1) (R+a+1) T



5
§

o

2. The Betti numbers of ¥ and Vv

P

Recall from the introduction the definition of the spaces K

and Y associated to tmk

(X0) . Let KO and YQ be the

similar spaces associated to the singulavity (¥

%
¢Op0;e

Note first that K is a smooth compact oriented (2n+1) ~dimen~

sional manifold which is (i~ 1)~connected [810 In particular,
we have. to determine only the middle Betti nurbers b_ (K)=h (K

On the other hand, it is known that
bﬂ ( \;MF’(Y} ~yank 8

. Where S is the intersection form of the Milnor lattice of
L) o Qi S G 9 ; 3 ] P * o v £
(X,O)v[LOJm Hence we will get a procedure to compute rank § in
terms of (w,d). One of the applications of the computatdion of
rank S is the estimation of the number of singularities which
may oceur on a fiber in a deformation of (X,0) {3%¢~~“-~
As to the projective variety Y, it is a V=variety and hence

a Zn-dimensional O manifold Eﬁf«
1

Thesaction of S on 8 given by ; TN e
W W
i

) = o
EelXypeoarx I=(t Xyroeoot Tx )

leaves K invariant and K/Slw’, For a point ym[x]w(x

we define

w(y)=qacoﬁ.wi; xiﬁO},

It follows easily that the isotropy group S1 of a pointVx€K is

prc@ uElY the group of w( [x]) roots of the unit. Iniﬁw&%iﬁularp

1.£ w(y) is constant for yeY, then ¥ is in a natural way <8 emoioth



manifold ( @ip P.72). We will say in this case that Y ie

Note that ¥ can be a smooth algebraic variety

veing strongly smootht

that th

5

2 topology of a guasi~smooth corniplete

>ends only ou its type,

WO quasi-smooth complete intersections Yl and

of the same type (w,d) are homeomorphic. Moreover, 1f one of

them is strongly smooth then so is the other and they are diffeo:

Let P(w,d) be the vector space of homogeneous polyno=

midia of degree d with respect to w and P ﬁ:P(wyﬁj}x@@exﬂfw,ﬁbyo

The set

: "af” 5
Bm[(prE*.;i@m\{O% 1 %P f= (f &»r'pf by 3_}\(;5»«“3&(}'),{(} [
t % 4
: 2

1

where i¥l,eas,p; 3521 e ks can alqebyaié subset'in.(iflﬁ§§xPﬁ
Let UwP\pxz(BE and note that U is a Zariski open subset in P,:"
Hence either Lmlﬁ or U is a dense connected subset, which is whaf
.we assume from now on.

The set
m{ing)egxm £x)=0 }

is a;wmooth manifold and the wap induced hy the second proijection

] s = ‘ e e s - : s
M:Z2=»U is a proper submersion. There'ig @ =action on 7 coming

B ot
CHE e

from the action on 8 defined above.

Next we need the following.

Lemma 4 (Equivariant Ehresmarin fibration theorem).



Let p:E~-—B be a proper submerdion. If C is a compact Nide group
acting on E such that all the orbits are contained in the fibars

of p, then p is a locally trivial G-fibration.

{Tnig means: for any b €B there iz an open set U B with b €U

and &an equlir diffeomo sphism f:p (U}MM}”FT, where ¥=p “{b)

e e e e “ v R
ang G acts on UxF by +he

glx,yl=(%,9y), such that

‘Proof. The usual proof of

e s e

csmann fibration theorem applies
1f we show that any vector field yL on:Broan be lifted to an
) Y v : - oo
PgukV“V*anL vector field § on E (l.e, dUwa {x ~w%U& (x)) Har
o B

any #¢E, geG, where Lg{x)mqug.

Let % be any lifting Gf}?“ Then
? AT f I T \W}—f?‘_ L5 vy
2 (%) (CL{UII (o5 (B ) ) dg

where g is 2 normalized invariant Haar measure on G, is an
equivariant lifting of 7‘¢ : ﬂ
From this lemma we obtain that the fibers«wof I are eguiva-

riantly diffeomorphic and this ends the proof of proposition 2. E

Corollary 5. If a two-dimensional quasi-smooth complete inter-
ecﬁjon is nonsingular, then any other quasi-smooth complete in-

tersection of the same type is also nonsingular.

Eﬁggﬁf Usevthe faét that the local fgndamental group is a to-
paloqiwal invariant and that the singuiarrpoints on a normal sur-
face are precisely those WJLh nontrivial local funoamentn? qroup
[i2]. g

Néw’@e give the basic result for the computation of the Betti

numbe®s. of K and Y, Let_Pn be the usual projective n-space.



Proposition 6. (i) One has bk(f):bK(Pn) for k#n anA4
= D
bn(Y)wbn(K)+un(P ).

(11) I'f Y is strongly smeoth, then all the integexr homclogy =
groups of Y are torsion free.

(11i) For n)2 one has

by ) +b _; (K )=dim ker (h-IdY.

.Proof. The Smith-Gysin exact sequence in Homoloqy with C~coef

ficients [l] associated to the action of~Sl on K give the resuit

(T

When Y is StrcnglygsmootHWWe can use the Gysin sequence with
wXh=coefri

2 clents and Poincaré duality over & to get Wil s
\ ;

A\
A\

Corparing the Smith-Gysin'exact sequences associated to the
\ . :

S actions on X and'Ko, we find out that the morphism Hn(Ko)w—»wg
--—+Hn(K)tinduced by inclusion is trivial for n32. The exact s e

duence of the pair (K,KO).then gives

bn+1(K)+bn(Ko):dim Hn+l K,Kd)'

Finally, the exact sequencau(I,B)'in:[B]shows that

Tim Y =d1 - :
dim Hn+1(K,KO, dim ker (h-Id). .D

Since dim ker(h-Id) is eqialddo the:mu¥tiplicity of 1 as a
root of A(A), this number can be computed using Theorem 1. Then

. one can compute bn(K), bn(Y)sthdescending induction on:n=dim ¥
as follows.



When n=0, K is a disjoint union of circles (and ¥ a Finite
set of points), one for each frreducible branch of the curve v.
The number of branches of X is computable in terms of the

(w,d) as shown by Giusti [S], Chap. TT.

When: n=1, ¥ is

S e

a smooth curve and there is a simple fornmula
for its geometric genus pq(Y)’in terms. of (y,g)[}l(3¢4$4);

‘Hetce
bl(K)wbj(Y}:Zpg(Y) is known in this case.

For n)l, there exists a weighted fiomogeneous funetionf of .

degree d, where d is any common multiple of (wl,..,,wm) such thés

Xo=xljf“l(0) is an isolated singulariiyrof’acmplete intersection
(see for instance {5], (2.4), Chan. TT), Then,; using (iii) wéd can
compute bh(K) from the previously compufed number bH:i%KO).

When the defining equations fi of the variety Y céﬁwﬁe(chosen

such that the weighted complete intersections

Yk:fl(x):...=fk(x)=0

are quasi-smocth for k=1, V%.,p, then oné can use (and sometimes

is simpler) increasing induction on n-to ‘compute bH\K).
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