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HOLOMORPHIC 2-VECTOR BUNDLES ON 2-TORI

WITH ALG LD‘“’\JC DIMENSION ZERO

Vasile Brinzdnescu and Paul Flondor

It is

L"i

a classical result that on compact complex
surfaces the topological complex 2-vector bundles are well=—-.

~ determined by their Chern classes c. and €,, which can be

o

arbitrary chosen (Wu[;O}). It is known (see S *L*anzﬁnb srger:
[7]) that on a projective surface every topgloqical'Zwvector
bundle has a holomorphic striucture iff its first Chern class
Cq is-of the form cl(L)bwith'L a holumornhlc Lline.bundle, In
the analytic nonprojective case the result is novlionger ttues
as-for-holomorphic vector bundles one has restrictions on G
see Elencwajg-Forster {3], Prop.4.3 pr Prop.l in this paperkaw
This paper is concerned with: the study of cholomorphic
structures on 2-~vector bundlesi.on ﬁori with algebraic dimenh

sion zero.

In the first section we: show that, for a 2-torus X

»
®

with algebraic dtmension a(X)=0 and the Neron-Severi group
J”’”)LO, a topological ;vector'bundle with Chern class e,
(cl 0 in this case) has a hol qurphlw erwctnre lff Chz0.

Inthe opconl sectlon of the papor we provo that the
qﬁédratlﬂ LQtho&Cthn form on the- Neron—Severi group NS (X)
of a¥?=tor us X, wjth algebraic dlmpnglon a(X) 0 is negative
definite (it is a classical result of Kodaira [4] that this
quadratic form is negative semi-definite).

In the third section we give (by using the above result)



L i
necessary and sufficient conditions for .an integexwiﬁ&gtO‘be
the discriminant of a filtxéble 2-vector bundle E with;givén
fifst Chern class cl(EEENS(X}i in the case of a 2-torus ¥ with
al{X)=0. Here filtrable means that E has a rank one.goherent
subsheaf . For algebraic surfeces every holomorphic bundle is

filtrable., It is a remarkable fact that on nonalgebraic surfa-

ces'nonfiltrable bundles -exist (see Elencwajg-Forster [3], ..

Prow.4.9).
We wish to thank Constantin Bédnicd for introducing us
to this subject and for some useful discussions during the

preparation of this paper.

1. Two-vector bundles on nonalgebraic compact complex

surfaces

.

Let X‘be a compact complex éurface and let a(xX)=

‘m&imﬂ@(X) be its algebraic3dimensi&n.,ﬂét E be a holomerphic
C - L@ _ :

vector bundle of rank'r onX. Edsroalled filtrable 1L there

exists a filtration

with F, coherent subsheaf of rank i, i=0,1,...,r.
For r=2 the vector bundle E is filtrable iff there
exists an exact sequence

.

(1) Qe L—> E—>M @Y, ~> 0,
where L,M are holomorphic.1ine;ggpd;ea“énd Yiié<é logally .
complete‘intersection of codimension 2 in X or empty (see

Elencwajg-Forster, [31y.



PROPOSITION 1. Let X be a nonalgebraic compactcanaly-

Liv surface and let aeNS(X) be fixed. Then, for every holn-

morphic 2-vector bundle E on X wi ithec (T) a, we have.

-

(F)>m1n{?ﬁY“, X’T - (¢ (YEWd*d))gMB%

®

X% EY=200(%, G) +5 (o) (X) .ata®) = 4(B). -

If E is nonfiltrable, then

ND

1P (x,E)=0, BS(xX,E)2H(X,E%® K_)1%=0
(Elencwajg-Forster, [3]). It follows that -
%(xfm:«nl(x',méo, | ‘ ',
hence .
éZ(E}>2%(X, )+ ey (X) .a+a” 2%

If E is filtrable we get from the exadt sequence (1)

that

(L)+c (r )

c?(h)~c (L)c (M)+ieq Y
It follows that the discriminant

[;(E):cl(E)2~4c2(E)x(cl(L)—cl(M))2“4,deg Y=

ncl(L@M“l)zwz; deg Y.



By a classical result of Kwﬁaira E4I, omnon~algebralc

. : 2 NP
surfaces we have cl(L) <0 for every LePic X, hence

.0r equivalently

02<E3

W

REMARK., If X is a 2-torus we get for a nonfiltrable -
Ry e WY c,(E)3c, (B)? and for a filtrable bundle E th
cz(“);lcl(ﬁ)z, We do not know if there exist nonfiltrable’
-bundles with |

c SARETIIN TER, S -

.The examples of nonfiltrakle bundles given by Elencwajg-
Forster,[B}, have the same second Chern class as filtrable !

bundles.

COROLLARY 2, Let X be a nonalgebraic compact analytic

surface. There exist on X topological 2-vector bundles-E with
holomerphic structure on det E, which do not have any hole-

moxphic stcuuture.

THEOREM 3., Let X ﬁe ai 2= torus witn the Neron-Severi
groun NS (X)=0 (then a(X) O)
(¢) A tupo]oglcal 2mvector bundle E on X has a holo-
morphic structure iff c2(E);6.
« (11i) The set of classes of isomorphism of $implep.fil~

trabdle 2-vector bundles, with fixed second Chern class c,>0,

carries a natural structure of complex manifold of dimension



o .
Proof. (&) The hypothesis NS (X}=0C implies that
cl(LymO for any L€Pic X, Then; for any holomorphic 2-vector

bundle E on X we have
cl(h)mcl(det E)e=0is

Bgcause %i(é%)ao and cl(X)wG Tk folloﬁs, by the Proposition
1, that cZ(E}%O in both cases (filtrable or nonfiltrable
bundles) .

Now, léet E be a topological 2-vector bundle with ho-

lomorphic stiructure on det E andie
*‘ 2

s=e5(E)20. It follows that
cl(E)zcl(det Ey=0, The case cz=0 is obvicus: by the result
of Wu E is'{topologica;ly)'trivial, hence has é holomorphi&
structure (the trivial one).

.Now suppose that 02>O° We can choose LERic X with
vL$&&(Pic X="icO X is a 2~torus). Let us take a. locally‘comple-
te intersection Y of codimension 2_in X with deg YxczﬁO,‘and‘

consider the extensions
0 =~ Lw‘;»E’»—%‘UY#—) 0.

By using the isomorphism Hom(ﬁYiLﬁEL and the local duality
isomorphism -

%

o 1 ‘-O 7
Ext™, &, L=H(Y,4,),
ooy +

the exact seguence of small.terms in the Ext-spectral ‘sequenr:g
ce becomes

0~ gt (X,L) —> lzixté‘x(.ij,l.) iy 319 (y,(py) ey, 12 (X, L) oy s mms

e

put H2(x,1)28%(x,1%) %, since L%ﬁd& it follows that HY(¥,L7)=0.



TR

S ; 0
Indeed, if H

(XFLX)%O there exists a divisor D ‘on X such that'
L*2¢ (D). But X being a Kihlér manifold with @(X)=rk NS (X)=0,

. Heors 1 . :
it has no divisors, hence L_%izl contradictiom,

£33 ~

m ‘ Ry | N . "
Now take an element in Ext ﬂ&,h) which has the ele-~

(o‘ X
ment 1 of

°¥,G,)

1O (%, Extl)g i 3

as its image. By Serre [6], ‘the ccrresponding extension
O-avLiw%Eﬂmfﬁ&~m%O
gives a holomorphic bundle E’ with
cZ(E”)adeg Y=Coe.

ThenE% is topologically isomorphie with E and the* proof
of (i) is finished.

(ii) We use essentially [3], Th.2.2. The simple,
filtrable vaector‘bundles, with fixed second:Chern cléss‘

c2>0, are given by the extensions
0= L=—? E~>VY, @ M —>0,

where L#M and Y is ailocallyAcomplete intersection of dimen=-
sion zero and length Coye The @xtension is uniguely determi-
‘ned by. E. AS'Hl(X,L<ﬁ Mk)zo_(it follows from Riemann-Roch

theoren, 31nce‘HC(X,L€7MX)=H2(X,L@JMK)=O) it follows that

dim Extl (T, & M, L) =c

% 2

Then .we obtain the parametrization of the set of classes of




isomorphism of simple, filtrable 2-vector bundles.with fixed:
Chern classes clﬂo, ?>0 as follows: Consider the complex

ndnhmold

5 = Pic X x Phe_ X xH ,

where H is the Douady-space of locally complete intersec~ .

.

tions of dimension zero and ‘length ¢, in X (by a result of

2
Fcgarty this is nonsingular). From [1] we obtain on S a vec=

. @ : s
tor bundle ¢ of rank c., such that for any s=(L,M,Y)ES we ha-

2

ve

y s mnrt o @ M

gs/lﬂsgs~ﬁzx%, 0y (2, ® 1, L)
Then the desired moduli-space ' will be an open set imrthe pro-
jective space P (E).

Ietrus conclude -this sectionwith the following remarks

Let ¥ 'be a 2=torus with NS(X):OJan&,leé us conéidcx the holo~-
morphic 2=wvector bundles on X.with czwoﬁlln this case the vec:s
tor ‘bundles are topologically- trivial and filtrable (even om.
a 2-torus X with NS(X)#0); see Elencwajg-Forster [3]. These
bundles may be decomposable, hence of the form L&M, with
L, MePic XxPicOX, or indecomposable and theh they are nontri-

»

vial extensions of the form
G oy L-ﬁ L= L—20

(if.M%L then,Hl(X,MX®'L)=Oi); In ithe first»Case.the pair (L)
is uniquely determined up tautire-order. and, in the second
case, the extension is uniquely determined by E. It is clear

how these two sets of vector bundles can be parametrized.



o5
4

2. The intersection form on the Neron-Severi group of
a 2—torus
. . : . ) E oy
A complex 2-torus X is isomecrphic with €“/I', wherel

; . foe 2 : . .
ig a lattice of rank 4 in €°, One has a natural isomorphism

B2 (x,2) =212 (T, Z)
i ] i
of Hz(xpﬂ) with the space of alternating integer-valued 2-form:

onfﬁo Let
2 Ty gk ) 3. e e 7
B(C”, M) ={ H{H ‘hermitian form on €% with Imi ('x[M)CZy.

Since the iﬁaginary part Imi-of a hermitian form H is an alx
ternating 2-~form which determines com?letely H, we may consi-
der H(@z,P) as a subgroup of AltiéFpZ¥§H2(x,ﬁﬁ. Wwith this
identification one has by the theorem of Appell-ilumbert

{Mumford [5])
g
NS(X)=H(&“ [ .

Modulo an analytic isomorphism of the 2- torus X, we
can take [" be the lattice generated by the column vectors of

the matrix

) 1 0 -« PatiD Y. tir.
T 1 2 i S (T
N0 L ql+iq2 sl+iszv

Z,B) ©

. P is called the period matrix. We have

< p E & r
B1=RQB=( . ¥ ¢ B =ImB=('2 2
L qy Sy 2 dy S,

and we can chodse B such that D=det B2>O._



e - 2
Censider the complex vector space €7 as the real vector

£ ' . ; ;
space R with the complex structure given by the matrix:

- 4 ‘ 3 : 1 - .
and take on R° also the cemplex structure given by the matrix

" "1
P B wPo R TR
2Py BBy Ba By
B_. i) wi @
A )
BZ BZ bl /

)

Let f:@ﬁ—w9@2 be the map given by the matrix

Thef FJBmJF and since f(xﬁ):[ﬂ the map f extends to an analy~
tic isomorphism between the topological standand ﬁ@ruﬁjkg[ﬁﬁwf”
with the complex structnré given by the mat¥ix JB’ and the
complex torus XmE?/P.

Now, ihe Appell—Humbert‘tHborem can be, reformulated

and we .have

i /AJ A, N skew~symmetric and
S(X)HAd ¢ ‘e, (@) N
& 4 e e M
\;Az A  BA,B+A BB A.+A,=0

3 x 2 2 -3
(see Selder[BJ); The ccndition

1‘

L o G L SR T . ;'
B A1B+A2B B A2+A3u0

express the fact that A-is the imaginary part ImH ofa: hermi-
tian form H on @2. The matrix of the hermitian form in «the ca-

: : e 2 i .
nonical basls_of C* is the hermitian matrix
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lfiA

Ii?lz (AlB lo

17B5) By

The algebraic dimension of ﬁhe torus X is given by
a(X)rmax{yank HA!HA positive semimdefiniéa}
(see Elencwajgvfurétér [3}}.
Every AENS (X) is.the first Chern class of a line'bﬁndlga
Le&Pic X (Amcl(L)), If we identify the group HZ(X;ZD with
Al%%ﬁﬂﬁh:then the cup-product on Hz(XﬂE) becomes tha,exteriQﬁ
product cf 2-forms (see Murford[5]). The intersection form on

the Nercn~Severi group is given by the formula
L% (‘i o’ ._, Yo X o Ty
¢ (LYo (L) =ed?+xrd - p¥7 -pr¥ =0T ~0'g,

where cq (L)=2, cq (L)=A’

\ : ¢ Al Az : 0 3} s nfex {.\ . ’/O o i 7})
\ 'Ic\ - 7 AV.] == £ ) — C. 4 Aq:_—; €M (»“_;
o iEabag) R gyl 2T\ &I e o) 2T

and similarly for A’, For the quadratic intersection form we

get

b

LEMMA 4. Let AENS(X) be the first Chern class of a line

PRI

" bundle IL€Pic X. Then, with the. above nbtations, we have

2
C.l (L)' ~2D.det IT}A'

—_— e
————

Proof. By direct computation. If A€ NS (X) then'Atsatis=

. fies the condition

&

B=A =

s i
1 BHASB=B A, +1 =0



or, equivalently

f e (D l ~qXy7P '+q2r2)+Mrl+¥ P” uql%k =0

- v +Ys A
Lﬂ Q‘pl AESE MDY 1q2)%m12*”“2 pPoTRanl

e

(2)

Regall that

D=det uz:pzszqurz

and denote

Dlsdet le PySq~d ¥y

Computing det HA we have:

2

Y

+€3(plr2-rlp2) (i’bq'z"@(-523+ (3’.1:_2-&?2) (qu”_ﬁfs\z)_
=67 (9517037 5) (£30,7p18,1 =8 (20591 55) Wxp=ppy) -

£ - , B "y el
- B(p,sy =y r ) (80,7Y8,) - (ry=P,) (day=¥sy) - @ D"

Looking on the powers of £ ahd using the formulas (2) we may

futher compute:

¥

D?detﬂ 6 D (D 1~P) +8D (wa+3’o l--{,‘,p +c(rl) +D (txg (5?{)

_D(e ® L-D)+(=6(D, D>-z>+a5~f>z<)-

=1 dufgi—GE)f-

ve get

’. l
&/i

Y

Final

2D detﬁA=2<u§~@g«@E)ﬁcl(L)2,



THEOREM 5, Let X bec a 2~torus with algebraic -dimension

a(X)=0. Then the quadratic amtersection form Cl(L) on the

Neron=Severi group NS (X) is negative definite.

Proof. By the classical result of Kodaira Eé] we know

pm——

that the quadratic intersection form on the group N&(X): is ne-

. B - g 2 e e :
gative semi-definite {cl(IJ €0) betause X is a nonalgebraic

surragce.

Let us suppose that there exists

such that cﬁ(L)Zzog From the Lemma 4 we get that;detﬁA:OQ,The'

cq (L) =2&Ns (X)p &y (L)#0

“hermitian matrix Hy is unitary similar to a diagonal matrix

where Qi,kzégz'are the eigenvalues of the maﬁrix'ﬁg. Singeloa
Aikzsdet H,=0, it follows thatﬁk1=0. Because ¢, (L) =A$0 we

get HA%O énd also\lz#D. By changingﬂtﬁ necessary) A'with =Rwu
(and HA with wHA) W¢ may suppose tnat:l2>0. Then the hermitian.
matrix Hy is positive semi-definite and thus it follows that
a(xX)>1l, contradiction.

REMARK. The statement of the Theorem 5 is no longer
true'din the case of a’Z“tofus X with algebraic dimension
é(x):l, as the.followiﬁg exémple shows. We define the Z-torus
* X by taking | . = A |
.Bl..eo and B,= (1_ N ) 4

0 \[F

The equations (2) become



and the solutions QEQ%Sﬂbﬂﬁ“iﬁ =0 and éwa% ; arbitrery. For:
e 3 3 s
Q<0 we get an element AENS (X) such that A=c, (L) #0 end

cl{L}“wa The ccrfeépondivq hermitian matrix HA has the form

and is positive semi-definite of rank one. Then the algebraic

dimension 1is a(X)=1l.

3. Filtrable 2-vector bundles on nonalgebraic 2-tori

In‘this section we shall use the-result of the previous
section fwr the .study of “the ex1Qtonce of holom worphic filtrabd
structures on topokoqlcal 2-vector bundles on 2-tori w1ﬁh<al*m
gebraic dimension zero. |

Let X be a nonalgebraic 2-torus and let G=N§S (X) be the:
Neron—~Severi group of X. If a£G then we denote by Gafa+2G, the

class of a modulo the subegroup 2G.Letfdenotes the quadratic in-

tersection form on G and let m be the integer

(3) m_:= max (ﬁ(x)‘
© L %EG,

THEOREM 6. Let X be a Zwtorus with a(X):o and let

G=NS (X) be the Nexonwgeverl group. of Ko Lct aeG be a flxea ele
ment° Then an 1ntegor énls the d)scrlrlnant of a FlLtLablc 2~v

tor bundle E with cl(E)m&viff,ithﬁagisfies the condltlons.'

i

(4) Ag<nm D= (mod 4} .

S



Proof. Let E be a filtrable 2-vector bundle on

cl(H)ma and let

03 L—> B~y M@ ‘:fym‘:a 0
be an associated extension. Let us denote

02(?)mb, cl(p)ﬁu, cl(r-ﬁ)xv;
‘then we get

u+'v~:=a,. .u.v+deg Y=b,
hence
,A‘(E)ma2?4b=(umv)?~4deg Yi

For xxuwv:a-ZVéGj,
B

we have

A (EYL max Cf}(i;)mlaf‘&().
XGGa

*

For any x’,,xe(;F we have x’=x+2t, teG, and

P (x7) =x*Z=xPrantrac®=Bix) +4 (eert?)

" . It follows that %z‘(x")iq}(x) " (mod ,4)‘ and we get

A (ByEmg (mod 4).

Conversely, let Xo:anztd&Ga such that«@(xo)zma

X with



w15
We taka'Uﬂa~to, Vﬂtc and we-have u+v=a, There :gxist line
bundles L,M€Pic X such thatacl(L)zu and_cl(M)=vrand-wc take Y

s

a.locally complete intercsection of codimension 2 in X such

~

that
deg Y = {m_-A)/4;
forA=m_ Y is empty. If ufv thern
o, (LF® M) =v-uf0
l %
4 ; . S
and LX® Mﬁ(g( If u=v, by tensoring (if necessary) M with an.
element of Pic X, we can suppose that L'® W%G&xuip@aﬁy case. .

since a torus with algebraic dimensicn ‘zero has nogdivisors; o

we have that

' H2(X,Mx®lnqﬁo(X,LaEblﬁto. 2
As “in the proof of Theorem 3 (i) it-follows that there B

exists an extension
_0-»1;—413~a3n2ﬁ§~9 0,
with E a 2-vector bqndlei_Fnr E we have
oy (@ _=¢l (L)+§l (1) =a g5
A )=y (B) *~4c, (&) sy ,2‘-;4 (@éTA)'/ =

- =dtstg) g th=A-

REMARK. It is well known that for a nonalgebraic

s-%orus X with algebraic <@imension a(X)=0 the rank of the

Neron-Severi group, ?(X)zrk NS (X), takes the values 0,1,2



el

and 3 (see, for example,[3]}. In the case p (X)=0 [the bound
m_ is zero and we have agéin'the filtrable'part of the Theo~-
fﬁm 3(i),“but in this case aléc for nonfiltrable bundiaé‘wﬁ
have AL0. '
In the following we shalligive explicit formulés foﬁ»
thetbounds m, in the other cases. Next consider the case

?(X)=l.

COROLLARY 7. With the same notations as in the Theoren
6 1et_§(xy=1 and - let 4 be the discriminant of the:quadratic
fonné . Then we have:

(1) I& aelG, then an integer A is-the discriminant .

ef a filtrable 2~vector bundle E with cl(E)=a 1€
A<go, D= 0 (mod 4).
(dxi)s. IE a¢2G, the same re&plt holds ift

A< d, A=4d (mod 4).

Proof. It is sufficient to compute the bound m_ The .
caseé (i) is obvious. In the case (ii) let LO be a line bundle

on X such that clU%QeG is a basis of: G. Then we hawe g
d-:ci(Lo)<0 and & (x)={4%a, -

where x=ch(Lo) (QEZZ) iSAén arbitraIy‘elemeh£ 6f'Q; For
x€G_ we have e=2k+l,’so @(ﬁ)=(2k+l)2dﬁénd ma,is cleérly d.

Let X be a nenalgebralc Z-totus with a(X)=0 and P (x)=2.
By the Theorem 5 the quadsatic form f:m«% ise pesitive defini-
te on G=NS (X) énd we have'a reduced form for it (seé,~fbr

example,[9]). This means th=t there exists a basis {elﬁeyg



in G such that
% (u) :::?ix')«..g, ig}f&»XY“F%:'y'z -

for any u=xe,+ye

1 e &G (x,veZ) ,where

- (5) 04 2/ué- A g : ‘ i

CORDLLARY 8. With the same notations as in the Theoxer
6 let p(X)=2 and 81’62/Y7Mf§ as above. Let a=ajej+a,e,eC.
Then the conclusion of the Theorem holds with:

ey ma=0 if aiﬁO'(mod 2) and azzﬂ_(mod D)es

ii) maz% 3:f l,.l (mod 2) and a7 (mod 2);
144.) ma:-% if alEO (mod 2) and a2'£l (mod 2);:

=] (mod 2)

iv}.ma=2+yp+g if afﬁl (mod 2) and a =

Proof. The case 1) is obyipug._We shall prove the
case iii). The proofs cff@helcasés ii) and iv), being simi-
lar‘to the proof of caseuiii), are left to th&;réader. 7

iE ueGa, then u"7he +(2y+l:o, with x,veZ. It follgw&d

that

§> (u)=§-‘+4 (1lx2+2/;,xy+§y2+ r+§y-) g
and it would be sufficient to prove that

(6)  —pxP-zpxy-Eyoux-gr20,

i, =y
g

for any x,y€Z. The ellipse -

-‘?lxz ~uxy £y < X - € y=0

NA 7 (o T Y .’)xj

N
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has 'the center in the»po;nt,(o,-l) and does not intersect
“the lines v=1 and y=-2 as ve canzsee using the Conditiéns
(5). It follows that the ellipse is:situated in the region
=2Cy<Kl.
l The intersection with the lines:-y=0 and y=-1 are
the; points (0,0), (7#/Q¢011mrespectively (Og-l)r 9Mﬁ?,?l},
Since !fiqiéér, it follows that there are no points with
iﬁte;er coordinates inside the: ellipse, and ‘thus the ine-
quality (6) is true. _
: In the case a(X):O,‘y(X)m3;the computation of thews
bound m_ can be done by using +he Minkcwski reduced form of:;

the quadrétic intercectiodn: form #),_but the computation isg

tedious and we shall omitiit.

REMARK. It seems to be quite difficult to obtain si-.

milar results in the case of nonfiltrable bundles. .-
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