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The aim of these notes is to extend to several variables
the “ane vafieble théory” ceveloped in: M.Matsuda, First order
algebraijc differential equationg, Lecture Notes in Mathamatics‘
Springer 1980. Methods from.MafSuda's book déxﬂot apbly to
several variables, so our approach is entirely different. 1t
is based ogn moduli.tha~ry of algebraic varieties, the main
ingredient being the algebraicity of certain moduli ops
ety Mumfaord, Popp).,

We made our exposition independent of Matsuda's book .
Standard t@r@inolagy of differentia) algﬁhra is borrowed freﬁ
Chapter 1 of Kolchin's book "Differentia} algebra and algebraic
groups”., A basic reference for moduli theory will be H. Popn,

Moduli theory and cléssification theory of algebraic varieties,

Lecture Notes in Matheématics, Springer 1977,

Bucharest jogs A Buium
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0. Introduction.

(0.1) The present work is devoted to. the following:

Problem, Classify all differential extensions Ko< L
enjeying. the preoperty that L 48 the function fieldicf:
a smooth projective K-variety V all of whose local,
rings (0 ~ are differential subrings of L,
V.p
Regall from ’E?]Chapter d that a differential extension

means a field extension K< L  togetheriwith.commuting de-

rivations 515“"5<fr on L such that 5;(K)c: K. for alkl;
j:ls,..,f. The ccndition that C7 . is~d differential
] ’ V,p ;
subring of . L means that S (07 Y= C? : tor ell &
A . . VP V,p

the condition that this should happen fer all p & Y is the
differential algebraic transcription of Fuchs' condition
expressing the absence of movable singularities of algebraic

differential equations (seel?3][?8]). Extensions KoL & as



in the statement of the problem will be called in this paper
Fuchs extensions., Put n=tr.deg. .. For n=r=] Fuchs exten-
3 [N 2

5

sions were classified in l?$J{pp?13q3?991)5 they were called
there "differential algebraic function fields of one variable
with no movablé singularities". Mgtﬁods in [?3] ﬁa not geneé
ralize to the case n > 25 they are based on Weierstrass nore-
mal form of elliptic-éuéves and on Weierstrass points on
curves of genus >2, In the préseﬁt approach we introduce a
method working for general n » 1 and r>1 and we give

(under very reascnable hypothesis on the ground constant
4 .
field, see (1.1) and (1.3) belowl a complete classification
) / y; i %
of Fuchs extensions for n=2 (Section 8) and sigrificant infton-
mation in the case n=3 (Section 9).

(G.2) The main idea of our approach is to bring Fuchs

i of algebraic varieties

i

o
)
Q.
¢
Fomd

extensions into the setting of m
and then to use algebraicity of .certain coarse:moduli gpégés
[?9} and arguments of deformation theory,

| (Q,B)'The interest for classification of Fuchs extensions

2 LoiE : S (i
goes- back to Fuchs’ Poincare [?8] and Fainleve Lf?J(see also

b | s ; 7 X = . . +
_{?3J) who investigated algebraic differential equations



with no movable Singularities7(36@_{5}J12] for a

. %
modern approach via folietion theory), On the ether
hand Fuchs extensions are deeply related with scme
e iRy ; " o " s
Galois~<theoretic results of hglchlnrki?]b[}sj,Lﬁgj.
We would like to make two remarks:

1) Classification theorems in LZSJ and in our paper
are not simply abstract differential algebraic analogs. .

7 7z .
of Poincare's and RPainleve's analytic results;: indeed..

our analytic corollaries are stronger than the pre-
*Wiocusiresults :of the same kind, In particular our concept
of "algebraic solution” is streonger that the one in
r121 p.215 (see (6,3)).
ey

2) At least for tr.deg.KL > 2, Kelehin's Galois .
theory requires a certain ngrmality hypothesis on the

= 1 !

extensions K&« L (called "strorg normality [173p.393).
This hypothesis is very natural. for the Galois-theoretic

setting but is very restrictive from the point of view

of ocur¥problem. Therefore Kdlchin's Galois



theory cannot be applied to classification of Fuchs .
extensions. On the other hand, as suggested by [éz]
classification of Fuchs extensions may be used to de-
duce Galois-theoretic results (see (5.40)).

(0. 4090 illust;ate the results of our papef let's
briefly discuss in what follows Some of our analytic
cofol1ari@s.

Let WygeooyWo be coordinafes on Cr(C=theAcomple$
field). For any domain FHieel jes Mer(fgj be the
differential field of meromorphic functions on J%

with derivations é}: D/ ow Tt ¢Q¥ is a subdo~

j"
main of &1 3nd if we have differential extensions
Co Kale Mer{A)  and B ke %o Mer(A™)
such that Ko k* and Le X are finite exten-
sions then we say that K< L has a finité embedding
into Kﬁc: L%.

Lot e L be a differéétial ekteﬁsion of dif-
ferential subfieids of Mer(A). Call it a Kolchin exten-

sion if there exists a lattice: A& gl (nztr.deg.KL),'a

subdomain J@ﬁ of UQ and functions /319...%{3n



Mer((As‘Z). such that
10 ene e e abelian variety,

2) ﬁi"‘.wﬁr gre primitive over. K (i.e,
&L{:\)j &K ferall i 5).

3) L is generated over K L by functions of the form_ :

.

: :
\'f9’19..,,{@n) with f> abelian functions with res-

pect to A\ (i.e. ?é Mer(cn),) @(vwa): p(w) for all
% e L% and wECn\{poles of\p}).‘
These extensions were considered by l<(510hih_ in [19].
(0.5) Suppose now Kc B a.“Fuc‘hsyextemsion
of differential subfieio‘s of Mer((ﬁ) of finite trans-
cendence degree over C, Lot g ,d/c, y 9, X be the trans-
cendence degree; the Kédaira cimensioh, the irregularity

and the Albanese dimension of Kok (aes(lug))n

Here is the effect of the classification-in ['23]:

Theorem 1, Suppose - n=1l and M F -as Then 2t =0
and K< L has a finite embedding into a Kolchin

extension KXo ¥ such that L’sz’K(L).



7

~

Here are our analytic results:

T
JTheorem 2, Suppose n=2 and 2t 4 -~c . Then

AR NN

M=0 and Ko L has a finite embedding into a Kol

: : K X
chin extension K < L™,

Theorem 3. Suppose n=3, Then K. L has-a finite

: o . . : E X 3
embedding inte a Kolchin extension K¥e L provided
we are in one of the following cases; -

1) 7t =0,

2y 1zl a3

Theorem 4. Suppose n 71 and Y+ ~00 . Then g9,

Theorem 5. Suppose L is the field of rational func-
tions of an abelian variety over K., Then K< L has a
finite embedding into a Kolchin extension K= U*

b

such that LM:Kx(L).

———— o)

Theorems 1-5 will be deduced in (6.2),(8.4),(9.5).
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We would like to note that the case K=&C in the above

theorems should be viewed asg the tirivial cage,

(0.6) The paper isg organized as follows. In Chapter g

]

- We discuss a series of geometric properties of models

oV differgntjal extensions whicg will be.needed'in

Chapter [III, The main aonceptvis that of a Fuchs model (1.6} ;
In Chapter 1II we pProve someiclassification results for
Fths mbdals which have ﬁsatisfactory“ moduli-theoretic
properties. Main results are Theor&msv (5.%3’(5,M)§(6,1)3
In Chapter 111 we use results proved in the first’two
chapters to perform classification of smooth projective
Fuchs models of dimension_s;3. Main results are Theg-

rems . :  (7,€)5(8.2),(993),' -

Some appendices are &lso included; they contain ideas ..

which should be useful for further developements ;



Chapter 1I

<

l. The geometric sgtting. Fuchs models,

(L.1) We shall work over an algebraically closed
ground field C of characteristic zero. All rings
i

and morphisms of rings will be over C; same with

schemes., All derivations will be C-derivations, Fibre

products X ¥ will be denoted by X Y,
o Spec(C) : ; ;

Due to applications we have in view and in order to

simplify the exposition and proots we shall suppose

throughout the paper that C is the complex field:

many: results hold however without this hypothesis,

If X is a reduced irreducible scheme we denote by

R(X) its field of rational functions, If A is an

integral domain, R(A) will denote its guotient feld,

b
————?

(1.2) If K dis a filed and K its algebraic

closure, a K-variety V will mean a K=algebraic



w10

scheme -V such that V = v > Spec(K) is

: Spec(K)
irreducible reduced, I1f in addifion Wi 4s Guasi-projec-
tive weishall say V is a model of K< LY where
L=R{V). As well known a field extension Ko L has

@ model if and only if it is finitely generated and

i 'this case L o0 K

K

K is algebraically closed in L.
y 3

is a fdéld and we can define invarianta n, %is‘qD o

as follows:

M =e tinaden, L
g Kl

fl

Vi = Kodaira dimension of any smooth projective mo-

s

delet of L ® K
K

.irregularity of any W as above

L2
i

Q
i

dimension of the image of W —> Alb(W)

with W as above ; callvit Albanese dimension,

(1.3) Terminology of differential algebra will be.
freely borrowed from [17],Chaprerx%7~ﬁﬂv a differential
field K we. denote by Ko theitifield of constanbtsof k-

By the hypothesis made at BN &G"Will always contain C,



~

We shall suppossg througﬁaut Chapters I5II7111 tﬁat all

all diff@rential fields under consideration (except those
explicitely written as Mef(%@)) have finite transcendence
daegree over  C, This ‘is 8 very reascnable hypothesis for
function-~theoretic applications; gﬁ‘the other hand we shall’

decribe in - Appendix A a method which sometimes permits

to reduce the case  tr.deg..K= oo to the case #&r.deg..lkK < oo
C C ol .

(1.4) Let Ko L be a differential extension with

\_( .

model V (so here the word "model" is used in its sense
N N

\ :
from algehraic geometr 1.2) Bnd not in.its differentisl

sense Z}ﬁ} }. For any {not necessarily closed) point pgV

let (O -deriote the local ring of V at py W the
V,p : _ P
maximal ideal of @7 and R(p)= [9 /m the re-
3 Ve p Vip 2 ;

sidue field, We define (see also 5]) . subsets of V as

follows:



=12

Vg - %p = g;( CZ/ .)c: 60 : for all 4 }

5P vﬁp

& e
Vi, = .%p € Ve éj(mp)c: i faor all j T

e

3 ¢ : 3
b )

Note that for p & Vs B(p) has @ natural structure of
# v ©

ot

differential field so it makes sense to speak about
(R(p)) « MNew it ds eagy tg, see that Ve is Zariski open

LI g
b r‘v- -
in <V (see also Lb]Lemma 3) «Thesstructure of VD and VC
is much more complicated (see 15][3%]). Note (although we.
won't use this fact) that vV,  is the subiacent set of a
ringed space which is the basic object. ih "differential als

gebrajc geometry"” (seel}éﬁaj)b VC"plays then the role of a

(compare with (1.7) bslow).

"set of rational peints of vm"

For a geometric interpretatjon of V., and V. in case
3 . N
K=C scee (2,9) below, : : s
(1.5) 'In notations above we say that V is a Fuchs

model if <M =V < glearly for eny V. V. is a Fuchs model.,

k= ) Mtk

- A differential extension K L wiil be called a Fuchs

Jextension . df it has a @ smooth projective Fuchs ¥



. 013“

model,
(L.6) Suppose that in (1.4 Ki4s a differential
subfield of some- M@r(wg) (this' is what is called e

[51] the ! "an

of all differential extensionsg

3

2lytic case”), Define VA to be the set

~

> Mer(@Bf

iy

v

A2
o~~~

o

pl

S

with. p &;vcﬁ Qﬁ a subdomain of yé}bsUCh that the

composed map Kot Bp) s Mer(Q§)- equals the

natural indusion Kl Mer(gé} i Mer(@j)é‘wmte that

VA does not identify with a sybset o foun,
(117) Now.ifiwe. cosiss V. in (1.6) with affine

F

open subsets V, 4 each of the V,'s may be written

s e el 5 " i L
as Spen(&iyl&,amayug/P) where PaiFlﬁa,aﬁFM} isoa
differential prime ideal in the ring of differential

e
poclynomials K{yjy.,.,y,s, So te each ¥,  theare is
; i M : akb

“associated a systenm Si of differential algebraic e-
quations Flszz,.,mFMmO with coefficients in ¥ and
V. may be viewed as obtainedvhy.”glueing".these svstems-

'Si,‘This glueing process is very classical and implicite

veentained in Fuchs's "condition at Tnfdaity” (EBJn“?T'
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is immediate to see thatvlf p & V.. then giviﬁg an
elenent HaR(p) ——) Mer(Qﬁ) of V, is equivalent to
giving an "analytic zero” in Ritt's sense [31] p.l66
of the systen Si‘ This intérpreétation shows in par-
ticular that ¥y s always hcn~&mpty (use Ritt's
theorem of zerbes [31]9a176 Jie :also sge that it is
’iﬁportant to knéw the structure of the extensions Kc
f(R(p)) . since these extensions are generét@d by ‘the .
“tompenents” of the analytic solutions of the systems
S.. After all we see that desocribing Via means.in«'
fact“to "integrate the systems Si". Note that in the
“gbstract case" (i.e. when K .is not necessarily a
differentiel subfield of some Mer(gﬁ)} Ve should be
viewed as the substitute for Vo
(1.8) The biratidnal claaSificatioﬁ problem we are
“deaiing with in this paper is;.describe gll Fuchs extensions.
?é will turR oot thaé it ié'more ccnvenient to tfaanw;ts
biregular analog: describe all smoéth projective‘Fuchs

§

mode&ls”, Furthermore one ‘is«<interested by considerations



2.

of algebraic differential ejquations (1.7) to describe

e ]

the sets VA ‘(or VC)« for gu&h models, Finally}ag
W@.Sb&il 8eéin Chapter 1III, to obtain the structure
of vc one needs to understand the structure of WD°5;
for dim(w) < dim{V).

So after all it will be cohvaniert.tu make a sys-
tematic study of the geometry of V_,V

F3¥poVg -

'(1.9) Some more notational conventions. For any

scheme X over a scheme S put Tx/p.m Hom L£24 riCO)m
s, o R 7 -
< Cﬁ% e X
=sneaf of CV ~derivations from (E7 into itself, For
S X
any K=variety X and any Kerational pointit.cy & Xes

dencte by Tyx the Zariski tangent space of X at LT
Note that if KT L is'a differential extension and .
V. is e model thepn "W. is a Fuchs model if and only if

O S L .
01950975‘;.6;‘{ (V9Tv/(:)o 4 ¥ e
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2. First properties.

We begin with some"well known"facts of gitferential

algebra which we summarize in the foilowing two lemmas:

(2.1} Lemma. Let K be a differential field and

K< L an algebraic extension., Then

Fhe proof is easy and we omit it,

(2.2) Lemma. Let A be a nostherian ring and

a derivation en. A, Then:
3 {(nil(a)) nil(A)5 where

potentstradical of "A,

2) For any minimal prime P vof A, éq(P)c: B,
:3) If Ko ds integral and we still denote by Jd’ the

induced derivation on R(A) then éq(Anor)Ci,Anor wher

derivations

ﬁAseﬁzﬁr on K uniquely extend to derivations on L

nil(A) is the nil-

]
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o o e : . ; B s :
A is the normalization of A “in R{AY, , -

4). If A is a C-algebra of finite type and P &

M
F &

W
I
Lp ]
e
>
S
fy
o
=
O
=X
o9
i
53}
4
o
fut
n

not regular but 24

is regular for any prime 0 c Pﬁ Q:% P thern é?(@}c: I

23 LT A: T '-)—_' 'y . -
Prosfi 1) &s Il;lh&mm@ 1.8, 2} is proved for ins-

tance in [?D]5 3} and 4) were proved by Seidemberg in

(Y

by { "'4— .
'L}Ej and LB&] respectively,

-t
@

r

(2.3) Lemma, Let K< L. be a differentia

e

axtension

Ly dg ¥ dis normal, V Vg ' hes pure codimension
one dn V.,

2) If V is a Fuchs mad«j and p & Vs then the
éloegre W ol 05 9n v (wﬂtﬁ‘its feduced structure)
is @ Fuchs model of K* = R(p)§ where K® is the al-
gebraic_closur@ of.:K dn/ Rip), ’»' -

S)IIF 21;527,,.,Am are irreducible reduced sub-

schemes of V whose generic points belong to VD then

S At DT 90D



all generic points of the irreducible components ot

. o : : : i nor
4) I8 -V .is & Fuche model then sa-is yhé

@

Proof, 1). and -2} are easy and we omit proofs.

3) follows from E,Q}aﬁ), Finally 4) follows fram

RS : - = SR A SR PABIES i e : S R
{2.4) Lemma, Consider cifferential extensions

x - X X R ' X
e L andad Kt /g ek and let V and V

be models of Ko ki and gkfg L resﬁectlvély,
SUpboae we have 4 morphism f:V =y extencing
SpéC(Kx}-mmwﬁ?prC{K) and whose residual extension at
the genbtle pelnfs is L o1 Then:

1) If f dis flat then f(v¥)c Ve,

'y s J . ¥ r*{ e -~‘~
vuppose in addition that 'V and .V are Fuchs models.Then:

2y ful) = Vs

&) For any ‘p & \/D the generic points of the irre-~ .

5 1 e

. ; = =
ducible components of f “(p) -beleng to VD‘



43 Ef  nae oy neflr and the extrension -
/ k- 5
. Lt e : Ry # oo :
R{(p) —2 R(p~) is algebraic.then p" & VA if and

) vuppese K dis a differential subfield of some

Mer{g@}p Suppose furthermore that g:R{p) —> Mar(65

iy

is an slement o Yag P& 1 "(p) and R{p) —>R({p")

ig finite, Then there is an element h:R(p

b

of V. with. ®* = (® such that the composed morphism

Rlp) —=> R(p%} WMEM? M@F(Q}M) equals to R(p).~_§L> Mer(ﬁ%)c
<. Mar( Q}*,{} 2
Proct, 1) fellows from the eguality ny x L= 667
¥ .p V,p

X X P e — e
where p~ & V© and p=f(p )., 2)-is trivial, 3) follows
from (2.2),2). Statement 4) follows from (2.1, Edinally

5) follows from Ritt's theorem of zeroes,

(2.5) Let V be a projective K-variety (ro dif-

ferential structure is assumed here), Call C-presen~

tation of. V¥V any pair (Fad ) wikh  FiX >8 8 flat



prejective mornnism of
a tield extension such
XX Spee(k), If (f: ;
EraXt Sl 31 IR(S"
dominates (Eja) o 46

S' ~—> S sguch that t
1
R8sk poy

“otu that any proj

yresentation, Indeed w

is a prime

and let . A be a finit

in "K' -such that A[T]

of P, s

Letg

gee that f:X —5 5
@ Ce-presentation of

choose such

e

that

C-varities and i

3§ :R(5) >

that Vs K-isomorphic to

another

...... LS &

dominant morphism

he composed extension R(S) —>
als j and we have Xi& X > 5
g

ective K-variety V. hasa C-
. s

rite V=Proj(KLT ]/% where P
faay ot s »‘1} o 7

ideal “in - K1 5 T_(Tag...qu)

ely generated C-algebra contasined

contains a nerators

ge

81 y 7”{1::?’ roj(A ]:TE‘/F’K\ f‘ET} ) 5 31::

a Zariski open -set 8 48 S.

is .-flat over S5 it dis easy to
and the inclusion R(8)e K. give

S

If o Vit smnokm, then one can

s —

in addition f is smooth



P.275). Note alse t

then we can choose (f,j) svch that 3§ 1s an al-
gebrajc extension,

(2,6) Lemma, Let K< L be a differential extension,
V. @ projective model and (f,;) @ C-presentavion’

of V. Then there exists a C-presentation (f',5§')

of .V dominating ’(fsj)ﬁ fraXlie——s §' such that

is @ differential subfield of L (such a presentation
will be called a differential presentation)., If. iniad-
dition V is a Fuchs model we may choose (f'yj’) such:

that X! and &° are Fuchs models,

Proof, Of course we may suppose OS=8pec(A). Let

b

Spec(B) be an open subset of X5 suppose AmC[ély.,.?aﬂ
i

Rl

)

B= A( 14°° s n] Since 5;bi & LuR(B(XkK), there exist

elements ¢ ,,; e K such that : = R e “ '
l mer | lq q pé: |2 U(J a | c?;tli & R(B @AALclpnﬁgC;:}]}

for all i,j. Now it is easy to see that the field



o
i
P
ot

dQﬁﬂﬁgalﬁtauﬁ&mﬁclg,,,gcé})%which by flatness of ‘Ac: B
embeds in i, is a differéﬂtial subfield of L. Sup-
pose we knpow that C(f@l*‘”‘”amﬂglﬁ'°‘?cbj>/c nas
e model S, (this will folliow from L@mhﬁ{ﬁﬁ?) below),
Then let §° De thé'zarigki onen set wherg'the ra{imﬁa}
map Spude=con G g defined: it i clear that f‘;X'%
XX 8§ ~—= &' and j‘:ﬁ(ﬁ'}mR(Sl)u~» K give the
desired C-presentation.

Now éuppose in addition that -V is a Fuchs model,
By (2.4),1) X'>< Spec(R(5')) 1is a Fuchs model so
by properness of f° f(X"a_Xé) wi}l be a proper
closed subset of S5', Put § =51 FlX: 5o X

® # L

themw = a eX s G = gh will give the desired C-

(e
G

; B X
presentation with X

(2.7) _Lemma, Let Ko LmK<fxl,.@e,ggj> he a dife
ferential extension of finite transcendence degree,

Then K< L is finitely generated as a (non~differential)

field extension,



~

Proof, This lemma fo! lows from the theory developed

't er 2?‘bJ?  #.give here for convenienc

ite short proof., Cleai 'y we may suppose n=l

. - ; 3 ,
=K Lx>, Let &) be the 'set " f operators f= Ve

Gt § “ = 5 "
1ff? s O we write o (A ~”? if either  z.+

w“ bj+.¢#0r or there exists ¢ ‘suchcothat a.=b.
i 4

54
~h
®

Yek)
(g ety
o 1
e

45

1w mteand . <h . We write G\

8 L

i

=

oy

Qg ﬁ*QZ . We write giénz 1§

&

e for all

i,

°

For any G& CF Sueunc v K{mxs f7w:0 i\ and construct

[

inductively with respect to the order:. < sa\bsets

o 2 e O3 ; AL
df ) ip the following way: ' %= @ and 1%

: o 0
“ie’the sueccessor of 8 put +S "=

i
Y
iy

¢§

% & :
: y : ; 2 BV Lo :
is algebraic dver L and 21% Z uinl it mx

is transcendent over lﬂ Pt e S JaeE () X

o )

and lat /\ 2 be the set of minimal elements of A

min

with respect to the order < . Now: . is a finite

min .

= . '
set 91ﬁ,.., gq,ﬁ. Define M=K( Ox; @ &2, ); by

- Sl ut
— SR,

construction M is purely traascendental over K

by our hypothesis M is finitely generated over

K (in.

S
&

S0



b 1 =

e 3

e

(2.9) Lemnma. Let L be a differential field and
X @ gmoeth Fuchs model of C &gk,

1) £et Y be an irreducible reduced subschene
: :

bf X Wd p-€ X the generic ppint of Y. Then the fale. . g
lowing are equivalent:
a b
L Ay
“.#bA There exists an open Zariski subset YO C:Yreg
~=sueh ' that for all closed points y<5\?o we have
d(w C{’ v <; Ty iy et 7 ‘\, : lc~ h:x -4 )
1(y),],.., r(’) > R oihEre “Cj(') is the image,
N R e
ip oS B e S
of éﬁ & HTREET ) in., 7. X { one:says LLZ] bhet. Y
NG J 5 V&6 Y e soEe A
VA L ' '
QL ) SR . ] 5 . f £ :
is an integral subvariety of X for 'y neeen 0 r)"y &
B ¥ sy Same as b)) with Y &Y o i i
- e PR ! g

2t &9 °NC - and look at - f <as a Pational
function FF—>C for U a Zariski-open subset in
X. Suppose that fdr any closedrpeint’ -x & U  there is

an integral subvariety ¥ of X for d;,..;, 5; such ..,

% "l AT - - : __ i . ‘ ->
that = x € Y e F7H(f(x)), Then J;hO for all 4.

i )
——

. Praof, ﬁ) Clealy ¢) imﬁi@s. b). Suppose b) holds.



and let's prove that p & Xpe Choose 2y e Yo’ put

A= CD ) 8=(98” and choose holomorphic coordinates
X Qyo X :,YO ’
Wyme ooy, around Vs such that ¥ is‘given around

Vi by Wi=e..=w =0, Let P & Spec(A) »correspénd to

Y {(hence PB:(wlo...ﬁwr)B). Write é;=alj(w)3/awi+..+

+anj(w)3/awn with V aij(w) hblomorpgic functions &8,

Now .b) implies .alj”""arj g (Wl""'wr)B hence

,JE(P)C A f\(wl,...,wr)B = PM and we are. done, Finally

?he implication a) =)c) méy be done in theksame way .,
2) Let x_ & U such that there exist holomorphic

coordinates w;,...,w on U around X such thaf

f identifies with the projection (wi,...swn)k—v»wl.

Now if aij are as in the.proof of ,l} we have to

prove that a, =0 for all j, i.e. that c%(x)e"i'xf"lf(x)

13
- for all x near xo.-But by our assumption pius the

equivalence in 1) vwe get é;(x)-e'Tereg‘:;Txf-lf(x)

and we are done.
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3.’Coverings, blowing-ups, automorphisms, discriminantsiy

(3.1) Propeosition. Let < Kecoily sbhevadifferential

extension with Fuchs model V .and let f:W > V

’ : . : :
be an etale morphism with W irreducible reduced,
: . =

Then W is a Fuchs model of -K¥CZ R(W) whers kK* is

‘the algebraic closure of K in R(W)

érOOf. By [?4] p .26 - for anysf ¥ ééw theré exist
opéh neighbou}hoods Spec(B) r.and -Speé(A). éf y

ana f(y) such that f(Spec(B))& Spec(A) ééd Bs
==(.A[T]/(F))b Wabh B A.[T] monic,.bé AlTdzer)

and ' E'(T) a’unit in. B, ket t-jhe the imaée of T

in. B FPran Flt)=0 we get Fj(t)+F'(t)(§3t)=O where .
Fj(T) is obtained from F(T)} applying é} fo ¢ach

coefficient. Since QS(A)C:—A we get é}t &B hence

S;(B)c: B and we are done,

(3.2) Proposition. Let KA be a differential



extension, V a normal'Fuchs model , éf%Pic(V)o_se;

& !~*°(V,$€'k) ] vl'=8pec<&\)@%“1@-.@;&"&1) —

be the cyclic covering defined by s and v'® any
component of (%;)ngr.‘Supposekthat the generic points

of the irreducible components of the zero locus Z(s)

of 8 beleng to Vp. Then V'* is a Fuchs model of K¥e=

o

R(V'') whers k¥ is the algebraic closure of K in

RV

Proéff The problem is local so we may suppose V=
=Spec(A), s & A, V'=Spe§(8:.)ﬁ B=A [f’j;A[T]/&Tk-s). First
we'claim‘that s-léSQ & A, Indeed forA; %ixed p &

‘éi Spec(A) of height.one)éenmte by x the parameter

of Ap and write s=ux 5 invertible in Ap.'By hy =

pothesdis 4if. n Zody x"lQSXVG Ap. $o for any n 2> 0,
8“1638=u_légu+nx_lé;x € Ap. By normality of A we get

._lv <V ] )
s ojs € A, Now &19.,.951 extend to A[f] by the

rule é;T = k-l(8"153s)T. One immedigtely checks that

SS(Tk“S) ér(Tk-S)A[T]: salT] = (Tk«s)A[T]_ hernce J}
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descend to B. Now we may concluvde by (2.2),1);2)93).

.(3.3) Proposition, Let KL be a differential

extznsion with Fuchs model V, Let Z be an irreducible

let p &V be the

reduced closed subscheme in v,

gereric point of Z and W —> V the 'blowing up
of V with respect to the ideal sheaf of Z,-
1) If p & Vi, then W is a Fuchs model.

2) If W is a Fuchs model and p'é?vré is a point

g

of codimension 3> 2 then p’e;VEy

Proof . 1) We may suppose V=Spec(A)} Z=Spec(A/p);~
"p & Spec(A), p:(xlon,.,x%). W .will be covered by open

subsets Spec(Bk)9 BkcA[kl/xkﬁ...,xt/xkilc:.R(A). By

hypethesicz we have é;xi = :i=1 'aijsxs wifhﬁ
aijsé A, Wg get
t :
/%) = Z 2y 55 (x/x) = apyaxg/x ) (xy/X )V B

e o ot
SRR,

S0 S}(Bk)C: Bk and we are dene,

2% Put T:Spec((0 )i thentiW XX T ds the blowing
V,p Y%
)



up-ef T at dits c}osea point mp..Lvt YyreeeyYq
be a reqular system of parameters for 07 . Clearly
V,p
)

the coordinate rings of the affihe pieces of WX T
: \

are closed under é;'s se in particular
(il Ly St VS v B vl o ey /v,)
HUGL Ve YO VY BB VY T Vendaiig

where F is polyromial with.coefficients in 67 i

V,p

Multiplying the relation above with a suitable power

of Y, @nd using the fact that the graded ring Gmf(-ég )
S e

is a polynomial ring over  R(p) in-the indaterminates

A A A . P

yl,,.,.,;yS where yi = yi mgd. mp7 we get that the image

| of é;yj in R(p) is zero eoA é;(mp)c: mp.

(3.4) Proposition, Let K be algebraically closed,

K& I a differential extension and V a Fuchs model
of dimension n £ 2, Then there exists a projective
“birational morphism W ——>V ‘with W a smooth Fuchs

model.

Proof, Case n=1 follows from (2.3)’4). Suppose
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= 7 ‘ i
n=2., By LZZJ there exists » sequence of morphisms

: "n-1 M v O V_=V
e e B 1 —_— 0.,. .

such that each fk is the blowing up the singular

nor

locus of (Vk_l) . We conclude by induction using

(2'3’) 54‘)) (2.8) and (3,3),1)n

(3.5) It would be important to dispose of an‘analgg‘
of (;,A} fqr general n.,~1t would follew i? this case
‘that given a smeooth projective Fuchs‘model vV over
an aigébraically closea K, then‘@any residual extension
Ko Rip).: {p & Vy) 1is a Fuchs éxtensionfmAnyway thev

above statement holds for dim(V)43 (by (2.3),2) and (3;4)),

(3.6) Proposition.-Let Ko L be'a differential
extension with model V @a simple abelian variety and
K algebraically closed. If the group of differential
K-automorphisma of L is infinite} then‘ V is a

Fuchs model .



Proof, Consider the reduced divisor E having UG

suppOft V‘\\VF. By [?D]p.Bl and 85, B dis either
zero er amplas suppnse. E is ample. Any. element A
of the group fg* of differential Knaqtomorphisms
ot i iéduces a biregular automorphism of V which
clearly invatiafes Vi hence  ANE=E, Consider tﬁ@

exact sequence K 2is

o > T —> Aut(V) ——> Aut_(V)}—r>1

where T is the group of translations,-Adt(V) is‘the
group of all biregular maps frém V' te V and Auto(vj
is the group of invertiblrév'homomorphisms from V+ teo«Vs

Let Aut(vi)z'%G%EAut(V)a e ~ E % (here .~ denotes

the linear equivalence)., We.get an exact sequence
G ey AULIV EY - s AUtV E)—— 0 6 —9 ]

with»'G<:‘AutO(V)‘ Now T/“\Aut(stQ“sig‘finite L?01p3851
Y y — - & :

Furthermore Auto(V) is countablﬁ“{ggﬂprﬁ4 80 O is

at- most countable, But Aut{V,E) cis in one-to one.cor-

respondence with the K-rational points of an algebraic



n ‘ :
subgoup of some PGL(n). Since K is uncountable
Aut(V?E must be finite. But ;5 o Aut(v,E),

“cantradiction, and the proposition is proved,

To state the following proposition recall that

i e > W is a proper morphism of K-varieties

(assume for convenience K algebraicaily closed)

and. 4f V, €.V is the open set . -wheren f is

Flat( [10]p.266), W =W \ (v NV.), v =f"1(w ) then
s ) 7% "6 e

At

the set D of points y & W such that - f"l(y) is

\

N ; :
not smooth is closed in Wo LlQ]p.Z?S . The closed sub-

set (W \‘WO)L)E of W where D is the closure of D
in W will be called the discriminant of +, Mote thsat
if* V and W are smooth then any component of W\Wo

has codimension > 2 i oo (us&~[}ﬁjp.256 and 276 ).

(3.7) Propesition. Let K L be @ tifferential-

extension with smooth projective. Fuchs model V and-

b elgebraically closed, Let -V -—ns W ‘be a



dominant morphism of prdjective K-varieties,
L1t fKC0==@7 then R(W) is a differential
: Y W :
subiield of L and W is & Fuchs model.
2) 1f R(W) is a differential subfield of L and
W is a Fuchs model then the generic points of the
codimensien one components of the discriminant of f

LS

bélong to W,

Proocfl)Consider the canonical morphism fXLSZJW/C_QJ;LV/C.

Téking Homv(~, 67) we get a morohism
\
Q5 i(’ 3 (8]
HO(Ty ) — Homy (F%02 0, CQV)-uHomW(ﬂW/C i (OV)_‘H 3

which already proves 1) by the remark made at ¢1.9).

Let's prove 2). Using (2.6) we msy construct pro='"

Jective morphisms of C-varieties F:X o e > 8

2

{

G:X'—4¥~?S with G=sHeF and éh}embedding jiR(S)-—>K
such that:

a) (C,j)i énd'j(H,J) are differential presentations
of . M aﬁd W respectively. and 1 is.algebraic.

0) 85X72 are Fuchs models,



B TR

L

G c) XX Gpec(K) —> Z XX Spee(K) ;identifies with e
S : 5

d) G is smooth and X,5 are smooth,

Let p&W. be as 4n 2), If peeW ~then we are

sing"

done by: (Z2.8). Suppose p &W__ . Let q be the .image

M
=t
-
@
3
%
63}

of p under the projection W-—>

regular,“lLet ' ¥ —be the closure of g dn " 7 we have

Yhzreg% ¢ « Slnce the set of points vy ¢ Zreg above

which. Buuis not flat hag codimension . » 2] siny Zreg’

there exists a Zariski opem subset ZO<:~Z .. above

which F has fibres of pure dimension d=dim (X )mdim{Z) o0
and such that z ~Y=v_4 & and Z ——>S s

““smooth (use .idjp,272)¢v-Put xf:F"l Z ) and ket A< X
¢ o (o) )

be the Zariski cleosed subset of closed points X & XQ

A £ s ! s as ~ s 3 o
whfrg.tne tangent map TXF.TXX ’*TF(x)Z is not sui-

jective (since the fibres have the right dimension-this
is precisely the set of all X &« X which are singular
. points of the scheme-theoretic fibre leF(X)). Sinece . aed

VX Spec(R(p)) is not smooth it follows that X X SpaclR{Y))
W A

is notsmooth hence Yoc: F(A%). Since YO has codimersion



56

; / : :
one in ZU and - F(A \-M-Zoﬁ ¥, is dominated by some
irreducible component of 430; call-rdit 131; There exists

a locally closed subvariety U of 431 such that

u

/
> YO ie etale and for any point ¥y 4n the image
of - -l 27 Ehe morphisn ¥ —>8 is smooth at N
Since j is algebraic it will be sufficient(by (2.4),3))t0 see

Lhat o g-@ 2. ente (by (2.99) thst i for any closed point

s

X & U we have (TXF)(TXX)C: TyY where vy=F(x), Now

Ay:G"lG(x) is a smooth variety, szHglméy) is smooth at

Y and the fibre YX of % 7?8 through y is smooth

at -y, i et FX:Xx 2 Zx' the morphism induced by B

€

and 1 - ‘the ifibre of U ——'c thirough

Claim 1., Im{TyF :T X —*““7'T Z ) TyY .

Indeed TyTv is contained in Im(TKFx) because

, 2 F:
'Ux «“—xva is etale.On the other hand TyYX has codji-

mension one in Ty'Zx and T F_ is not surjective (x

being singular on F“lF(x)) heiice the claim follows,
Claim 2, T X = il 4 Txxx

Indeed computing dimensions of the vector spaces involved

P ERES



we see that it is sufficient te show dim(TxU/\TxXx);g
é;dim(zw)wl:tnl. But if we could find lineafly in-

ndent ve s o i v satg _
dependent vector €1y 1€ in TXJAF\aXXX then
since T Fecdssinjective on T.U we would get linearly
independent vectors TxF(ei)9 bo=x l»S?t inside szx
which would imply that TXFX is surjective, contradiction,

The two claims put‘tog@ther,clese the proof of the Pro-

position.
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Chapter 1I1I

4, Modele with Ce-moduli and models defined over C,

~¥We begin with some non-differential preliminaries

(4.1). Let f:X —%S .be a ... projective morphism

DVRE ]

kT

of C-varieties, For any closed point yeS(C) put X

zf"l(y) and Syu{z & 8(C); Xy and Xz are C—isomorphig}o

Gince the functor gff {n@etherian S»schemes} — {sets }
!P(T) = IsomT{XEKSTO Xy><T) is represented by @ countable..

disjoint union of C-aloebraic schemes L?I it follows

by Chevalley's constructibility theorem that S 16

7

union of at most countably many locally closed subsets. of S,
(4.2) In notations above we say that a morphism

P :S 2> Mcomwith M g Cmalgébraic spéce 5? finite type (see

[15])'13 a moduli map for f i all y & s(c), S,

is.a union of at most countably many fibres of ¢ ,

Note fhat"if a5y i any morphism of C-varieties

apngd dfert o T oode g variety then T-—-5S-—>M is a mo-

S

duli- map- For . Koo T o T

5
S
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(4.3) Let - V be a smooth projective K-variety, We
make to definitions:

1) We say V has é-moduli gfethere éxists. a G-
presentation (f, ) of V (see(2.5)) such that ¥ has’
a moduli map (see(A.Z)).

2) We say 'V "is defined over CHdR Ve ds Kadisonara

phic -te 22>< Spec(K) for some ‘smooth projective C-variety Z,

Clearl?, if V s defined over ¢ then \Y 'has C;moduli.
It is also easy to see that if 'tr;deg,CK=l then any
smooth projective K-variety has C~mcdu;i.

As a gorollary of the work of'Popp [23] and Mumfordlésj_
we prove the following:

(4.4) Theorem, Let V beva.smoofh projecti?é K«variety
of oné of the following tynes:

1) a variety with ample canonical sheaf uJV/K,

2) a surface with M =2 and (XJV/K spanned by global

sections, for .m 3> 0,

3) a variety with q=0 and_%fﬁ"oo.
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4) an abelian variety,
5) # hypersurface in projectivespa’ceﬂ3 : -

Then V' has C-moduli.

Proof. Consider first that case when V ies of type
I =i <4 and teke a C~presgntationn(f,j), f:X —>8,
if i=4 choose (f,j) such that in addition f has a
section. Shrinking- S we may suppose f is smooﬁh and

is of type s i Fok - i=1 this fols

for any y & 8(C), X ;

Y
lows from l?],Proposition 4.6.7; if i=2,3 this follows
from semicontinuity theorem and Grauert theorem [?O]

' pi288; If i=4 we get more than that, namely X—>8

is an-abelian scheme [?5]p.124, In cases- i=3,4 let's
fix ‘a pblar;zation of .X/S. By the work of Popp [?9}
pp.45-53 there exists a C-algebraic s#ace of .finite
fype M which is coarse.moduli space for varieties

of type ial,Z (respectively for polarized varietieé

of type ;a394); of.éourse we fixed a Hilbert polynomial

' : 3 S : 2
in cases i=i,3,4 and we fixed invariants K and XL

in case i=2. Then the morphism S —>M defined
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by the fanily f .is a meduli m

indeed this is clear for i=1 ek

ine the sense of (4,2)

for iz354 this follows

from the fact that there are at most countably many

polarizations on a fixed smooth projective C~.varity

°

Suppose now V is a hypersurface of degree d in

3

gpl Cases ﬁmlﬁﬁ are trivial, The.casé .d > N+l  follows

K

7

from cases i=1,3, Sp we may suppose 3 = d ==&, If

varoj(K[ﬁ]/(F))j T=(TO»~°-9TN)

presentation of the form f:X—5> 8 with S=Spec(A

and (:Praj(A{%J/(F)); we may al

then one can take a C-

A
/9

80 suppose f smooth,

Consider the composed morphism s 2 H > M

S =—5> H is the natural morphis

af (Y (Dl of all smooth
E’?\‘i

and H —> M=H/PCGL(N) is the

(it exists by [25]p. 78y, 1t 13

is a2 moduli map for f (use the

nenical bundle is a multiple of

(4.5) We would like to note

sm to the open set

hypersurfaces in

A K

where

H

sl e
Iy tel egr £

geometric quotient map

easy to see that @ : S —pM

fact.- that the anti

ca-

the hyperplane section).

that one can prove

vV

o



wd o

has ..G-moduli for various other typesvaf vVarieties V

such as : double coverings of projective spaces(use de-

formation of tne branch locus), 6 intersections of two

2M+1

guadrics in TP (use deformation of intermed.ate

jacobiane and Torelli for such'varieties) certain ruled varieties
(use deformalion of veclor bundles 5sec also (8.5)), 3.5.0.
Now comes the key argument of our approach:

(4.6) Theorem. Let Ke= L be a differential -extension
with smooth nrojective Fuchs model V and K algebraically

closed, Suppose KOmC and V..has C~moduli, Then:s V¢ is

defined over C,

Proof. Let (f',j') be a C-presentation of WMa such

£ £

that f has a moduli map. \We may suppose of course that -
p \ P

§* is smooth and has connected fibres. By (2.6)) e o)

is dominated by a differential C-presentation (f,j),

v s

Pl =0 S with X . and S smooth Fuchs models. By

(A2, F Wi]l_still have a moduli map ¥:5 >M  with

M a C-algebraic space of finite type.
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smootnh C-varjety, S is affine and ¢ :S—>M is smonth
and dominant
- 7 ;
Indeed by LEQ]p,Zl there is an etale covering N—>M
with N an algebraic scheme over C. Let SO be @ con-

nected affine scheme which is an open subspece of S>< N
' M

[;5}9@25* and put X =XXS . Then $:.+~>S and X —>X
O 8.’3 o] 0

£ : ;
are etale hence XO and SO are smootii C=-varieties and
are Fuchs models by™(3.,1): Singe. K is algebraically
Closed, the embedding j:R(S)—>K extends to an &mn-

TR e S

bedding f
s o

:H(80)~—*>K‘ herice’ (fo”jo)”
will still be a differential C-presertation, Furthermore-
the morphism 80—~9 N is é moduli maé for fo because
N.o—2M hgs finite fibres,. §o replacing - f by fo and
M by N we reduced ourselves to the case when M is
“a C-algebraic scheme, Now the claim!follows eaéily.

Two cases may occur,

Cage 1) M is-a point,

Let g:l ——>86 be the object representing the

fuhctor t%’ from (4.1)3 B o o Un with Un C~al-
el y



.

gebraic schemes, Since in this caserrg: is surjective, cne
gets by Baire's theorem that there is at'least a com-
dominating S. Choose an integral subscneme

ponent * U

] in Y generically finite over S.:It follows: that™

X,=XX 8§y & X ><81 arnid since R({S)—2K extends to

. oo y

an embedding ﬁ(Si) —> K we get that V=X X Spec(K) «
. 2 S

6 xi.>< Spec(K) Xy>«§pec(K) and we are done,.
L ‘
Case 2) dim(M) > 1.

Consider the exact sequences of €7~modqles

g
a b ”
i 5
Ts/u e P g
c d 1
5y 5 &
el Tay. 2 R UL,

Replacing S by some Zariski open subset we may suppose

that all C§?~mmdu1@s appearing are free, all kernels i
S g :

and cokernels of aﬁch,d are free and that fx and

leﬁ commute with base change Spec(R(y))—> S8 fer vegtiy,

Let rz be the generic point of S and a7,°bn2°cﬁ2’dq

the correspomdind&orphisms of R(8)~vector spaces,
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Claim.kerfd ) c— kar{b

7 XA

Suppose we proved the claim.Then bscause S and X

are Fuchs models, Jls.,.) J; induce vector fields

= HQ(

o :
VigeoegV, & H (u’fﬁTx/Q) and Uygeeop, €

b,}is/czﬂ

Let Viﬁl "and U, be the corresponding elements in
Ll P b 3

(fm(Tx/s)LQ and (TS/ClQ . Then sz(viﬂz) ui”Z

hence d.(u..)=0 - hence-by our claim ' b (u, ¥=0 con-

- o o
sequehtly uiﬁ,é Im(qi), in other words 515;,.7 J;

vanish en R(M). But tﬁis éontradicts thenfiact..that Kdzc.“
So .the proof will be cohcluded if we prove the_claim.
Suppose on the contrary that the claim fails. Then after
replacing S by some open Zariski.subs&t of‘it we may

find & 1ine.bundle e ker(@) such that Q Mker(b)=0.

There exists a closed point. y& $(C) such that

5 —-J>T?(y)M)=O, Now any line

(QOR(y) )M ker (T, f T

bundle in TS/C is.integrable hence by Frobenius l}ZJp.2OO
thére exists a complex neighbourhood jﬂ Gf -y .S
and a smooth analytic closed subspace A\ of ¥ of

dimension one such that yeg‘éﬁ arnd such that the ana-
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lytic tangent bundle ?A equals to the restriction

Q‘Z& . Now for any ze& /A the Kodaira-Spencer map

Tzﬁk $141(X29TX /C) is the:zero map.because
=
0 e ker(c) so by [16] (6:2  théckemily = XX Ag-—— A

S
is analytically trivial, in particular LlC:aym‘P"l(Mv)
with My & M ot most countable., (n the other haﬁd’ from
the way we chose the tangent marg T A el LM
Al LT " P y Piy)
is injective hence [\ —>M is:locally injective around

y, in particular Y(A) dis uncountable, contradiction.

The theorem is proved.

(4.7) Remark. In the proof of Qd,ﬁ),we used in an
essential way thé fact that M from definition (4.2)
is an algebraic space anrd not only an analytic space,
?onsequ@ntlythe results of Popp [?ngare esseqtial in

.

our approach.

(4.8) We clse this section by showing that smooth
projective Fuchs models defined over C may be described

irira~quite simple manner.Let K< L be a differentialw «



extension (K being algebraically closed) with smooth pro-

jective Fuchs model V defined over C. Fix an isomorphisnm

/%:V t>Z><Spe(*f")j a smooth projective C-variety.Fix
also a basis € S of the C~vector space Ha(z T )
1 5% : S
and consider the "structure constants"” ijp € C defined by
i a4
: —Q : o .
(% } l } = e
‘( ) Sa i it 2 : 1Jk9k
k=1

Regard R(Z) and K embedded in L=R(V) via the projecs

e

: >
2> ZX8pec(K) —-n Z and PoitM == 2 XX Epecii )

V-

i (\/5 v/ C) = Hom ( V/C /Q) = Hom (i: pé/i Pi'”QK/C’ Gﬂ) i

i

HomZ(LSZ 2/C @Z@{\K) &) HomK(z.Qx /<) =
L]

H

'O G - =

(we used of course the fact that LDJZ/C is lecally ifree
commutes with flat base change) Consequently there
exists a undque matrix (ajk)7 aj“ N

such that:



wd 8 e

. g : :
(xx) %x = Eg'ajkgkx for'a‘ll X &€ R(zZ) and ald Je
k=1 :

As an immediate consequence of the commutation of é;'s we get

cal

{ o ’ PN o S : . el - g = £ & :
{ ) g;apk é%ajk + <£E;f4 B ® i Cank. = Wy far all 1 up i
‘ ; g,m=1

( 88@1}7}p0421 for an analog computation ). Clearly (ajk)

depends on the choice of {9 and ﬂ i Conversely
: Ay 1 o b
if one is given an algebraically clesed differential field
K, @& smooth .projective C-variety Z a basis €L7“76g of
O(Z i ). Canstants ¢ satisfying (x) and‘a matrix
12700 tants iq) sati Nals . :

H
. 1]

& K satisfying (xxx) then one can. construct
a smooth projective Fuchs model VsZ><Spec(K) using for-

mulae (xx

e

L3

(4.9) The‘conclusion of this secticn should be that at
least in the "abstract case" classificétion of‘éméoth projec-
tive Fuchs models is done once wé know they are defined over
C7 hence by Theorem (4.6) once‘we-know fhey have C-moduli.
'S§ the following (non«differential)-question becomes impor~ 
tant: does . any smooth projective K-variety (K algebraically

closed and containing as usual C) have C-moduli ? Due to



wAgL

thebdiscussion at (4,8) it would be very interesting tq

know this at least for varieties Vi awdat HG(TV/JQO ;
AN

note that there exist structure theorems for varieties

V with HQ{TV/K):%'U {%1] which codd be brought iﬂto the

setting of Fuchs models, provided of course C-moduli exist,

by

oy 5 ' s o . e 3 -
5. Clairaut models and Poincare modgels,

(Sslicker kel be a differgntial extension with
K algebraically closed and with smooth projective Fuchs
model V.

lf Say that V is a Clairaut model if there exists
. a K;iSOmorphism f}:v~»ﬁﬁﬁ>z*x15p@C(K) wifh Z a smooth
projective C-variety such that (regarding R(Z) embedded in
L via (5 as in (4.8)) we have R{Z}C:.LQG

2) Say that V “is a Poincaré,madel if ?here exisﬁs

-

P 5 : by -
a K-isomorphism /3:V-w~“>2‘><SpQC(K) with Z an abelian C-variety



" : A : lieier 1
Ferminolcgy above is inspired from =5

: & ooy g 4 5 i
Clairaut and Poincare models wil?
in classificatisn; by the very definition they are defined
gver G7 hence classified in (4.8}, We shall

differential extensinp

extension 4f it has

{5.2) Netatigns
1)V s
. |
or {fora swlahle (} y @
“ & H
}UI

that 11 {\/ 9'} V/K‘::sj

g variety

ae

provided V

B

3

ee

(5.3) below,

play an important role

say that a

3 /7
Ke L is a Clairaut (Poincare)

/ ] .
a Clairaut (Poincare) model: we also

/
(Poincare) over K

being as in (4.8) we have:

=0 .for all

a Clairaut model if and only

Jy4k'.Note,

on the other

if either HO(V}T

han

is  of one of the following

with ample canonical buwdle,_a minimal

surface of general type, a variety with =0 and 2¢ 4 -oo

@ hypersurface in projective space,of degree 2 3 and di-

“mension 2> Eathis follows from [?ijp 47 and 51 and-from

.[16]L@mma Ta. 2
2 1f

ALl epa ok,

(5.3) In the case n-=r=1]

./
18 a Poincare model then é:ajk 5

(n=tr.deg

- 8

bk for

L) concepts of

2t : 4 . e 2 3 . IS
Clairaut and Poincare extensions were introduced in [§3Jn

v/ ) =0

d



5]

. . . / - ' y
Our Clairaut and Poincare exvetisions do not reduce for
n=r=1 to Matsuﬁa‘ﬁ, although they are very close to them,
Mot® that 4f jeem | o 45 a diffzrential ¢xXtension then:
Bl ke pags Clairaut in'our sense then it is %7ss
Clairaut in Matsuda's sense,
- \ / :
<) Hf skesmbds Poincare but- not Clairaut in our senae
0] . 3 / :
then it is Poincare in Matsuda's sense,

(5.4) Remarks, bl STH - ig' @ Clairaut model then VCA
is infinite.and consists only of‘K-rational ppints. Indsed if-
peVeE Z>< 8pec(K)—>Z is the projection then for any C=point
Y & Z p?;(y) consists of a K-point'b@longing to VC‘ Further-
more for p é'vn, R(p):K«R(p))O) ‘SG R{p)=K,

2Y"Ff V ds an abelian Kevariety and is defined over d
then 4t is 3 Poincaré/model, Indeed +f x> ><S8pec(K) then
te see that Z . is an abedian C-variety 6ne can use either
[?5,p0124 or the fact that any projective complex manifold
with trivial canonical bundle and irregulgéity equal to the

dimension. must be an abelian variety (the latter fact is a

corollary of the classification in fﬁ] ¥
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3) Notations being as in (6.1}?1) note that it does
; - ) % - . O
not followthat for all lsomotrphism oV ———27 > Spec(K)
' C
the embedding of R(Z) in L via ) is contained in L@
: ©

( see (5.68)),

Here is. the maih result of this section:

K L he g differeﬁtial extension
with Poincare model V,

1) V is a Clairaut model if and ondy if Vi contains
a K-rational point,

2y %t LO:C then Vpp consists only afvthe generié”
point of < V.

3) There exists a differential extension - K gf K
]

: ' : . X . : |
such that V> Spec(K”) 4is & Clairsut model,
Spec(K)

Before giving the proof we would like to note that

statement 2) above will be used in an essential way

-t
—————

inChapter III; this statement combined with Proposition

5.7} on discriminants will give.,ver roughly speaking
9 ’ ) 2] f g




Lae ey

the"smoothness of the Albanese mapt<of aiFuchs model,
Note also that statement 3) above was proved in L“B] for

n=r=1; our method is more conceptual,

E3.6 ) Let s prove (5.5).,1) By. the general remark (5.4)f1)

[t

we only have to prove that V is a Clairaut model provided

there exists a K-rational point in VQ. Let - p be such &

point. Let /E:V

s

> Z>X Spec(K) be an -isomorphism as in
(5.1),2) . iwith Z  antabelisdn variety, fix a basis % 0

l’ac,g

t(—} . ¥ Pe o 'y en i QLS ST ” P :
i AR S AN G 2 a ; € matrix associate to
Of ((.7 L/{.‘) and let <djk) l)ﬁ_th m { ru.SﬂbJ, ted #]

{3’915‘;”9g as in (4.8).Using (2.7) we may find a smooth

affine C-variety S, an algebraic extension R(S)c K  and

D

Secddon 1B~ 72 285 of ‘the projection g aZ > § —% 5

such that the following hold:

1) If t_ :Specilk) — > Z > Spec(K) is the morphism
~

deduced from t then the image'of ty equals o,

2) The elements ajk belong to HO(CO .
S



3y R(S) is a differential subfield of K and S
is & Fuchsmodel,
By the above conditions R(ZXS) is a differential

subfield of L and Z =<8 is a Fuchs model. Now consider

the S-morphism

ey 228 — T LK G D> 7 X §

where f=12><t and gma>§1s with 8:2 3.2 %>g; th@
addifion map for the group law en 'Z, Note that for any

y & S(C) the iﬁdgced morphism CPV:Z><§y§ o Z><{y§ is
precisely thé aytemorphigm cf;(x)uk + pl(t(y)) where
Pys2 3¢ Siew w320 ds the naﬁural projection. In particular

¥ is an isomorphism and let 4} its inverse, Dencte by

OZ the composed morphism



e

/)Z B e s G NEUUE R e

!

»

2

Claim, Wﬁ(R(Z)) is contained in the field of CONS=

tants . .of e L=REV) .

Indeedj Forcany W& R(Z)  and any

hence ®'p]u . takes the

the first factor). Since

nerie. poiat of t(8) - dn

pyu takes the same value at any point of

L N

X &€ 272 the functibn

{x%y{ﬁ hence

same value at any point of

p &V

e

S

sciom . Z <K

D

S by translations via

it follows that the ge-

belongs to

(2358

hence by (Z.QLQ)t(S) .is an integral subvariety for

S RRERY 5;. Now by the special form of derivations

(%%} in (4.8) and since

b

l’ceol’

9 are 2Z
g

minvariant9

we see that.the veector fields on 2258 corresponding

to §,

15‘.." r

éj are invariant

under the

action of Z

ZXKSG —— 7,



( for all ﬁfs 7 o

‘Y"""‘“""—“*'” ,,,,,,,,,,,,
on Z X8 and consequently E{S) #iX will be integral
subvarieties for 150y J;,In particular by (@49},2)

X X : : X : 5
S;(4lplu)x0 for all 1 hence - é;(7 u)=0. for all -j
so the cle&im is proved,.

Now coneider the isomorphism

~ | &
KM: Wemses o2 e Spaele) o - o > Spec(K)

where +L is naturally induced by 4’°Then if we embed

N

V —> Z X Spec(K) —> 2

]

R(Z) in R(V)=L vi:

(st

we get' by olir colaim that J;yns for x& RLZ) and all

and we are done.,

(5.77) Let's prove (5.5),2). We shall proceed by induction

on the codimension of painlsnV . We prove first that if.

Lo=C o -thea cannot contain any point p of codimension onhe.



7
oo 3 s

Indeed if Vy would contain such. a point “ 'p then let

Y be the corresponding prime diviser on V and.-let B

be the component of the unity c¢f the algebraic group

AN A = Ly
ker( ﬂwav‘-~—7y) where Ay(a)m@d7(ng¥J’ YamY+aa By
M :

1?6] we have a morphism f:V —5V/B=W and an ample

e
Pt

divisor H on W such that f F

H=Y8ince f has connected

fibres; by (3.7),1) R(W) is a differential subfield of L

and W is a Fuchs model.Furthermore (Q(W))Omﬂ and by

(2,4)q2) the generic peoint of H belongs te W So we

Ds

may reduce ourselves to the case when Y itself is ample,

Let S be an affine smooth C~variety such that R(S)

is a differential subfield of K over which K is alge-
< oy o ,\" N i o . % ; ~ 8] m \ .
braic and such that S is a Fuchs model and 2.0 & H ( )

where (a,

Jk} is the matrix associated as in (4.,8) to some

isomorphism V —= Z ><8pec(K) - and te a basis of HO(ZqTZ/C).

We may-choose S ‘such that in addition there exists a (flat)
relatively ample (over 8) divisor X on Z>X$ such that

©

o

the projection X ——> S5 gives a C-presentation of Y . If

dim(Z)=g there exist xlﬁ,,,ﬁxq € Z such that after replacing
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3 by some open Zariski subset of il, every irreducible

component Ti of  T=(X # xl)/\(X + xz)/\.ﬂ.../\(x + X

dominates and is generically finite over S; note that by

ampleness)'f#:gé Now exactly as ‘in (5.6) X is.an integral
subvariety of Z X S for st.,“,'gl and- X * X will

w%) ,3) « the genefic

—
N

still be integral subvarieties, By

pints af :T.o-dhelong te Thipee s This immediately imulies
i Y Yy i

s

by (2.4),3) that V., contains closed points, contradic-

ting (5,5)’1).
Now let's make the induction. step. Suppose we know Vé
does not contain points of codimension k-1 'and suprose

Vi, contains a point p of codimensien k- > 2.Let 5, be

again a smooth C-variet R{S)c=. . K. alagebraic, S & Fuchs
g y 2 5

model a.”<§~H0(C9 ). Suppose in addition that we chose 'S

Jer i)

such that there exists an irreducible reduced closed subscheme

; »8 )R(S)c}<)

X in Z X S dominating S and such that (X
gives a C-presentation of Y, There exists an irreducible
/ (4 " e b o A : &L ﬁ :

cubve B dpn Zo-such that - it X' o= \\\w/// (X o+ b)) thend

: 4 : ) : : e
dim(X")=dim(X)+1 (here agein Z acts on Z XS via the first



“5Gw
factor, Now since F =N/ (X”irj'+ b) a1s a proper
5 7 2

be B

. , e % : : ¥
closed subset of X we ‘get that' for apy x££ X \F

there exists b & B such thét X & er

+ bo=fX + b

b1 .
peg”

X

i

We conclude by {2¢E)’1) that - thedgeneric point af- X

belongs te (Z ?QE)D. By (2.4),3) agein we will find

a8 point of codimension k-1 in Vp, ccntradiction.
: : : IS v " : X g
(5.8) Let's prove (5.5),3). Take simply K to be
the aldebrajic closure of L. Then V>< SpeC (K ) sV

e o 0 5 X
will still be a Poincare model:but vp
i

will contain a

* : s : =
K -rational point and we conclude by €

(5.2) One can give easier alternative proofs for
(5.5),2) in cases dim(V)=1., and dim(V)=2 (see (7.3)

gnd (8.6)). The idea is to use Proposition {362)40@byclic

coverings.

We close this section by summarizing what we know up
to row about chssification of Fuchs smooth projective

Iz o

models in the "ab

®
o
ot
sy}
O
s
O
jt
w
@

. Theorems below may be
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deduced by simply putting together (3.6),(4.4),(4.6),

(5.2),(544),:45.5) .

(5.183: Theoren, Let Kl dbe.p differential extension
with K' &1gebraica11y closed and-with smooth mrojec%i?e
Fuchs model. V. Let KO:C,

1) Suppcsé v i§ of.one of the following types: a va-

riety with ample canonical-bundle, a minimal surface of

~

o2

jeneral type, a variety with qg=0 and M #-@ , a hypersurface

. Then

(]

ce

of dimension %2 and degree »3 in projective spe
V is a clairaut modely in particular V. congists only
of K-rational points.

2) Suppese -V -is ap - avbelian Kevariety. Thep V -is a

/ ; 2
Poincaré model; in particular if L =C  then V_=V.= %ﬁ {
l . 0 B Ay d

7 : g .- : ~ :
where 3 is the generitc point of V. =
¥ ]

(5.11) Theorem, Suppose . K. L is ‘a differential
extension with model a simple abelian variety. Suppose

K is algebraically closed, K _=C and the group of diffe-
b o 5

‘rentig]l Ke=automerphisms of L . i¢ dinfinite. Then KoL



Bl

Y

Poincare extensioh.

g»..i.
0
i)
pes

Note that {except information &bout V case ns=ral

B)

(nutrodegaKL) in (5.10) was proved in LQB] pp .37 and Ql

& " 3 2 i 5 . 4
by Matsuda and W1$h10k&5 and has its roots in Poincare's

s

paper l??%. For n=1 Theorem (5.11; was proved by Kolchin

L
N 4

...17‘
?’L] B, 70,

5&*

thﬂ(see also

6., The

L

analytic case, Kolchin extensions,

In this section we make the connection between results

obtained in the abstract case {see

~~

5.10)) and the analytic

v

discussion from the Introduction,(see also (1.6)).
: 5 : . -
(6.1) Theorem. Let K be a differential subfield

of Mer(ﬁ9)75<c: L a differential extension with smooth

.

projective Fuchs model V and f:R(p) > Har(@i) an
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element of V,. Let V=V Spec(K),
- i o :
Spec(K)

1) Suppose - V is of-one of the following types:
a variety with ample canonical bﬂndle} a minimal surface
of general type’"a.variety with qu and 2t 3 oo y @ hyper-
surface of dimension 22 and degfee >3 in‘projective

space. Thnen the extension K FREp)) “Hs finite,

2) Suppose V is an abelian K-variety. Then

K< f(R(p)) bhas a finite embedding into a Kolchin ex-

tension. Kods L such that szKx(L).

(6.2) Note that Theorem (6.1) immediately implies

Theorems  1,4,5 from the Introduction. To prove Theorem 5,

use the fact that if V is a Fuchs model birationally

isemorpnic to an abelian Ka=variety A then the rational

(o

map V ---- A=A Spec(K) “must be quhhere’defined
Spec(K) :

[?é]p.ZOa hence by (3.7),1) A is a Fuchs model and by

so. Theorem (6.1) will

(2.4),1) A will be a Fuchs model

)

A

abply to. A,

(6.3) If one looks at V in Theorem (6.1) -as obtained
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by glueing (1.7) 2lgebraic differential systems Si:

. Film...aFin =0 “then (6.1),1) says.that-any meromorphic .,

solution of any system Si has itg components algebraic

dver the differential field . C al”‘”‘ﬁaNt> whepe the,

a;'s aretall coeéfficients appearing in‘thg<5ij's. Thi§r¢0ﬂf
cept of algebraicity ef:solutions is ¢learly much stronger
than the oﬁe 1 [121p¢215. On thé vther hand results of Fain-
levé—Malmquist type [}2]pp,232-°40@ do not suffice to-prove

our algebraicity results. One of the main pgintswwhich?make

the method in EZ]‘fail in our problem dg:the following. Let¢,

(f,j)’ foX >S5S . be a differential C-presentation of a Fuchs

model V; we may supposevthat.fér agy x & X the dimension of
Cgl(x)+,‘.+cg;(x)c: TXX is constant equal to rogg r -so we
get in thigs way: a foliationﬂf;c:TX/C, We . .may suppose é: is
't}ansverse to. o f [}2]p.206. But it wili'generaliy’happen

that dim(S) >. dim(gi) S0 the'theory in [}gjwill not ap-
plf (the simplest example is p%oVided By equatigns F(y,y')=0
with F E C(T,W)[tovtl] where T,%éMer{C) are algebratcally

independehf; take for instance ¢ (w)=w and P(w)=exp(w)).,

In particular if r=l
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theory .in 1}2] applies only 1:f tr;déé,CKml. But. inthis
case C-moduli always exist (4.3). so by (4.6) smooth
projective Fuchs models over K (KOzC) are always de-
fined over .C  hence completely classified (4.,2),

Finally (6.1),2) says that any meromorphic solution
of the correséonding systems'méy be written as vu/y,
.wheré both u and v have. the form Y1§Dq3)+.;¢+ﬂfofi(ﬁg
f;=(ﬁl,...,ﬂg)9 g% being abelian functions and

.y Of3./0w bein algebraic over K,
i} ] ke g g

(6.4) Let's prove (ol )e1) Cleérly L® K will be
K

a differential extension of K with Fuchs model V, By

(2.1))(E)O=C. By (5.10),1) (¥). consists of closed

®

C
points hence by (Z.A)fAQ VC consists of closed points

and we are done.

(6.5) Let's prove (6.1),2). By (5.10),2) V is a Pen-

asee

oo . - :
care model . Suppose V is K-isomorphic to 2Z < Spec(K)

where «Z.1is some abelianﬁ,ﬁmvarxxys Z:Cg/[x y N a Jattice

11+++9Z, be holomorphic global coordinates
i )

in Y, Letiiz

i
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on ¢Y and ed 5 o the camonical praqjection

such that if @ . 4 i3 5 basis eof HY%z2 .71
9

Loy by ays) HEAD

in (4.8) then (Hju)ajrzr (3/92?)((;0?0 for all j and

&ll u ER(Z). Now let (gjk) be the matrix defined in

(4.8). There exists a finite extensicn K of K k*cz R :

such that v%mv>< Spec(Kx) ia szisomorphic Ta:
Spec(K) : G

ijfSpec(K*) and such that “all ajk belong to K.

Let p%QE v  be any point lying over pe& V and take Us
zSpec(A)C: Z be an open subset 'such that 9%65 U,XKSpec(KK).
By h(2.4);5) there exists a differential extension
h:R(pf)~e-> Mer(db?) in V:ﬂ extending f:R(p)—> Mer{{(3).
Write A~Crf T 7/3 = C[L u ] Jd. "being a fime“

B e e ity 0 ARG Suprane
ideal in the polynomial ring Gﬂrlf""? N]' Let O%k’ %h &
é'!ﬁer(@%ﬁ) be the images of .. a,, ‘and u Qéll viliar o b,

= ol a :
Since ‘ﬂk(A)ti A there exist polynomials qu‘é”CL719"'9TN]
SUCh that Gkuq = qu(ul." s e .,UN)

Applying h to (xx) and (xxx) in (4.8) we get

=6 S -
————d

i

90<Jk/awp ‘adpk/awj

i
{5 15
T
£s)
~
e
-
o
k3
2
—~c-
=
p—

2 o/om,
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for &1l j,p,k,q. Furthermore we have-
F(Sbl5""‘PN)=o ver @l o ke g

/ e

by the holomorphic Poincare lemma {Q]p,aaa there exist-
a subdomain 65%% of QS% and functions /@

[ l’.l"ﬁg é

WM s - 4 : '
€ Mer((H"") such that I /ony= & for all ‘g ,k.

0 o o Xx
Choose w =(w1,,..’wr)é§ Q§ such that all -/3k and ¢h

; o o 0 0
are holomorphic around w°,Since y°=( %l(w feiis %N(w 1)
16 @ C-point of e Spec(Crf_ = 1) we may arite
‘ * L) s : .

+q(w0)guq(y°) for all gq. Take x%¢& ¢9 such that ﬁ(xo)zyo

\ 5 :
and define _J?lﬁu..§f7mlé Mer(Q}kﬁg by the formula:

s
’\Zq(W) = j'q(y(gliw)”ﬁl(wo)"‘xg»)---9ﬁg(w)‘;ﬂg(wo)’%xg)

where jqc qoﬂ’ . By constfuctiona'/Zq(wo)mf¢q(wc) for

all q ‘and it is easy to see that

Mg/ 3% Z,.: kP gk “21.'}"'5'2:\4).

for all 37q One obtalns inductively thaf the Tayldr

—— T

. e e
expansions of /Zq and %h around ' w coincide ; hence
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yq: $&° Now. the differential extansion ki X*) C:h(P(p%))

: et ' : S e =
is generated by ?ﬁ,°°'5'?w and. h(R(p~))=h( ") (h(R(p)))

30 we are done.

@

The following corollary will be useful to o
Theorems. 2 .and 3 in the Introduction from.the resul 's-

in Chapter 111,

(6.6) Corollary. Suppose K< L is a different 2l
extension of differential subfields of M@r(ug )7adn,ttiﬂg

a model V. Suppose L& K _—has a finite extession Nes
K : :

7 b : :
which is Poincare over K. Then KoL has a8 finito: mume

bedding into a Kolchin extension K™ & %

L o / -
Proof., Let W= Z ><Spec{K) be a Poincare model of

K< M, The extension L® K< M yelds a rational mi
K
ZX 8pec(K) ——---» VaVv X - Spec(K) over K. This map
Spec(K)

“will be induced by a rationalvmap' Wiy=Z Spec(Kl)~—->Vl=

=V 3 _Spec(Kl) over K, where K, is some finite
Spec(K)

extension of K contained in kolbet D < Wy be the opern::
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Zariski subset where the latter map is dzfined. Applying

(2,4),5) to the morphism D —V, Vi we get that the
EN

inclusion L —> Mer(A ) extends to a differential
extension R(Wl) »—->Mer(041);(ﬁ]<204 . Now apply (6,1)72)

to the model Wl,



50"

Chapter I11
7 Claesification: curves,

As wevalfeady remarked, Fuchs extensions of traﬁscendehce
degree one were classified in [?BJ‘in the orinary case (ife”‘
rel). Theé'case r=1 of the following theorem igﬁessentially
contained-in [?3};'the general GaSR F 2 1 follows immediately

from Theoram (5.10).

\
A

S D

{7.1) Theorem.'Let Ko L7ibe a-differential extension

with Fuchs model V a smoothuprojective curve of genus g.

Suppose K is algebraically closed and K =C.: Then V is

~

defined ever: €. More precisely . fer

0
]
ot
<
&)
8]
@D
g
O
}.J
=
%
@
T

® s,

model and for g9 > 2 it ds a Clairsut mocel.

7.2) We would like to note.that in 1231 no hypothesié
It s

R

'

is made on the ground field C. We are .able
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%o gemcralize our arguments to obtain results also for ar-

bitrary ground fields)in the case of curves and ahelian

\

varieties: one has to make use cof moduli for such va-

)

rieties over any groundy field L?S],

(7.5) If V is as in Theorem (7.1) and g:i if fol~
lows from (S.SLj)that V is a:Ciairaut model -if and only
if VD_(?F equiyaléntly VC) contains a closed éoint. We
would like to prove here directly a weaker statement (it

is (5§5),2) for dimension one) namely that V cannot

D
contain closed points provided LOmC.‘We shall use (7.1)

which. in its turn is independent of (5.5). Suppose indeed

: /
there exists a closed point p € Vp. Take an etale double

covering £ ovX s etV By (80l v¥  is a Fuchs
model and of course is an elliptic curve, If fx(p)xpl+p2_
~then by (2.4),3) PysPp € V. Since Pic®(V¥) is divisible
2 : X T
there exists o € Pic(V®) such that Py +Pyo é/éf ! o Let.
- CQ -1 X L . Y
W=Spec((J BL ™) ——> v* bethe double _cowering of V Fam

mified along PytPoe By (3.2)} Wiodis @ smooth projective Fuchs

model, But g(W)=2 “hence by - (7.1) oW lsis Cladreut, hence



7=

W

9]
O
o
Ij\
)
w

ts of clesed points. By (2,4),4) Vo cainot .

contain the gerneric peoint of V, contradicting LO=C

J

and we are done.

(7.4 Eigﬁﬂ@ﬁé& Let K L be a differentisl extension

with Fuchs model 'V a projective curve, Suppose K is

M : Sy pgNOT iy -
algebraically closed and LO=C. rhen g=g(V = )==1 and
, nor : ; BT
Ly It ge0 oV )D has at most 2 K-rational points,

nor

In particular if m:V -~ —sV is the normalization morphism

then m [{¥'7 Y ¥ has et mobt 2 Kafatiohal points’, ™

2) Afatgel - then V is smooth.

Proef . By (2‘3),4) vi®' is a Fuchs model. So by £7.1)

nor 1

g £1. Suppose V s1P . I1f IPl contains 5 K-rational

points py ,Po,Py then consider the cyeclic 3-fold covering of

v¥-~n9'£Plramified at  py+porpg. BY (3.2) W is a Fuchs model

will contain K-rational points

of gerus one,., By (2.4),3) WD

hence by (7.3) (or by (5.5)) W is a Clairaut model. But

this again imples that Lo:% C, contradiction. The statement

about e follows from (2.8) and (2.4),3). The case

et



e -

oy

when V' is an elliptic curve may be treated in the same

way.

(7.5) We would like to remark that the case K=C is
again trivial dn (7 .4). Indeed 1§ idKeC i l7.4),]1) reduces
1

to the obvious fact that a glebal vectoi field on IP

which vanishes at three points must be identically zero.

8., Surfaces.

{8.1) Let K L be a differential extension with K
algebraically closed and’ n=tr,deg,KL:? and suppose there
is & prejective Fuchs model V. Thené{E,A) there will exist

also a smooth preojective Fuchs model v*  and hence by (2.3),1)

any minimal model s dominated by V¥ will be a Fuchs model,



Sy '

(8.2) Theorem,., Let Kf: L. be a differential extensicn
with Fuchs model V 8 smooth projective minimal surface:
Suppose’ K 1is algebraically closed and KO=C. fhenl \%
1s defined ovef C. More precisely V is K-isomorphic
to Z2>< Spec(K) where either

1) Z 15 a minimal model of rational.surface or

: 1 : e
2) Z is a IP -bundle over an elliptic curve or

N
N

is an abelian surface or
4) Z is a bielliptic sunface,
We shall refer to the types above as: types 1),2},3),4),

: : :
(8.3) Note that by (4.8) our: classification is completé;

[zl ‘ =
it depends cnly the "structure constants” of the Lie algebra

¢ 3 : : 3
H (ZQT?/P) in each of the four cases,., Of course in case 3)

V. is-a Poineare model and in case ' 4), V -has a finite

pteg : : X g X e : ,
etale covering V ——V with V a Poincare model.

(8.4) Corollary. Suppose K L iec .a Fuchs éxtension

of transcendence degree n=2 with &« algebraically closed

-t
—_——— T .

~ : . X :
LO=C and M £-00 . Then L has a finite extension L which

-

/
is Poincare over K,



A

-~

Note that (8.4) and (6.6) immediate]y imply Theorem "2

from the Introduction,. -

(8.5) Let's prove Theorenm (852). By clagsification
of surfaces [l] {(the complex case suffices because K
is algebraically closed and of fiﬁite transcendence degree
oyef C hence K is abstractly isomorphic to Cj end
applying Theorem (5.10),1) we get that V must be of one
of the following types:

a) rational

b) a IPl~bundle over @ curve B of genus g(Bl=q(¥) =

c) abelian

d)y:elliptic with q(¥) =1 and'w%%—wv’but hol. aéeﬁym

In case a) we are done becaus@vmin;mal models of
rational sﬁrfaccs [}] P79  are aefined over ratienals,
Suppose we are in case b), By (3.7),1) R(B) is a diffe-

rential subfield of | and B is a Fuchs model ., Since

. . -
R(B Gl =€ wesigetaby il 7. ] that B i1is a Poincare

model, ea B:E><l$pec(l<)9 E .an elldptic curve over  C,
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i

: S 4 e S :
Now V@Z}{E; Je Wiere ¢ is a renk 2 normalized

vector bundle on B8 {;ojp}373; By Atyiah's classificaticr
[}d}p.377 two situations may cccur, Thé first is when
E;K is indecomnposable and thereiare exactl? tWo tuled
surfaces: pf: the form IP(éiK); by tihe expiicit constiruction
of these surfaces [id]p,377 one sees th@tfboth of them
are defined over the same field as the base curve B:i:in
ouf casé they are defined.over*vch The second case is when
.5K.= &@éeK V where X'K:é Pic(s), deg(é@K)zd Z'0, The

B : :

et z e s S e .
iving of T is equivalentioto the giving of a morphism
; £ o) b

d

Y:Spec(K). ——> PzPicE/C_

— —-' 7 ) 7 ; ; . ‘
l?BJg.ZS._Let ;ﬁ* _be'xhﬂyuni-'
versal. shzaf on P'><E7 let S be a smooth open subscheme

of"the closure of “P(Spet(K)) in =P and let cﬁis_é

& Pic(S3<E) the restrictioniof o€ ~to 8 <E. Consider:

¥ . = . X < 5 - & i C‘
the natural projection f;IP(Cj7 @& ") >S5 and
: S0k o

the embédding i:R(8)—> K. Then. (f,j) is a G-presentation
of .V _andwe claim that the identity mep 838 is. &

moduli map for f (4.2). Indeed if we have an abstract

iéomorphism tP(Cﬂ 69éfl)-x IP(C?’S%%E) with deg(gfl)z

(to see
\o . e ey ;
_=deg(eX’,) = O then it is an easy exercise that either



= A5~

-1
Y ) :
X x& or . . Consequently V has . C-moduli
17 o ( >
and by (4.6) V 1is defined over'.iC so case b) is done, .

In case c) we conclude by (5.10),2).

Suppose we are in case d),

Claim. There exists a morphism h:V 26 ento an

elliptic curve G - such that h%6§?n 67,
' ‘ Lo SRR e

Indeed take an elliptic . fibration f:V

2B, As

in case b) one sees that f(B) < 1. 8By {}] p.150

g(B) = q(V) =< g(B)+1. Now if ¢(B)=1 we take h=f, GeB,
; : 5 3

and the claim follows, If g(8)=0 welhave q{V)=1l and:we

may -take h:V-——>G to be the Stein factorization of

the Albanese map V > Alb(V) (ane again the fact that
g(G)=1 Qiii follow as in case b) via.(7.l)).

Now we claim that h has smooth fibres., Indeed by
(5. 7),1) RB(G) 45 a diffefentialysubfieid of- 1 amd €
is a FUChsimodél h3n¢e a Poincare model by (7.1); Futther=

-

mbre"(R(G))o CZLg:C.-Ndw e singular for somsg
closed bﬁjnt y €6, it follows by (3.7),2) thatbry é’GD

and this contradicts (5.5)42) (see also (7,3)). Now if

h is smooth it follows from [ijp.gg that V must have an efale



ST

covem’ng which is J‘Frrvc(uct_' of curves. 37 (3-4);(3-?),4) and (37.1) these curves ar(»,?[/f/-,ltl‘r so

s bielliptic, So by [i]p.llS there exist elliptic curves

ByyBy, over K and a finite group F CLBiﬂﬂacting freely

on 81><182 such that v::(Bl><82)/F. By (3.1) B,XB, .
is a Fuchs model so by (3.7),1)' and . (Z%1) Bisﬁijy;Spec(K)
with Ei elliptiC curves over <,

Claim. The action of .F .on By} By, “isoinduced by an .U is

actionaf ‘B —apn E.XE

ot e

Indeed by the Bagnera~DeFranchié list [1]5;113 F i has

generators whose action is either

: ‘(blﬁbz) £ (bl+ﬂlﬁ_b2+ﬁg) or

SERo) 0 (b, ebbl

with 5, & Bl(!'i)qu € B,y(K), WE Adto(sz). Now if we think
Ei(C) as embedded in Bi(K) it is wall known that Ei(C)
contains all points oflfinité order.of 'Bi(K); -, pértif

cular ySi E Ei(C). Fy{thermore since.thg cardinals of AutO(Ei)
an Auto(Bi) _are equai (théy éepend’oﬁly,on_the j-inveriant
[}o]p;321) it follows that any autcmorphism in AutG(B;) is

inducad'by some #3vtomorphism in: Auto(Ei). The claim - follows,



By the claim above vm((E]%ZEZ)/F}><8péc(K) and case d)

is also done, The theorem-is proved,

(8.6) Let's show how ﬁnﬁ can use the method from (7.3)
arnd«Theorem (8.2) tO‘provev(S,ﬁyoz) for dim{¥)=2. Lt
‘v be a smooth projective Fuchs.model which is an abelian-.
surface-and suppose (R(V))0=C. We want to show ggat there
is. 0o irteducible curve on V whose generic point belongs

0* Indeed if - Y i‘was.such a“curve, consider first a

to M
finitewé%ale covering fov¥— sy ~suchathat foéiiéézzl
for séme. ;fe Pic(vk) (such an f _may beiconstructed a5
follows: take v*:vﬁ f:multiplication by' 2; then by [?QJ'
pp. 86 ard 92) G R é]gebraicallv eguivalenuito 4Y s0
we may conciude by the fact thét Pico(vx) s divisible).(~“‘
By, 45,19 v* is a Fuchs modei and by £2.4)53) 211 irredu-
.cible components of f*Y .have their generic points in ng
Lt o A e tHe double covering of v¥  cons:ructed wifh

* : o p——— 5 ; :
the help of & and %y, since %Y This no multiple com-

ponents, V' has only isolated singularities , hence it is



normal and connected. By (3.2),V' is a Fuchs model. By

2l ., - By
(3.4) there is & birational morphism W ——> V' with

W a smooth projective Fuchs model., 3ince W dominates

* ; X | ‘ | - :
L a(W) = q(V }=2 hence by our classification in (8.2

the minimal model Wmin of W, which will still dominate
AT o e A 2 s : ' X
V", is an abelian variety. Hence the morphism Wmin—~9
. . < i

. / .
must be etale, which clearly contradicts the fact that

x gt . ¢
> V" is a ramified double'coverlng/so we are done,

v.

(8.,7) Proposition. Suppose . V. .is as in (8,2)

1)y I8V 15 of type 2)43),4) then Vi does not

containﬁciosed points,

ey 1t M is of type 3).4), Vi ‘does not contain co-
dimension one points,

S)-3d- W ds of typs - 2) snd ¥ is.am irreducible curve
oV 'whose generic point lies iﬁ Vp then Y is a smooth

elliptic curve,

Prast & if N wsaaf type 2) let na >B be the

oy
W

’
rulling with an elliptic curve (B will be then a Poincare



B0 -

\

model)., Now if Vv contains a closed point, so will do.

(B

B, (2.4),2). But (R(B))Omc and this contradicts: (5.5);1),

If p  dis a codimension one point in Viyiwand ¥ ie the

corresponding divisor, thea the same argument as above

shows that Y cannot be a fibre of f, hence Y dominates B..

)

Now by (2q3)#2)9 Y is a' Fuchs model ef A R(Y), It is easy

to sees that RIB) H8 @ differential subfield of R(Y) hernce

by - 42,1 (R(Y))O=C. Now by (7.4) Y naust be a smooth el-
liptic cirve,

_Suppese now V is of type 3),4). and let e

A
A

be a\fin;te dtale qovering witﬁ.vvﬁ 'a Poincare model (Sﬂﬁ).
Any p;int of Vi )different from the generic point é§ ‘V,
yeldé by {2.4),3) a péint of Vg which is different frém
the generic poigt of V™, Since by (2.1) (R(V#))O=C we
conclude by (5.5),2) that the proposition holds also for
types 3),4),

(8.8) Propesitiop, lLet K< L . be a differential-extension

Sean -t
aiial oS

of transcendence degree 2 and V & projective Fuchs model.

e}
"t

Suppose K is algebraically closed ) LO:C and V is'n



el

rational.
1)y It =¥ s smeeth then V fiisdmindnal,

2) If V is non-ruled then {V is smooth (hence by 1} ‘it

.

is minim@l hence by (8.2) it is »f type 3) er 43),

Proofy 1) Let vmin be a minimal model dominated by V.

is not an isomorphism, then by (3.3),2),

M —
' min

(Vmin)D

will contain closed points,

contradicting (8.

2) By (3.4) there exists-a morphism £ avX =20 M Wi o

Vel

a smooth brojective Fucns model,., By (8.8),1) V¥ ewill
be.mipinal chence  ;of type .3) or 4) (in notations from (8.2)).
If .p /s a generie point of V th=n by (2.8) p & VD

sing

hence by,(2,4)73) Vg will contain points of codimension

1 er 2 which contradiets (8,7).86 ¥V ~ig smeeth,

(8.9) Information on tﬁe structufe of the set "V for
a.smaoth pfojective Fuchs model'.vi'with d;m(V):E is e«
'_sentiai_té xﬁvéstfgara'Fuchs\mgdels of diméhsion 3,7?ropo-
gition (8,7) gives a complete answepn for noﬁ»rational surfaces,

The problem iseems more difficult. d4n the rational ease,



: 3 & . : : e
We shall leock enly at the .case VsIP~, Again, if we are . o
T v dnEhe Sfrdudial case K=C, describing Vi means precisely

to describe the integral subvarieties of global vector

> z : TSN :
fields on. IP."; but this is a classically solved problem
[~ = / e 5 _' o
[}é}txpoﬁe 1. For non-constant K. we do not dispose of a
complete classification of points 'in Vi and Voo Hers

is what we can prove (and this: will be useful in Section 9):

(5.10} fronositioh. lLet V be as in {822).and sﬁppoee-
V:IPZ, Teven:
1) If the set 'S of K-rational peoints of 2/ belonging
to .VD has atlleast 4 elements §hen & is contained in
some lines
2 )L eti B sbesan irreduc}ble curve in V. whose gensfic
o ol

point belongs to Vi Then "B is a retienal cufve (i.e. B« ~TEa

3y 1f- % ds @ curve-i6. V. such that the deperic points
of the irreducible components of Y belong to V, and if
Y has at most ordinary double points as singularities then

¥. -has degree <3 (hence Y is either a line or.a conigc

-~ -— gr-a-nodal cubic or a line plus a conic or a sum of 3 lines),



«B3
~ Py aPosPo
proef. 1) Suppose - S - contming -3 points not belonging
to & :line and that 4#8 }-ém Chocse Pa é’s‘\§pl’p%P33 &

There exists an index i & 3152,3.) such that the lines

: 5 :
pip37 PiPrs P3Py are cdistinct, where ii,g,k,m}:il,2,3k4}.

et f:W —>V. be the blewing up_of V. at p.g By (3,5

g L o o ol s
W. is a Fuchs model . Put qj~f (pj)7 qkmf (pk), qmuf (pm).
NGl \ 2! 1o ' Ly ¥ exe ey l i R v
By (2.4),3) qjﬁqk7qm & Wy, Now W. is = IP -bundle over
1

B=f"1(p,)= Pl .Hence by (3.7) R(B) is a differential sub-

field of L and B is a Fuchs«model, If h;W ——> B is

the cenonical pfojection then by (2:4),2) h(qg,), h(qk), h(qm)yé.
; w e

e : :
€ By and clearly are 'distinct, But (R(B))OCZL6=C' and this

contradicts (7.4).

2) By (2'3)y2) E is a Fuchs model hence so is plal

. hor : : e e o
(2.3),4). Suppose that g(t'or) = 20 Then by (Z:0) E is
a Clairaut model; in particular (Eﬁor)m {and hence also ﬁD)

"contains infinitely many Kerational points. Since Ep <V
it follews by (8.10),1) that there .existsia line Yo ¥

such that « E/ZRN s anfinites consequently: E=Y contra- -

~nor

dicting  g(E Nty

) > 2. Suppose now: g(E =1. If-Enris fyob



Bl

smoath it felllows by (2.8), (2.4),3)% 491 end (5,5]),1)

Clalengest re T : . :
that 'k is a Clairaut model and exactly as above we
get a contradiction., So E 1is assmooth cubic of equation

: 2 : :
20  4An  IPT. Consider the cubic surface W

given by = x3~fo(X_,X;,X5)=0 in IP", GSince W is the

ot

<
cyclic. 3-fold.ceovering of ya =0y ramified along E  we
know (3.2) that W is @ Fuchs model. By (2.1) (R(w)) =C

and by (5.10),1) W is a Clairaut model, contradiction...:

)
3 Jasil ot fd(x69x17x2)=0 be the equation of ¥, f,

being @ homogenous polynomgl of degree d > 4, As above

) " ; i i e .
consider the surface W in IP defined by the ecuation

% -
Qo
§
=4
H

=0; W will be a Fuchs model with (R(W))amc. Choose

= : : ; X ; S X -
(3.4).8 desingularization W -w»—>W with W a Fuchs

‘

model. Now W has only rational singularities (of type

A

« ' X
dwtl) hence a standard computation shows that q(W )=0

: . et e ' %
and the geometric genus pq(w Y=, By (85:10) 1) W
consists ¢f closead pointsy contradiction. The proposition

is provead,
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9, Three-folds,

Theorem {5.10) already yelds some information about
the structure of smooth projeétive Fuchs models V of
dimension 3. For instance if..(R(V))omC‘ then. V cannet
havé an ample canonical bundle, cannot have Qq=04dt # -o00
and cannot be a hypersurface of degree >3 4n TP In
this section we treat three-folds more aystematicaliy, We
would like to note that Iitaka'e birational theoryﬁ-Llﬁdj
" cannot be @applied directly to our érgblem; the main obsa«
truetion is thet if V is a Fuchs model and V# is bi-
rationally isomorphic to V -then v nmay not be a Fuchs

model (this was already clear in the case of surfaces: just

/
blow up a Poincare model !)

(9.1) It 1s cenvenient to recall the following factw{7]:

If f:X—>6 is a smooth projective morphism of gmobth
' : o
K.varietiea such that f« has connected fibres then Picx/s

exists 2s a projective abelian scheme over s, its dual



A=Alb. ,. 1s @ projective abelian scheme and there exiats

]

a principal homogenous space P=Alby
¢

/8 =08 ouer &—~98\
and an _ S-merphism: X ——> P “such that ifor any 'y & S

the induced morphism on ihe fibres X ~w~ﬁ>Py is the Al-
] 24

—

banese map of Xy5 P will be smooth and proper over 8 l?é}p,l20e~

J

(9.2) Lemma, Let & be a‘smooth C-variety, A/S a pro-

jective abelian scheme and P/S a principal homegenous

space over A/S, Suppose either dim(8)=1 or. the.-fibres: .
of P/S are curves, Then there exists a Zariski open set

™ - . : z b & : * *
8 « 8 and a finite etale morfphism -8 ——> 8 such that:

L)ig \‘So has codimensien 22 ‘in 8,
¥ SR e g X
2] BX 8 is @ prejectiVe sbelien scheme pver 5° .
.
3

Proof. There exists arn irreducible reduced closed sube
scheme T in P dominating. S such: that “dim(T)=dim(S).

IS daeia curve, T —>» & is finite and flat; let n be

its degreé and put in this case S,=5. Tf thHe fibres of P/S

3 -t
— ]

are curves then T is a divisor in ' ? hence it is Cohen-

(o]

Macaulay. Let Slc:S be the closed set of points in S Wwhere



~87w

the fibre ofp:T -——=5S is nc. finite. Clearly S, ¢« has

»

codimension > 2 in § and put?®S =% N\ S. . then p“l(Sa)gﬂaG(
: 5] 2]

i s s i - i
will be finite and flat of degreen \}é}p.Z?b 90 replacihg

S, Dy tSci . we may suppese that T——> & ‘4s finite and ¥lar,

o

By {lljp.23 there exists. section 07 of the projection
b
e ) e b : :
(T/8) —> S where (T/S)‘ denotes the relative sym.
metric product of T-—>5.By a theorem of Deligne [lS}p,lBS

' . : e kel ; ‘
the relative symmetric product (P/&)( ) exists as & sepa-

rated algebraic space. Consider the morphism

O‘ )g
S ip—os -~'—~*~?(T/5)“'” et e

and denote by f:P —— S the canonical projection, Denote

7P the actiern of A en P e the fibres

by £:AX.P°
-

2

Fon

write . € (a,x)=a+x, There is a morphism Cﬁ:(A/S)n)< P—-?(P/S)n

3

deduced from & which on the fibres looks like

o

(8190‘,3an7x) — (al+x§;,.,an+x)

(e}

Then £ inducee a morphism CK:(A/S)(”)>< P ~4—€>(P/S)(”)
5

o8

of algebraic spaces. Denote by /5:(A/8)(n) > A the “sum



morphism and by é”:A ——% A the m&ltiplicatioh By h,

Then consider the algebraic scheme

2 ¢ Pac ko tainy The o
S S S

Denote by Pys Ppzy 8.8.0 the projections of Z onte P,
A (A/S)\ﬂ)ﬁ a.¢.,0., and let 2l e be the inverse
S : ; v '

images of the diagonals via each of the following morphisms:

pl><(g BPog) il 5 PR

(80 p,) % (0o pgy) 12 — (p/8) M (py5) (M)
- .

By geparatedness, Z'.Z2°'"Z''*  aré closed subschemes of " Z,
/ F 9 b ) bl

o C‘x by ML [ o L iyt IS g . “ o s e S c\*"

But 5 =p 2 YT g Y. In down-to earth terms & has
the following description: fof .each fibre # of P58

we fix an arbitrary point x & F ‘and consider the Albanese

map ‘PK:F ~——3 Alb(F) (which of course is an isomorphism)
n

- b R i ~+ rlm Ly o s e o ws

for WhluﬂA %&(x)mof Comsider the -O-cyele . /X, T
i=1

Let &8;4...,8 24 & Alb(F)" be the solutions of the equation
= n : :
= ' WA ; : : 2g
nas %;(xi) ; where g=dim{F)and for any j=1,..,n
d=1



e ;
pu YJ

i O BETOE N e s TeTalarclaTar: ¢
%’x { m”,}) . The corraspondence - X
v - oo

3 - i 3 ) & e e o 7’5.
will not depena en the cheoice of ‘K& F. Furthermore 8§
o ” ned
is spread out by the cycles ~—> ' yj gs F @ funs through
a1
J=4
. ; 1\ i o . ES g + : -
all fibresot P> 8. We conclude that +'S is finite and

o & * RS i oy
etale over. &, New PX 8 —> 8" is a principal homoge-
S ;

: ‘ ; : } X L%
nous space over the projective abelian scheme AX S B
: S
| ; ST 2 " - ¥ iE
and has a section hence it is isomorphic to AR B el )
8 . n | g .
]
[?4]p0120 and we are done,.
The main result of this section in the following:

(9.3) Theorem. let (- |  Ue 3 differential extension’

with smooth projective Fuchs model V of dimension 3 and

Kodaira dimension n(V)#-c0, Suppose K is algebreically ClGS@ﬁ)LO~

and suppose there exists a morphism f:¥V——>W onto @ projec-

tive K-variety W with 1 < dim(W)s2 and M (W)#—co, Then

’

: S z : ¥ : 2 ; o7
L ichas. a finite extension L which'is Pedincare over K.

R

Proof, Let's examine first the case diw(W)=2, Taking

Stein factorization we may suppose that f%(j7w éO and
s V gkl

G



¥ is normal. Let' g be the genus of the generic fibre

=1 / :
f (y)q y € W, We cannot have =0 becduse of Iitaka's

0

inequality 2t (V) Qﬁdim(W)+%ﬂ(fmi(y}} t?@]molﬂ, We also

cannot have g > 2; indeed V X Spec(R(V)) will be a smeoth
W

r

projective curve of genus > 2; it will be a:Fuchs model of
: . foot e ‘ »

its function field L over R(W) hence by (7.1) it will
be a Clairaut model. But this yelds a contradiction because

o s

AV : . S
L. is algebraic ever L hence by (2.1) LGnC, So we conclude
that g=1, Now by (3.,7) R(W) is a differential subfield of
L and W is & Fuchs model. By (8.8) and (8.2) W s smooth
minimal of type &) or 4)in the terminology of Section 8.
. i3 - / - . . 1

o there exists a finite etale morphism e:A —> W where

: e g / . -
A is an abelian surface (and even a Poincare model), By
(EQ?)iz) and (5.5),2) (or alternatively by (8.6)) we de-
duce that the discriminant of f consists of 2 finite set
of clesed points 8 W, this is the key point of the present
Y

proof .Put nFlmﬁm](S)c:JA; Thén f =V X (A\\Fl)—~«~6 A =ANE

e 1 1

is @ smooth morphism with fibres elliptic curves so the

: . il o : : : .
morphism ‘v‘3 ) Aibv >ijective hence an isomorphism,

ig b
177
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Now K is abstractly isomorphic to the.complex field argl

the

we shall choose a structure of complex field on Kj t

analytic arguments we are going to use in the sequel refer

to- this complex structure on K, which of course has ro

o

connectien with the structure of complex field existing on.
the subfield KOmC of K. By (9:2) there exists a finite

’
with F,a F, & A and an etale finite morphism

se@ F27 ] >

N, > An=A : sUC at V,=V. 3 is @ ¢ jective abe=
ﬁ5 > AgEf \\Fz( uch that Vg Vi>< Aé is @ projecti abe :

Ag

lian scheme over Ag . Choose an integer n > 3, there exists

= /
(use the argument in L}]p61003 a finite etale covering

2 > A, such that: the family M, =V, X Ay = A

A 75 AT A 4 4
; | . = f 3
has a level n Structure(LEQEpGIBI)c Consequently V, > A,
is the pull back of the universal family Ui 2 >,M} ;
5 1

’)

of principally solarized abelian schemes of dimension 1 with
= % : g . 5

level n structure(L?QJp.le or [?5])via some morphism

A —mmwwﬂl'n. We claim there exists an abelian K-variety B

and a fim;te.sat Fﬁc: B such that AézBf\FA, Indeed’ A4—~¢A23

. / : i g
=ANF is a finite etale morphism and since F, has codimension

e 3 2 T 7 £
2 in A, the category FEt(A) of finite etale coverings of

A is equivalent to the corresponding category Fﬁt(A“\Fz)



Feloine

- ; ’. = / .
[Zéjppﬁ 42-43 but on the other hand any etale covering

L2

of an abelian variety is-an .abelien variety, Now look at

the map BB F, 5 M, e M is :the

4 1, 1

1 wﬁer@ 4

1L

G) 6)

coarss moduli of ebelian varietiesigf dimension 1. Since
My identifies with the complex line (via the j-invariant)

L94

J

by Hartogs' theerem h ‘extends to all i ef "B  hence it is
constant. Consequently the map A, —>M, _ will also be
o1

constant ;

g lience v & {BNFE. )¢ E for some elliptic

Spec(K)

curve. E, But V, is a Fuchs model by (3.1) and if

Keb ¢ ' & then "X SV

has codimension 2 in X
Spec(K) :

4
80 by'(2,3)21) X dsusa Puchs model, By (5.10) X is a Ppine

/ - v $ 3 3 : . & ~
care model and the theorem in proved in the case dim(W)=2,,

Let's.consider now the case dim{(W)=1. Agair ba Stein
; 7 firt -
factorization we may suppose f%Cp==L9 afnd W™ %is a smooth
Vv Vd 3 :
curve, As above W will be a Fuchs model with (R(w)>e=6

7 rsrmn s

so by (7.1) W is a Poincare model, Now V X Spec(R(W)) is
W -

a smooth projective Fuchs model which again by Iitaka's

inequality must be non-ruled and-hence—by~ (2.1) and (8.2)

the generic fibre of V >W ‘“h@és drregularity 1l orvi

and Kodaira dimension zero. Hence all fibres of V —> W
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1
VW

will have 1l £9g £2 and 7 =0. Let h:V > P=Alb

be the Wemorphism frem (9.1). 1f: g=k, P. is a smooth

complete surface, hence a projective surface and clearly

2 (P)#+ —o0 ; so we may conclude by the first part of the«

proof., Let's suppose @#2, In this.-case « VN.—> P is
biratieral, so by (3.7),1) P is a Fuchs model. Now exactly

aswin the first part .of the proof we may use (9.2) to find

L74
s

L LN, ; o X % 4
an etale finite map W ——> W such that PP X W is

W

. 5 . ¥ :
a projective abelian scheme over W~ cerrving @ levelq n
¥ i

structure n > 3, Choose any polarizatien of the family

i -

p* —= w*  and let d° be its degree [ﬁ@]p.86.‘Then
X

; e : :
P —> W is the pullback of the universal family

Srea s

s of abelian schemes of dimension 2
.f~6,9. y

with polarization of degree . g? and level: n structure

([?Q]pe134) via some.morphism EwW* 5 M29d5n¢ We’claim
£ is'constant} 1.t Wi}l be sufficient teo.see that all

.fibées of ég——wmi w*  are isemgrphic. But just loek at

'the.périod map: .v(Eﬁﬂ;ullB): it will be a holomorphicw

: : ; : ¥ ; : e e
mapafromnthe universal covering.of W (which is the. complex:



-

A}

affine line) to the Siegel half space of genus 2(which tis

8 bounded demain). Hence the period map is constant and we
conclude by"Torelli for' abelian varieties"[?glp.llﬁg Fhe

> s s Dfx v
constance of € implies that Ploe W™ B. for some

Spec{K)

gbelian surf

).

: R gaE
ce B over K, hence: P is an abelian three-
fold which by (3.1) is a Fuchs model.Now we are done by (5.,10),2)."

’

(9.4) Corol

oS 2 L

Ke L be a differential extensien ~

with smooth projective Fuchs model V of dimension 3. Sup-
pose K is algebraically closed - LonC and one ofi the

)

following conditions holds:

ha sl

2) . (N¥) > L and (V)= 3,

/
Then L has a finite extension which.is Poincare over K,

Proof. If q(V)=0 .we ace done by - (8 100 1V -0 f giv) 21
consider tﬁ@-Albahese.hap f ~4~0'A;Alb(V) and put W=f(V),
It ‘l‘ﬁ?dih(ﬂ)f§ 2 we are done by Theorem‘(QQE) because an
abelian variety cannot contain rational (singular} curves so

MM (W) —c0 . If 1 {V)=0 then a theorem of Ueno LZQ}p«G
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'is surjective and a birational map

says that f

so we are done again by (3.7),1) and (5,10),2),

Remaric that (9.4) and (6.6) immediately imply

Theorem % in the Introduction.

(9.6) The problem of determining all smooth projective

dimension 3 with M. =—-co should be easisr

Fuchs models of

than the classification of all three-folds with = ~0o, ,
-nis, suppose V' is a Fuchs model and that

: o
a structure of a conic bundle over IP~ [?] o By

{&.2)  -end {gd0)53) the digscriminant of the projection
be a2 smooth

oy 7
<t o ; i
“ must have degree £3 (and cannot

V —> TP
. 5 r' .7 P T . () 2 L
oubic). So by (2lpp. 317 and 334 the intermediate Jacobian

’

ofs V' dgitrervial,



Appendix A, Infinite transcendence degree over C,

‘Throughout Chapters I,II JII we supposed (sea'(l.l),(l;S))

a) C=the complex field.
b) All differential fields uncar consideration (excepts

those” of the form Mer(j%}} have finite transcendence degree

.

3}
ﬁ'\

Theese assumptions are quite reasonable in analytic appli-

\

catibh%; for instance if r=l..and VQ . -G - is a domain, then
\ g

a differential subfield of Mer(d&) containing € and fini-

1v* generated over C (as a differential field)awill satis-

£

fy condition b) above if and only if it contains fo differen-

tial transcendental function in Mer( L Iple A2, OF coursps
é p .

there are plenty of differentially transcendental functions
: p 3 3

in *Me%(#g}% but from the point of view of integration of;

algebraic differential equations theese should be viewed

LSRR, -t
e o

as quite pathological.

il
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~

Mow definitions irom.Secinﬁ : makzlseﬁse without the hypo-
thesis'h) and one expects that all ourresults hold without
thi%’hyputhesis. Morecver there are many partial results
whose proofs do not use hypothesis gjaﬁut unforthnately tne
procf of the “"key point™ (4.6) due; Qse it; indeed we used
in an essential way Lemma(Z}G)'which is abviousiy false

if. K is not supposed of finite transcendence d€gree over C,

So what can be recaptured if we do not make the hypothesis E)?

Surprisingly enough, we are able to tvecapture the "key

Y

point” (4.6) in the "most differentially transcendental” case

\
\.

Sy : : G 3
ne = \ e e . : s
namely when Kﬂcg?lﬁ,,_7%€> , Where yl""’YN are,d;ffe
rential indeterminates {}Z}pw69 (although we are not. @ble
to recapture it in "less differentially transcendental"cases),
Our methed will be to reduce the case Km0<yi;,f.,ym> to

the case tr.deg.CK < oo the way we do it somewhat reminds

>

of the reduction from charaGteristic zero to characteristic

p >0 ‘in. algebraic geometry, Here is‘iolri-result:
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: et A T'e 4 - ey b AN kY] SRR ale

(Asl) theoren, Let K C(Vl%,,.gf iy Ve e sV ba&?g
differential indeterminates and let K= L be a differen-
tial -extension with smeoth projective Fuchs model V. Sup-
pose V “has C-moduli., Then V=V Spec(K) .is de=

Spec(K)

fined over:-c.

5'(A.2) Lemma. Let K 'be as in the Theorem. Then fdr
any finite set Ugyeen gl E K there exists a prime: difm ;
ferential ideali P‘ in C{ul,.,,,usk such thaté
1y e ioon o =0
29 p@R(C%uli,..’uS /P)  has finite transcendence degree

oVér+#C  Tand Homco

(A.3) Let's prove the theorem assuming the Lemma holds;

we shall prove - -in fact more

y namely that the.Theorem holds

for any field K for which the'Leﬁma holds. Therefore it
wculd'be'very cahvenieht to dispose of tﬁe Lemma above
for any differential field K containing Hon

Let (f,j) be a C-presentation éf Vo faXera

a o

: L SR( 8 )= K

such that f hes a moduli map. We may suppose S=Spec(A)

TG



= ’ X We.claim” . here -exist
A C[*lﬁ"'ﬂ m]” ¢.claim’ that there - -exi al"'°9an & K

~8uch that if UmC%xlg...hxmﬂa1q;,.gan%j and if Ae=X>X Spec(B)
% L 5
: - S

then for any q E:XB we have é}(gl7 )<:'GQ for
2 xagq Xgeq
: /1 - :
all j; note that Uﬁ <L by flatness of f, To prive
Xaﬁq : :

the claim, cover X with affine gpen sets. Spec(R,) and

we have

use the: fact that,since 'V is a Fuchs~modé19

3

= :
3_(R.<3'K}C.R.@bi< (sce also (2:6)). Now by the Lemma (A.2)
J 1 A & A L
applied to x15..5xm%a]5..oan there exists a prime diffe-
rential ideal P in B such that P\ A=0, R(B/P} “has

finite transcendence degree over ‘C and ‘(R(B/P))O:C. By~

(2.7) R({(B/P) 1is finitely generated as a field extension.-

a
smooth Fuchs
Eooth Fuchs, .
= R{(B/P) such that 'T

Yot
o

b

(S

over C., Let T be any mede
is_an open subscheme in Spec(B/P) (such a T ‘“exists for

very simple reasons and may be chooseh nf the form Spec((B/P)b)

b € B; we leave this to the readef). Put XT=X>< T, Sinch.
- S

PrxaA=0, T =e>06  ia dominant; furthermore XT-~ewT is smooth
projective and has a moduli map. Finally note that since

X=X X T, the derivations in the locsal rings of X,
Tl v : 2 B
. Spec(B) :

induce derivations in the local rings of Xy, making R(XT)'
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a differential extension of R(T)=F(B/P) such that XT

is a Fuchs model. Now W=X.X Spec(R(7J) is a smooth

: 7
projective Fuchs model of its function fi@ld’ XT ==
being aCpresentation of W. So ‘W has C-moduli. Furthermore

by=(2:1) (RITT)QxC so we may apply (4.6) to W and

T

conclude that W2 Z < Spec(R(T)) over R(T for som=
smooth projective C-variety - Z, By represqntability of tne

functer s =G - _Sojaem (XX S'o ZXS') we easily get
* : : S ]

S .

that there is a finite extension( M of 'R(S) such that
X XTSpe¢(M)fr Z><X Spec(M) over ‘M yhence because M embeds

S\
\

—\ : = ; =S =
in K, we get VEX X Spec(K)= Z <. 8pec(K) as desired, .
2 Y S S

(A.4) Let's prove the Lemma. We proceed in two steps,

Step 1, Put BnC§y15,a.5yN§ and for any integer k

" a4 a %)
DUt Bk=C[Sl .,Sr yj5 OE?ai$!<n19:LS'jstMi. We shall construct

‘differential prime ideals Pk in B such that P _~B =0,

R(B/PP) ‘has finite transcendence degree over € and

(R(B/P_)) =C. To construct such. Pkﬁg*“ﬁﬁhoée first an integer
N

¥

m > kN-1, choose a prime integer p'>>2mr+l,‘let E e be
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gdl..gqryj with O<a,x=p-1 15;V§N.
Step 2. Notations being as in (A.2) and as in Stgp 1,
there exists & nonzeroc element  §35§£3 .such that
C{ul’..;suSXc: 8[5”¥]. Ome ran find an integer k > 1.
such thgt b & Bk and C[?li';‘ius c:‘gk{?“l]. Now
. since Pk/”\Bk=0 we have heﬁ Pg se_a BLb 1] is a
prime “ifferential ideal dn 8[?-{]. Put F:C{ 13y {“\P 8&1 J
We héve Mic: R(B/Pk) hence M. has finite transcendence

degree over C and M0=C. Finally’ Prfxclylﬂa:fﬁuﬁ_gc:

{ =1 =y :
- FkBLb ]‘r\BkLb ].-.o.

(A.5) Theorem (A.l) plus Theorem (4.4) and the dis-
cussion at(4.8) imply that smooeth projective Fuchs models
/
, (=Cd » ssified ¢ i i Foey
V ever K C\jlﬁ...’yNj>are cla 61f;9d prevd ded Ve jsie

one of the types listed in (4.4).
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Appendix B, The divisor V \\Vg,
Here we work again under the assumption made at (1.3)
about the finite transcendence degree over C.
We shall prove that V ™\ V. enjoys a remarkable

non-negaticity property:

(B.1) Theorem. Let K<L “bé'a differential extension
with smooth projective model V of dimension > 2 and
K algebraically closed, Let E be the reduced divisor
whose support is V\\vF (see (2,.3)) and suppose E..is
irreducible smooth and non-zero. Then the conormal bundle

-1 .

NE&- cannot be ample on & wunless the following happens:
there exist a smooth projective Fuchs model W. of K L

and a closed point p& W \\WD - such that V -is the blowing

up of W 2t- p and E is the excepticnal locus,

Proof. By (2.5) and (2.6) we may choose a differential

C-presentation (f,j) of V, fiXx——>55 with S a snopth
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Fuchs macel of C« R(S), j algebraic &nd f smooth, -
Put Y=X ™\X., by (2.3),1) ¥ has pure codimension 1

in X. Consider the exact sequences:

£1) 0 —>f (T, . cON

: k(T e i e
%' X/S my ) 4 ‘,%{('X/C@‘Jm\’) )TS/Céai%\N .

iR

- = =
(5. 8= f (T F (T glt)) > T3 Ty o BNy )

where we identify the Cartier divisor mY with the sub-
scheme of X with ideal sheaf JAG7(mmY)‘ Let /z be the
X
generic point of S and put “ X =XX Spec(R(S)): “¥4 =
. 5 e
=YX Spec(R(S)) and- giV—> X,  the canonical projection.
S [
#
Using (2.4)91) it is easy "to see that ig KY =E as Car-

.zisr_diVisors,/For any '07~module M ‘write M_=g (M

By flatness of Spec(K) —>5 -we get
- AR N = HO \
(fg{\!x/‘zs\éahm\,))k\, == (TV/K @Nme) and
(F (N ) )y = HO(N )
Ky mE
Now the cxact sequences k-2 1)

. : k+1
(33 0 —Ng = 7Ny 1y —2Ng —=0



- >
and ampleness of NF show that HV{NmS)mO. Three cases

may OCCUur :

o~
Sk
S

Case 1, (E,N. )} ds different from both (iP

~2
N
7

IP

apd - (IF Zg j? 1 (2
B

!

Then by a theorem of Wahl [?6 (which is ‘the main in-

=
gredient of the present proof) we have 1% ( g @N ) =0
for any k'Z'I; but this’ 1mplx5 , using the standard sequence
4 ) T pariiin ) R s e
(4) O =T s >IV/K@)Vé > N >

that H°(T /Véﬂ“n)z for any k > 1. Ueing (&) We Het by

: =3 o
induction that H (TV/KQQN

an):O. Now by the sequences

(1)- and {2) we get that fér any m > 1 ‘we have
- o , e
(8) Ay lTyye)),, = FulTysolom,

, e
Since g;qna.ﬁ 2 el (X\\Y T)/C) \\w/'H (kaX/C(mY)) we

b e f Eh (T

3 heeey N /C) which clealy im-
= ¢

=1

3

=
)

is case, by Artin’s Waorkicon contractiens V “may
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be obtaired as the blowing up of a projective rormal

surface at some ordinary double péint p. By (2.3),1)
W will be a Fuchs model and by (2.8) p & W,. So by

(3.3) V must be a Fuchs model, contradiction,

=)
Cess & (£ J=(zF, (@ (m7,
\ s

In this case one knows, after Kodeira. that V- is

1= §

the blowing up of a smooth projective variety W:. . at some

point, We conclude again by (2;3),1) and (3,3).‘

(B.2) The proof above involved two different arguments:
‘Wahl's theorem on one hand and Artin contraction plus (2,8)
and (3.3))0n the other. It would be interesting tc extend

these arguments to cover also the case when E is not ne-

cessarily smooih or irreducible,

(B.3) If Kc L is a differential extension and V
is a normal model one can define in & natural way multi-
plicities associated to the irreducible components of

V™ Vg, and get in this way.a (not necessarily reduced)
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Weil divisor V. on V whose support is VM \V One

E F e

can do this as follows7 (see also [éijGQS for the case

n=r=1). If p is a codimension. I point.in V\ V. we

define
" =sup{uz(yx)~l§j§r X & 07 }
p Pt 9 .') v, pP
9
np = SuUp %O§ nps
where vp is the valuation on ‘L corresponding to p

and then we put

The whole theory developed in the present paper may be

adapted to quasiprojective (instead of projective) Fuchs

models V. Results will change accordingly, involving -the
~I . ns

divisor Ve where V is a projective compactification

of VGA key role will be played then by the K-vector

space

ker‘(}il(l\}l,)TN Y= Hl(”J,T (VNE)))
, /K

Va4
V/K V
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; _ _ -
which will be a “deformation theoretic measure” of V_~
The results one can obtain will be closer to the results
in the case whan V is projectivejprovidad the dimension

of the above vector space is small; this will happen if

¢

<
12
0

not too "positive"”, On the other hand the moral of
~s ®
Theorem (B,1) is that Vg cannot be tosc“negative"

° To illustrate what we said, we give a cercllary of
7 4

analytic nature, in the simplest case, the case of curves:

(B.4) Theorem. Let \Kc: L be a differential extension
of differential subfields of Hef(&Q) with smcoth projec-
tiQe model V. of dimension 1 and genus g. Suppose that
e:deg(VE)<< 29=2, Then there is a finite embedding of Kc L
into G0 Mer(y%g) such that L# is generated over
X by functinns of the form 97((317_.)/%85 with 35

holomorphic functions of e variables end /%19'°'9/3e<§

- Mer(bé\v()) A e Ak, CS;{SJ.E k¥  for all i1
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Acpendix C. Models with infinitesimal Torelli property.

In Section 4 we used algebraicity results of Popp [29]
_fQ\ﬂQQVG that some classes of Fuchs ﬁodels are defined over C.
In this Appendix we show how one can use an argument of
Viehweg (which has behind it a deep algebraicity result
of 3ommese)[§51 to prove that some new classes of Fuchs

models are defined over C. We still work upder the assumption(l.Z

(C.1) Let V - be a smooth projective K-variety of di-
mension n (no differential structure is assumed). We say
V has the infinitesimal Torelli property if the cup-pro-

duct map

N : n-1
1 3 1 @iptet ) 15
H (V)T\//l<) )HomK(}l (v ,BHV/K)ﬁH (V’Q\\,/i<))

is injective,

It is well known and quite clear that varieties with

——

trivial canonical bundle satisfy the above property. Many

other classes of varieties wers proved to satisfy this
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property 29]p,115 kut the area of varieties satisfying
it seems much smaller than that of varieties with C-moduli,

Here is our result:

(0.2) tnvaicms let K L be a differential extension
with smooth projective Fuchs model V. Suppose K is al-
gebraically closed and K =0 . Surpa e furthermore that V

has the infinitesimal Torelli property., Then V 1is defined

over: G,

Pronf. Choose a differential C-presentation (f’j) of
f:X ——> 6, Semicontinuity theorem and
Grauert's theorem {;Q)p,28g easily imply that there is

a Zariski open set S8 <« S such that for an & S, the
: P o of

5

fibre X =f ~{y): has the infinitesimal Torelli property.

S i
. By [35Jp°574 there exists an étale morphismi:U ey

& dominant,morphism'cfu > 7. @nd %:F = = 7. suechthait

U< X  is U-isomorphic to Uy F anc- fers U 61U9 in
S :

= . -1 = ,
T U e lieve Tu(a“ (g(u)))= (ker{fjr(u)) where

Q> P’ i T e is the Kodaira-
( <u\'p \,‘A—{“\/L’) =4 (¢ z
VU

Sar{u) ()

i
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Spencer map (here Z. and F are algebraic schemes).
But now one can immitate the reasoning from the proof

of (4.6) (with Z instead of M and the proof of (C.2
L _ : |

may be concluded without any problem,

(C.3) Theorem (C.2) would not have been sufficient

to prove the classification results in Chapters Bl or A1l

L)

indeed counterexamples are kn@wm{f@r insﬁenca)to the "ine

finitesimal Torelli"” for surfaces of general type |
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