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IOMOGENIZATION OF THERMAL FLOWS IN POROUS MEDIA

by’

Dan POLISEVSKI®

The Boussinesg system which qévexns in a certain approximatior
the thermal flows: of viscous Fflwids ?S? has been considered in glx
and r?j where the macroscopic equations of the phenomenon::in porous
media have been obtained by the multinle scale method of the homo-
genization theory. The aim éf the present paper-is to prove the con-

vergence of the homogenization process in this case, moreover avoi-

8}

ding

A:convergence theorem of ‘a homogenization process (Stokes eguations

iy symmetry. hypothesis for the tensor of thermal diffusion.

Darcy law) can be found im gLO? and as- we know it have not been

extended yet. Here, with the constructions of [8 we treat a more
realistic periodic model “0f porous media that is, tr1d¢menolonQL,
with' connex phases and hiphasic. boundary. |

\ In the first section we discuss ‘the passage to the:wvariational
formulation of the natural convection problem. Then WG prove the

existence. of the weak soluticns and we give some esfxmateb; inter

alia a maximum principle. Thus we can attain the unlquen@ss resudin +
which permit us to start the homogenization process. In the-last
section we prove the convergence theorem and some properties of the

homogenized coefficients.

1. THE BOUSSINESQ SYSTEM

~ ."“3 I's e
Let rb,gf for some é}ao, and letéA be ‘a surface of class

¢

ey e S SR
C” included in Y, which cross the boundary of the cube following

some regular curves which are reproduced identically on opposite

faces. Also | scnarat Y -into two domalns,‘Yq - the solid part and

e,

Yf ~ - thetilalag part, with the nroperty that lcnonfwna Y by periocdi=

city, the reunion of all .the fluid parts$ , respectively the solid

g Ly ot a1y
C*, We assume only thak-wae

parta tay




“
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incersectron or'y  With the edges of V. is empty.
L) - ; . : S e
Let %< be an open connected bounded set in R, locally léea=

: : > ; 5 "
ted on one side of the boundary ¢f-~ - manifold.of ciazs C /- COmpPO

oo

sed of a finite number of connex components, and let Q’:R%%O,l&

be the function which associates to any real number its fractional
2 e g S o :
part; de®iming the Lunctlongézﬁ =2 Y by " (x)=8 Plzx) then we say

&

that a function f:R™* R is Y-periodic if F=feg. Also, forsany

£ & (0,1) we dernote

Lo

©

3G w5 p” and T stand,; ¥espectively, for velocity, pressu-
rey.and- temperature, then they have to satisfy in some waydhe fol-e

\
lowing system:

(1e5) W=l on 05 =]" U e %

= E ez =
(Lab) o= Bon o

and transmission conditions

0

gk

(#9}

(V]
iy

—

Y
st

~ ‘the jump.acrogs



r (:w;» , "i‘ i: 50 F?‘:‘" 5 £ & Y
(L6} Ha-Vil n"=0 (n ~ the unitsmormal on ;. , extezior tOQQZf)

Ew.r--yw il i ravd &
where & >0,¥Y70 are, respectiwelys the volumetric:.coefficient of

thermal expansion and the kinematie viscesity of the. fluid,

19 2 (\\ i 3 Wil e & = PSR PR L) A ?"" s
g€ L™ (&) is the gravitatiohal accéleration, 6 € H
uniform témperattite of the boundary (the-case & uniform #s: not ip-

teresting) and T&}O is a uniform reference temperature, by .conve-

nience

- A 7
T o= :_]: supe + 1 f & 5
o 2 \ x€al XEIR. :

From the subsequent maximum principle (2.5) and "a priori”
estimates (2.6)-(2.8), we shall learn that, independently of QF!

of

n.

1 . o : o 2 V .- s : & .

the velocity ug is of order &€ °, while the temperatures TF. i
B Far

order 1. As we lock for:a model of natural ccnvection, both hand

gided of Wil.3) have to be of thersame order; consequently. the tens

sor of thermal diffusion a- have to be.of order g .7That is why

we degtime’ (thé physical meaning of "this assumption can be given,

as in {2 |; by a'dimensional analysis) that

€ 52 e 0
a’ (x)=t"a(zx)
o P 7
' 4
; - 4‘7"2’,%3\ ¥ . 9 o
where %:Kaij)i ﬂéslj (R 1g Y=periedie and
: < s o,
« - TN 1‘:2 o~ ‘
1) a>o such that aijgigiﬁagi (V)finRr FeuleaDe 3

‘ : . 2 m
As usual, the scalar products and norms in L" (&), H (&)

~and Hg(ﬁ) dire, respectively,vdenot@d bv

¢ © il
{u,v)= }u.v dx [ufm(u,u)”/
N v TR b2
Yoem ngllls R iV I o= A e
({u,v)) - gjigﬁn(3><j g bl =u il




and the norm in LPLQ) (p#2) by “ﬂ%ﬁ. We .agree to use tha same Hho-!

L

tations fer the scalar prodacts and norms in ;2Lﬂ)={i2(ﬁ)j3;

m S s ) : ;
gﬁ(hJ, &)yﬂ and kp(ﬁ). To the corresponding notations associated!

€ i .
tOIE wer-attach the index &.
In order to pass to homogeneous boundary conditicns;«liike:
in L6j we introduce for any h>0 an element whﬁﬁz(ib with «he pres=

perties
(1.9) wh=g—To on ofL
(.10) {svwl¢uels] T msenl@

Puting §iT€(wl+To) and keeping theright to: chooséulimter =

in a propev way, the parameter h/O, the system. (Ll m:(L28)E becomes =

@ 11) - uf =0 in ,Q.?

: : e € e £ r £ —Q‘E’
(T L2) 49@9b+(u V)u“+Vp’:L}—K(S +wh) g in .
(T T3 dlv[ V(s® +w J =il VXS nw =58 5 o} llf

(1. 7 'alv[a Vic® +whAJ* 5 ‘inNQ;
(115 gf =0 - on gﬂf
Pl gy ok =P e o bl
2 &
doamis el = gon T
e P s S
(@28 [N V(s® wh)L B = 0‘ Lafor

£ 0 e
‘lf(ﬂf>=§yat'u.’fp div v=ojZ
o~ e
ot
Thus X, ~V£).Hé(ﬁ) is a Hilbert spage with the scalar product



Pefiining the mapping G, :¥X,~¥/ - by

<

< .:‘“’ [\od H; 5
L) o Foe v \ -mra !
SAEYS V) + Ay TV(Shw ) ) 10 (v, TYex,
A N

(15 18):

To find (u®,5%)€X, such that

(1l .20 <?a(gf,sﬁ),(V,T)}:(1éxwh,g.x)—ﬁ(§%wh,VT)

) (y,mex, .

Tt @8 Slear “that if’(Hfjsﬁ,pé) iis.sa ‘smooth rsoltutionof «Loll ke
(1.18)/ ghan [wE 58 1= & solution of (L7e8Y.
Conversely, if (g?,silexg satisfy (1.20) “then choosing the

test functions in a proper manner we get

Supposing, possibly for a subsequence of €-%0, that~@(ﬂ£)

As Lapschitz, then wewcan give the “following characterizations of

ng [ll} .

£ g : !
(1.23) sz{véﬁ () ; div v=0 Ia

(1.24) If fel Cﬂé) satisfy <f v>«0 ¥ vev then (3) p%L‘(Mﬁf«
A i ettt & i

‘such that f=Vp.

seramt (1.23) we-get (1.15) in Hl/z (( ii and (1. LlFgdn

-‘." 1 (g:'?“%z) r




e T2 ¢ & o D
(Etv)};}ﬁ: 5 78 (cﬁf) and ‘Ll (S 1Wh)’i gi% / (‘J,,E) ¢

according to (1.24) it follows that () pﬂaLz(Qé) (determined up

7) L {f g 2 I * + o l i
to an additive constant) such thali flud2)ris satisfied in H \Qi)
Now, difiwe continue B& (initialty“defined on & ) to with .2exo

f‘h

. & s A
out - . of iaf, then (1.22) becomes:

(1.25) (- aiv E% (sE )|+ J%"msf’le«wh)gi‘}rso, () ren’ (2)
Because ﬂivy EY(s® 4 )}’I (&) ‘e..md g";’\?(siiww)-fr?IJ3/?'(i§_}f

then (1.I3)~-(1.14) are satisfied in Hml(ﬂ), Also f%;, ) implies '
(lale) - (lal ) in the usnal tface senses. Unfortunately, in order
to find the sense of’(l.18) weihave to make a digression, slight

generalisation of Theorem 1.2 115;
wd

Fd

: . W D
Iheorem 1.1. Lnt GL be. an open boun ed set of class €%uin

RY and let E(ﬂ)=%g6% (Q)%divugéin(ﬂJZ; where p=2N/(N+2) if'N}3

L4

‘and p)l. ifpN=2. Ther E(Q) is a Banach space equipped with thé norm.

H k ®
lgth !+Id1v u’p. Also, there exists a linear continuous ‘operator -
s ! 5 : :
f;@dﬂh(ﬁJ, H l/z(éx)) such that . .

(ls26] Qg:the:restriction of u.n to 2, ) Eéé&i) (Tirthe wunit
4 ~ il :
outward noxrmal on 2R)and for (VOUrL(D) (¥FgeHd” (2) the generalized

Stokes formula holds

R o o= “ i s \\ :
(e 27 (}é,\/q)+(dlv' g,q)~—<f;%g, f_o q/‘. .

Bl s ' ' :
where ]()&Rle(QD, Hl/z(bﬁﬂ) is the usual tracé. operator.

The proof of this theorem ﬂ7} proceeed in the classieal way =
with the "Lions-Magenes" method and the adequate Sobolev imbedding .
theorems.

Coming back to our problem, as a V(S +wh)€%%(90 and

o U ) | T & fhon Thosan 1 |

div VS5 dwy kwl) Q)Blt is clear from Theorem 1.1

Lhaf (1.18) is satisfied in the E(Q) trace sense.



2. THE WEAK SOLUTIONS

In proving the ex1%terce thegrem for the wvariational prublem

=

(1.20) we shall make use of the following result L3J

Treorem 23l. Let X a reflexive Banach space and G:X—»¥’' a

continuous mapping between the corresponding weak topologies. If;

7 >
g \Gu L ags

hll“ﬂﬂﬁ !ulX

then G s 'a surjection.

Now we can prove

‘Theorem 2.2. The problem (1¢20) has atiileast one solutlon.

“Proof. Taking in &ccount that (}mﬁwh)gé& LQ;) and
div(ngyh)eH“l(Q) we havevonly to prove~théﬁ GE:XEW%XJ defined byt
(.39 satisfy the Lypothesis.of Theorem:i2. 1.

First we check the weak continuity of G .

Let: (u Jo>(u ,8)weakly in X o Then for-Eny (v, T)EX,

w
I

we have:

N

Nl e ' ol
GEJ(EK’ .')K)_(Jé (EIS) 13 (X:T):)'](g\/(( (Ek“}&, V) )C

+“lg\QSk“S)41X!4;E+ gk*gj4 éfﬁ%k”jﬁz4 &+IEJ4,5”¥mjﬁk;9

+XI Vs,-s), & Vo) M) 4, alye N s, |4

2lrllses]s +Alag]

and the property follows because

are bounded and the imbeddings of E%Tﬁ?ﬁ, ‘respectively L ey d4n

Ve (1)) are compact.

Now we shall prove that Guidis-coercitive. This isgther moment

when A and h will become more precise.



If'we put (X,T)z(g,s) e (1.9 +hen

/ 3 { 1 i". 7 2 i
GREL e ol ,}M;T-,xxs,gg)g +8° \MaVs,Vs) +
' \ 5 7 S fd .‘ac' ’? i 23 i v ) o
g, 8V, 2 wllall” +haet s I5-c (eefg] +An) ,u!4’9 s

where we have used (1.10). and some Soboiev inequalities. At seems: .
from (2.1)" that A and h will not be uniform with respect te:&; but

in [lOJ the following inequality have been proved

{ 13

L 0%y
7 (")/L\);Eig(')()f/

82

N
&)
Y

v

=

Without*any difficulty, as a matter—-of-fact with the same proof,

we can prove for any r¢6

r‘\

‘ 111) 11 Ui
(229 (il g{ S . '\7,,:1\ H ‘_,f) ,

ll, N NA hvng;

T

S

where *;"70 are independent of &, 0 afd Wi~ Using (2.2), from (2.1)

it resulfs

-~C MGlfAh)uh

Il.’

amd 1N order o get the desired property of Gghewe have to impose

2.9) g lg] +n) 2< 49a )\

Obviously, (2.4) can be satisfied with a) sufficiently small h and
a propérvk : 1 : e

The followinq weak maximum princi?le is-formulated in terns
of inequalities in the sense of H;(QJ. That is why we.stasb by re-

calling this notion and some properties, following }4Jo



1,.
\ dbee,

Let-uel™ () and E<Q; we say that u is non-negtti vl dn:

the sense of Hl(QJ[ or briefly, upé on E in Hltﬁ), if there exists

2 e ) : R 1 A : Lie

a saguence u§,_<G—~W () such that u';{(x){} g for x€E swpd Qe —#u in H (42)
i . e ; i R B i

Let veH Wfl) ; naturally, we Say. wrat: ugr on E in H (R) if VWq>O on

Botn Bl hei may be a constant, we define

ugm on E in Hl(ﬁJ?

v

Prgpes hion 2.1, If q}O on E-in HILQ) then ux0 a.e. oriE;d
. 7 /

Prepositiens0:0. IF sup u4<wvthen for any M)sup u we have:
30, Al
max}u—M,?}QHé(a) and max{u~M,O%>O on in H%QZDJ :
e ' S L 0 e )
Proposition 2.3. Let uewp (L) (ppl): then v=max u,O‘gwp e
7 g - N -

L]
and we have in the sense of distributions:

# W s A £XﬁB 
V= J
L

We can pass now to our maximum principle:

Theorem 2.3. If-(g?,S*)&Xé is“a solution of the problem

(L.20) thew el ana

% | 2 l(éup"é}— ian&)

e . o et <30} - - ; it
szwh(xyng for g.a. xcg&ﬁ-from Proposition 2.2

~and. Propesition 2.3 it follows. thek
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D =g 7 g-' e “_, 1 ("'\ 9 53 =
R = Lnax‘is AU fS,OfQHO () and that

((Sg +wy, ) when R#0
\x'?‘R:: -{
{ ¢ when R=0

Puting =@ in (1.22) we gbtain

a et {R]? ( (FVR, VR) = (£ +up ) ,TR) =
NE "

=- (4 ,RV (S +wh))&=—«(}f (RVR), = 0

3)‘(5?.) ~ that isg S&erhﬁ\f{f% on fL in Hl(MQ.,) . According

and hence R=0 in H
to-Propesiition 2.1, it resililts s“i»%-whg/S a.e. onfl. Analogously,

with

R = Wm SR A LR e
{ hoy J

: & b P i = .
we get S"+wh>/—-/;/€ a.e. onfl . Thus (2.5) is proved and concomitantly

the who Le theorem because wha'.f-H-?‘ (3 5 (0, 7]

‘Proposition 2.l If (If',S":")ﬁ‘:X& ig a solution of the.problem

(1.20) “then.

(2.6) '1& u*i <& éc where C_=(1+o8) ]_g( Ny

(2% 7 lulmf%c xz/X“’ for r{6

Ei’}
= o
(2.8 4 F}(j“g’ a:{f{,w\w‘/a
Broof. Puting X:%&' T=0 in. {1.20) we . obtain
V= g, 1- s ) 4(140% q\ |
5 ~

o : ; A, S, N AR i
s e oncdesgsae o R LD D do o b ewra s A0 6 apdleriC Sk



: : & :
Taking in (1.22) T=S" we get

=
<j
d?'.n

» V8 < (S Fw )v9>~(g wl,ysﬁ)

\
LMo

and therefore

Finally, with (2.7) it results (2,8). 11

Theorem 2.4. If §>0 18 sufficiuntly small then the solution
ofithe problem (8. 20) is unigue for any ££(0,1).

\

Progr. -Leg (gl,sl) and (g2,S?) be solutions of (1.208% denom

ting with U=u.-d,, 55,-5,sand subtracting the FOT‘@SPOPdlMG relaw:

~ )

tions we have

(2.9) W((g,7)), +&Sg+(a¥)y, e, Bvev®

A

: G s = ; N, A R ; s i
(2.10) (%VS,VT)+(E,TV(D;+WH)L +{(1y#2V8) =0 \V)EEHO(QJ,

Taking in (2.9) ngfand in (2.10) T=S one can easily obtain

with (2.20and [(2.6)={2.7) the following estimations :

.

- & { 3\'\\3 {9
(218 xfp\gw p(eelsl+&7 8 )l )
Bl b 15
(o) a298ﬁ<ﬁgw%g /F;
f Yo

Introducing (2520 =i (2.11),‘55 E€(0,1) 1% reguls
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Obviously,‘the Theorem folliows as soon as
| Tawe s o oy
(2.14_) g Rl w N Ca 3

$his relation being ensured by thevlilypotheéis. ]

As “the parameter g,\, 0 (initial size ‘Of_, the period) has no
significance fo¥ our main-purposle, the homoqeni_z,ationy;proce%;, we
shall con31de’” from now on that 1t was: choqen "a p'ri.ori" I satiz~
fying (2.;4). That is the way “in® Whlvh we: surpass the well Knowny
"uniqueness prcblem" of the-yiscous thermal flows. Here, we have.,
to remarkr-that the homogenizatibn ;_ﬁro:cess in,,a,-c':'ase O non-—unicity

seems to be far more difficult.:

e 3. THE CONVERGENCE OF THE KEOMOGENIZATION PROCESS :

De'noti‘n"g the mean opsrator of any Y-periodic function: by.

where /L\Y) is the measure of Y, we 1ntrcduce the fol owing Hllbﬂrt

SpaCQS ol bt
e véHl(Y )y is = e‘rlodlc“ d‘lV v=0, vl =0
~vper |~ £ p ’ v 0,
ﬁll)er(Y)z{TeH (Y)|T is Y—perlodlc, m(T =o}

with the corresponding scalar p;roducts

s e Y



Foi’ any keil,2,3§ we consider the following. local-périodic

s

problems:

To “find g%svf and SREﬁl oY) such that
e e ol Sh e per s
2 it 4 : £
(3.1) V(™ )= 3 Vg oY l(¥)¥€~~per
gl @
(3.2 (\\d goo ol g \a, ——dy (Hrefit (v
J°13 Yy 2V Ju s e
: : j J
¥ : T

where Vi 1s. the k—component of V. .

Okviously’, by the Lax-Milgram theorem, there existscaunique;.

o i las ol

At 5 ST
Eiézper and S cher(Y) satisfying respectively, the problems (3.1)

and {3%2). Also, with the reqularity theorem of the Stokes problem

itllj we ‘obtain uK&g?(Yf); moreover, using the flux propercy as in

[lO]yCh.7 weican ‘prove that thereiexists a unigue p%aH;pr(Yf)/h

csuch that

(3.3) . SATE = ey,

23 : Jeoe i
(Bl g ey u fO in Yf

where %k”is the unit vectexsef the k-axis.
With methods similar to those at the end.of the first sec-

£ion we obtain

(3.5) div [taV(Sk+yk)—} S0 TR
A N - .

and in the sense of E(Y)

£3:6) YtaVWSk+yk{]. n =0 1 on
o~ N
. ; ; i .
where taij:aji " [ ji is the 3ump across r1 and n is the griit meor=

mal on P, exterior to Yf.



]k

Before the main result of this section we have t6é wmwgsent a
result 18] which will be fundamé noalhfor the PoﬂthuﬁflUp of the

-

pressure p¢ tolfl.

Theorem 3.1. For any &> Onsufficiently small there ‘exists

: el 1,0¢
.a restriction operator Rﬁﬁﬁﬁocﬂj, go(ﬂf) such that

I e Eﬁgétaz) is continued with zero in JZ\MQé then
Re i |

2 e REQé(Q) and.div.g=0, then div{(R,1).=0

39. For any ueH (L) the following estimations hold:
3.1 |Renlgc@,vp (Jul+e]ul
(3.8) e %C(‘O‘Y (| /g +uh

Frem: now on:we suppose €€ (0 h)usufficiently-small, as;the

‘Theorems 3.1 can be used. Alsc, introducing the following subspace

we can state our convergence theorem.

THEwrem 3.2. If (pE,SE,pg) is the weak solution of the

i~

probilem itlolil)=(1%18) >and. §LFf weAconsider EE continued to Jl with
value zeno. out of jlf,-then there exists a continuation of p~ to L.

(denoted with P°) such that

(3.9 ij ﬁ?““311 weakly'in Q?(ﬁ)

@100 8509 weakly in Hé )

G \r ' strongly in=I (2 (L)



- 15 -

where (Q,S,p)egxﬂé.ﬂﬁ’L @) /R ‘satlisfy "weakly" in {Q

5 = S S (ERC .
(3.12) uimKiji <X 1[; aﬂSrwhiggj}

(3130 —div[é?(s+whi}+ 5§R8+wh)=0'

the homogenized coefficient being defined by:

AT st
Syes W 17+'§§£ akj),
1 g i
Bii =N (y)dy
e a

(ug is 'the j-component of, the wvector q}).
: -

Remairk 3.1l. The problem (3.12)«{3.13) was studied in the

sefiesf&‘]~ Unless the case when the corresponding nor-dimensional .
Rayleigh number. is ‘sufficiently smally::the solution of this problem
is preobably not unique; that is why; in case of non—~uniguenessq: the.

convergences (3.9)- (3.11)" hold only on. some subsequences.

Proof. From (2.7)—(2.8) it results that l-~—~-L'I.F“-rzzamd {Sg}
T g2 ~ ) ' =4
are bounded in kF(QJ and respectively, in Hétﬁ); hence there exicts
uél%é(ﬂ) and SGHé(ﬂ) for which, passing, just in case, to assubse—.,

guengeprihe. convergences(4.9) ‘and (4.10} hold. .3lsoc, for any

qeH! (0), with (1.27) we get
(Bl 0 =(uf,Vq) —> (4,Yq)

. : . . :
As the space %?(QJ admits the orthogonal decomposition %f(Q)F

=H @ H"L, where
~ ~

v

e gUQL @) | @aen’ @) such that wVa{ [11]



from (314} 1t follows: that uel.
We construct now the continuation of p L ( f’ defined aiter

f1.24) e (1,120 4 satisficd in H"l(ﬁé), with the restrictisn

s

operator ofiTheorem 3.1, for any E&Hééﬂ) we have R
a4

_‘ L VSR y =V OF Rey)), = (CEWInfr ), +
(3%15)

£
o ll=adis tw, ), 9-Re ¥,

Using the restimatiens (3.7)-(J.8jcit follows that the functional

e \ : : : ¢
££=<Vpb,R%(,)\ is bounded on gl(g), thatids FQ;H l(&b. If’we cons

M

<

gr from Theorem 3.1 (lo) it

tinue vaH (LF) with. value zemo in A2

results ;°Q Vp Moreovery if diy v=0 with Theorem 3.1 £2°)
7 45 ! 3

wernget.d F&,v =0. Thus (1.24) implies the.existence of a continua-
tion of p toQ p/ LZ(O)QR' such that m€=V§E «iHlse, from (dad2)

we .get

1 AGE % g;v;j i 1 !
}<V§i,x> éb?mfyﬁksm{ L hf”. MRgvﬁ +(1F%R)Fﬂ ng{
i _15 i {E | e ]& ~ Al A
Further, using (2i6)"and (3.7)=(3.8) we obtain
S N Al e 2 e e
}<V‘9 ] Codeipy] v RaX/{;}Rgz ety +elel

C. LConsequently, with the inegquality. .

t

;1 [111

<o v
()

) - e 08 :
we find - -that ipti is bounded in LZ(QJ &~and‘thefefore

vE
(9) GLZQQJ/R such that on some subcequonpe p -kp weakly in
P

12 (0) /R and VEE-SUp weakly in H- L3

" Let us notice that for an¥ WE““&% weakly in gg(ﬁﬁ we have



...17....

i

\ | e 6,‘\r3” e
G , gkv I e W.d <

4 -l g . : 5
%r”lﬂ ww!+&ﬁwiwwﬁ}+ (termg which -0},
using the Rellich’s Theorem it follows. thdt

<V}5"é Vf'§ o <’\7p,_\g>~
that is Vﬁgw%Vp gitrongly: in Ejl(ﬁj. Pinally, (3.11) can be obtai-
ned by recalling (3.16) .
Now, it only remains to prove thatiitu,S,p) satisfy (3.12)
and. (3,139, for-which we .apply a standard method.

We write the local  equasdfensii(3.3)~{3.5) in terms of xﬁsy,.

: I3 ol
put}ng vox)=u"(zx),
nE B ko1 £ sl ’
iy <X)“Xk+55'(gx) and g~ (x)=p (EX) :

(3ead)diy Kf:o
(3.18) ~gRAYE+eva® =c"

(319 df_v(tgvfrﬁ)zo

Because QF, gk arngd pk are independent of & by straight integrations

we find that
G20 y<ere  Irice , (o] &e

Tiet Q¥&Q(Qﬂ; making the duality product of (1,120 andif(3. 18
with q>¥€ and respectively, with i? E& . by subtraction we get
! T ge N

‘

hi st B
of €24 £ 2% o ey uf | Pyt
(8,21) \)K*{ S L %] ol G mE )k

' . k NE g
R RACANI A AL
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With the estimations (2.5)=(2.8) and (3.20) we have

1 7 R = o

T ¢ ot ?e(‘/\ Ioeta e el

Tomes U s R e e S e
t\gv SRt Lol ax/n ALK l;& ML s

] ¢ & . i sy [
( (g &8 € wvE) Jolluéir level Jo g -
(s e < C oy St
.],Ew-ATfl__lf,hnp ghlel o g o
;\q ,011.\7((‘)\%' k) _\;; qgu¥dx|S = |9 %\{\C.g =2
25 :
¢

Then, passing.i(3%21)" to the Simit (€=0) we:obtain i

(rek Jeemf 'r'-(uk)?’”)—1-(1~e>’(s+ Y Qe k))
ue @)= apn (g /G (S+wy ), %g\’

because (,x\,v’,‘wsm(%k) weakly in ,%2 (&), and hence (,L\I,S,j’)) satisfy

(Sl bmmthe sense of distributions.

On the othér hand, remarking that' the vector

e 1 .\(} - !
ﬁ. = — TSR (ot
\ V'i=2y3 ) g (87 4ony)

\
3§
A\

T , . , 2
is bounded in ,%2 (£)52i4 follows” thdt there exist Q”ifé L2 (£ such
6 ‘, -~ :
that U\;:‘E weekly in L2 (M) ==l 724 3) ;, on! some subseguence: in ca:
meef needbiAs (L.22) éan be rewritten in the form.
1

(3:22)  (PEvm et , TVt
° n &ZN

and usiﬁg the already known convergences.weaget

(2.29) ‘(}I‘,VTH(E,T’\’/“(swh)):o (¥) ren’! ()

Making the duality productaef: (3.19) with CF(S{;'J'rwh) we have

o oy
—_———— .

(3.24)  (aV(s%4wp) QVIE) + (a (5P WP, VT5) =0



=llOs =

‘Also, taking in (3.22}'Tﬁ@Tﬁ~ and subtracting.this“from (3.23)

it results

(3.25)  (§5, 167 )~ (FavTe, (584w, WP) == (T5ut Q1€ V(S +w

2
=
o)
o0
~—

> 1 ( QVKG{+yk)) weakly in k?(&) and Ttm"e-»xk

strongly: dn i (P) it follows

( [\I:'t, TEVQE)“ (t“c:t;’r—r'? ' (584"W )Vv@“‘“ﬂ* 0, x V“\’) Hil aV (s +Yk) )’V(S+wh) )

: i
From (2680 and’ ¢2.8) we. find ggfw%% strongly in %462) and

§§V133+WH>VZ bounded; Jg ;ISK(%(-)%M5m(§% meakb{j11L4CQJ and therefore
& ntJeg ;

Coms (é—.(. ) V(SE4a0,)) =0

and' thus (3.25) at the limit becomes.?
\ i i

kK L 0% S k < ~,f\‘
(3.26) (F,x%, V@) + (m( g\/_(YS +y,.) ) V(SHwy, ), P)=(y, (Stwy ) V(Px, )

Final Iyyiis@btracting from (3.26) the relation (3.23) in whiich

TF?Xk we obtain

A} : p -
(T )= i35 @) el

Hence VL Ak3y$+ﬂ Yoo that isy recadiing (3.235, (E,S,px‘satisfy
E e : ‘

We have to remark‘that, besi@es_izwl)p the second local-
periodical problem whicﬁ is obtained with the "heuristic" ‘ewo-sca=

le method is not exactly (3.2) bt the following:

\ i ’ 3 uc e
To f£ind Ke per(Y) (£=1,2,3) such that



(2.27) < Ll T e (illa ‘ag, (AT (v
o da \ j{?}},—j {?} i (D jg:yj jeg{ AN p Ie
\( : \?/.,

Consequently, theé definition in TZ} of “the tensor A is

[

- r/’/‘(l
L, T . kg,
153 15 JK ¥

But, we see that there is no difference between this definition

o ‘ k-
and ourss #by puting in (3.2) T=X" amdydm i(3.27) TZSk. This means

that the homogenized coefficients K audﬂﬁ-have the: fol lowing nropes—
o~ AT :

; : B : i : e
ties, already proved in le and L2J: they are, positively defined

tensors, Kibeing also symmetric. Moreower,.if a is symmetric
N , '

»

then é is also symmetriC‘L7§ /i Pecause
¥ 1
/

( Mgy, r, (s )()(y

L
= a = o
”/”); SR ‘f‘:e

?
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