ON THE EMBEDDING OF 1-CONVEX MANIFOLDS WITH 1-DIMENSIONAL EXCEPTIONAL SET

by

Mihnea COLTOIU

PREPRINT SERIES IN MATHEMATICS
No.61/1984

Maro 21 2011

ON THE EMBEDDING OF 1-CONVEX MANIFOLDS WITH 1-DIMENSIONAL EXCEPTIONAL SET

by Mihnea COLTOIU*)

November 1984

^{*)} Department of Mathematics, National Institute for Scientific and Technical Creation, Bdul Pacii 220, 79622 Bucharest, Romania.

On the embedding of 1-convex manifolds with 1-dimensional exceptional set

Mihnea COLTOIU

Introduction

Let X be a 1-convex manifold and ScX its exceptional set.X is called embeddable if there exists a holomorphic embedding of X into $\mathbb{C}^k \times \mathbb{P}^\ell$ for suitable k, leN. When X has dimension 2 a result of C.Bănică [1], proved also by Vo Van Tan [13 c], asserts that X is embeddable (in fact in this case we may allow X to have singularities).

The purpose of the present paper is to generalize this result to higher dimensions. We consider a 1-convex manifold X such that its exceptional set S is an irreducible curve. Under the assumption that S is not rational (i.e. its normalization is not \mathbb{P}^1) we prove that X is embeddable. A similar result holds if we assume that $\mathbb{S} \cong \mathbb{P}^1$ and dim $\mathbb{X} \neq 3$ (see Theorem 5).

The technique of proof enables us to obtain also the following result:

If X is a complex manifold (not necessarily 1-convex) and S=X is an irreducible exceptional curve with the above properties then the fundamental class of S in X does not vanish (see Theorem 6).

were C inne

1. Preliminaries

Throughout this paper we shall not distinguish between holomorphic line bundles and invertible sheaves.

If X is a complex manifold and L is a holomorphic line bundle on X given by transition functions $\{g_k\ell\}$ corresponding to an open covering $\{U_k\}$ of X,a hermitian metric on L is a system $\{h_k\}$ of C^∞ functions $h_k: U_k \to (\mathfrak{0}, \infty)$ such that $h_k/h_\ell = |g_k\ell|^2$ on $U_k \cap U_\ell$.

L is said to be Nakano semipositive if there exists a hermitian metric $h=(h_k)$ on L such that $-logh_k$ is plurisubharmonic on U_k for any k.

Let now X be a 1-convex manifold and ScX its exceptional set.X is said to be embeddable if it can be realized as a closed analytic submanifold of some $\mathbb{C}^k \times \mathbb{P}^\ell$.

The following theorem of M.Schneider [12], proved also by Vo Van Tan [13 a], gives sufficient and necessary conditions for a 1-convex manifold to be embeddable.

Theorem 1 Let X be a 1-convex manifold and ScX its exceptional set. Then X is embeddable iff there exists a holomorphic line bundle L on X such that L S is ample.

If X is a complex manifold we denote by $K=K_X$ the canonical line bundle on X.In order to prove our results we shall need also the following "precise vanishing theorems":

Theorem 2 [lo] [13 b] Let X be a 1-convex manifold with exceptional set S and let L be a holomorphic line bundle on X such that $L|_S$ is ample. Then $H^q(X,K\otimes L)=0$ for q>1.

ea 3 cm

Theorem 3 [5] Let X be a Kählerian manifold and L a Nakano semipositive line bundle on X.If DCCX is a relatively compact strongly pseudoconvex domain with smooth boundary then $H^q(D,K\otimes L)=0$ for $q\geqslant 1$.

2. Main results

Definition Let S be an irreducible curve and $\pi:\widetilde{S} \to S$ its normalization. S is called a rational curve iff $\widetilde{S}=\mathbb{P}^1$.

The following theorem explains us the behaviour of the canonical bundle in the neighbourhood of an exceptional irreducible curve.

Theorem 4 Let X be a 1-convex manifold and assume that its exceptional set S is an irreducible curve. Suppose that:

- a) S is not a rational curve or
- b) $S \cong \mathbb{P}^1$ and dim $X \geqslant 4$ Then $K \mid_S$ is ample.

The proof of Theorem 4 is based on several lemmas.

Lemma 1 Let X be a 1-convex manifold, ScX its exceptional set and k=dim S. Then for every $\mathcal{F} \in Coh(X)$ it follows that $H^q(X,\mathcal{F})=0$ for q>k.

Proof

By a theorem of Narasimhan [9] $H^q(X,\mathcal{F})\cong H^q(S,\mathcal{F}|_S)$ for any q>0. Here $\mathcal{F}|_S$ denotes the topological restriction of \mathcal{F} to S, hence $\mathcal{F}|_S$ is not a coherent sheaf on S. However,

by a result of Reiffen [11 Satz 2] the cohomology groups $H^q(S,\mathcal{F}|_S)$ vanish for q>k and the lemma is proved.

Lemma 2 Let X be a 1-convex manifold such that its exceptional set S is 1-dimensional. Then S has a Kählerian neighbourhood.

A proof of this lemma can be found in [lo p.165]. In fact it is shown that S has an embeddable neighbourhood.

If S is an irreducible curve we denote by $\pi:\widetilde{S}\to S$ its normalization. There is an injective morphism of sheaves $\mathcal{O}_S\overset{i}{\to}\mathcal{R}_*\mathcal{O}_S^*$ where $\mathcal{R}_*\mathcal{O}_S^*$ is the o-direct image of \mathcal{O}_S^* (i.e. the sheaf of weakly holomorphic functions on S). Let R_S be the sheaf on S of locally constant real valued functions and similarly define R_S^* on \widetilde{S} . If $R_S\overset{j}{\to}\mathcal{O}_S$ is the natural inclusion map then k=i j is an injective morphism of sheaves. Let $k^*: H^1(S, R_S) \to H^1(S, \pi_*\mathcal{O}_S^*)$ denote the induced map on cohomology. Lemma 3 The map k^* is surjective.

Proof

. Consider first the commutative diagram

Remark that:

- the map δ is bijective since $R^q\pi_*(\mathcal{O}_{\widetilde{S}})=0$ for q>0 (π is a finite morphism).

-the map γ is bijective since $\mathbb{R}^q\pi_*(\mathbb{R}_{\widetilde{S}})=0$ for q>0 (if UcS is contractible it follows easily that $H^q(\pi^{-1}(\mathbb{U}),\mathbb{R}_{\widetilde{S}})=0$ for q>0; since any point in S has a fundamental system of

contractible open neighbourhoods we deduce that $\mathbb{R}^q\pi_*(\mathbb{R}^q)=0$ for q>0).

- the map α is bijective since \widetilde{S} is Kählerian. It follows from the commutativity of this diagram that β is bijective.

Consider now the commutative diagram:

$$H^{1}(S, \pi_{*}R_{\widetilde{S}}) \xrightarrow{\beta} H^{1}(S, \pi_{*}\mathcal{O}_{\widetilde{S}})$$

$$\downarrow^{\uparrow} \qquad \qquad \uparrow i^{*}$$

$$H^{1}(S, R_{S}) \xrightarrow{j^{*}} H^{1}(S, \mathcal{O}_{S})$$

The map v is surjective because $supp(\pi_* R_{\widetilde{S}}/R_S)$ is a finite set. Hence k*is surjective and Lemma 3 is proved.

Lemma 4 Let S be an irreducible curve and $\pi: \widetilde{S} \to S$ its normalization.Let L be a holomorphic line bundle on S which is topologically trivial.Then there exists a holomorphic line bundle L' on S which can be given by constant transition functions $\{g_{k\ell}\}$ with $|g_{k\ell}|=1$ and such that $\pi(L \otimes L')$ is the trivial line bundle on \widetilde{S} .

Proof

Let $\mathcal{U}=\left\{\mathbf{U}_{\mathbf{i}}\right\}$ be a finite open covering of S such that $\mathbf{L}\left|\mathbf{U}_{\mathbf{i}}\right|$ is trivial and all intersections $\mathbf{U}_{\mathbf{i}} \cap \cdots \cap \mathbf{U}_{\mathbf{i}}$ are connected and contractible. Let $\mathbf{h}_{\mathbf{k}\ell} \in \mathcal{O}^{\mathsf{v}}(\mathbf{U}_{\mathbf{k}} \cap \mathbf{U}_{\ell})$ denote the transition functions for L. Since \mathbf{L} is topologically trivial and the covering \mathcal{U} is topologically acyclic we can find holomorphic functions $\lambda_{\mathbf{k}\ell} \in \mathcal{U}(\mathbf{U}_{\mathbf{k}} \cap \mathbf{U}_{\ell})$ such that $\exp(2\pi \mathrm{i}\lambda_{\mathbf{k}\ell}) = \mathbf{h}_{\mathbf{k}\ell}$ and $\lambda_{\mathbf{k}\ell} + \lambda_{\ell s} + \lambda_{sk} = 0$ on $\mathbf{U}_{\mathbf{k}} \cap \mathbf{U}_{\ell} \cap \mathbf{U}_{\mathbf{s}}$ for any \mathbf{k}, ℓ, s . Hence $\left\{\lambda_{\mathbf{k}\ell}\right\}$ defines a cocycle in $\mathbf{Z}^{\mathbf{l}}(\mathcal{U}, \mathcal{O}_{\mathbf{S}})$. Set: $\hat{\mathbf{U}}_{\mathbf{i}} = \pi^{-\mathbf{l}}(\mathbf{U}_{\mathbf{i}})$,

 $\hat{\mathcal{U}} = \{\hat{\mathcal{U}}_i\} \text{ and } \hat{\lambda}_{k\ell} = \lambda_{k\ell} \cdot \pi \cdot \{\hat{\lambda}_{k\ell}\} \text{ is a cocycle in } \mathbf{Z}^1(\mathcal{U}, \pi_{\ell}\mathcal{O}_{\widetilde{S}}).$

Consider now the commutative diagram :

$$H^{1}(\mathcal{U}, \mathbb{R}_{S}) \xrightarrow{p} H^{1}(\mathcal{U}, \pi_{\kappa} \mathcal{O}_{\widetilde{S}})$$

$$\downarrow n$$

$$H^{1}(S, \mathbb{R}_{S}) \xrightarrow{K^{*}} H^{1}(S, \pi_{\kappa} \mathcal{O}_{\widetilde{S}})$$

Note that :

- the map k*is surjective by Lemma 3
- the map m is bijective because ${\mathcal U}$ is topologically acyclic
 - the map n is injective

It follows that p is surjective. This implies that one can find a cocycle $\{c_{k\ell}\}\in Z^1(\mathcal{U},\mathbb{R}_S)$ and holomorphic functions $f_k\in\mathcal{U}(\hat{\mathbb{U}}_k)$ such that $\widehat{\lambda}_{k\ell}-f_k+f_\ell=c_{k\ell}$ on $\widehat{\mathbb{U}}_k\cap\widehat{\mathbb{U}}_\ell$ for any k, ℓ .

If L' is the holomorphic line bundle on S with transition functions $g_{k\ell} = \exp(-2\pi i c_{k\ell})$ it follows from our construction that $\left\{\exp(2\pi i f_k)\right\}$ defines a nonvanishing section in $\pi^*(\text{L@L'})$, hence $\pi^*(\text{L@L'})$ is the trivial line bundle and Lemma 4 is completely proved.

Lemma 5 Let S be an irreducible curve and $\pi:\widetilde{S}\to S$ its normalization. Suppose that there exists a holomorphic line bundle L on S such that $H^1(S,L)=0$ and π^*L is the trivial line bundle on \widetilde{S} . Then S is a rational curve.

Proof

There is a canonical morphism of sheaves $L \xrightarrow{\phi} \pi_* \pi^* L$. If we set \mathcal{T}_1 =ker ϕ and \mathcal{F}_2 =Im ϕ we get an exact sequence

$$0 \rightarrow \mathcal{F}_1 \rightarrow \mathbb{I} \rightarrow \mathcal{F}_2 \rightarrow 0$$

Since $H^1(S,L)=0$ by hypothesis and $H^2(S,\mathcal{F}_1)=0$ because

dim S=1 it follows from the long exact sequence of cohomology that $H^1(S,\mathcal{F}_2)=0$.

Consider now the exact sequence

$$0 \longrightarrow \mathcal{F}_2 \longrightarrow \pi_* \pi^* L \longrightarrow \frac{\pi_* \pi^* L}{\mathcal{F}_2} \rightarrow 0$$

Since $\operatorname{supp}(\frac{\pi_*\pi^*[]}{\mathcal{F}_2})$ is a finite set it follows that $\operatorname{H}^1(S,\frac{\pi_*\pi^*[]}{\mathcal{F}_2})=0$, hence $\operatorname{H}^1(S,\pi_*\pi^*L)=0$. But $\operatorname{H}^1(S,\pi_*\pi^*L)\cong\operatorname{H}^1(\widetilde{S},\pi^*L)$ because π is a finite morphism. We deduce that $\operatorname{H}^1(\widetilde{S},\mathcal{O}_{\widetilde{S}})=0$ and consequently $\widetilde{S}\cong\mathbb{P}^1$, i.e. S is a rational curve. Lemma 5 is completely proved.

We are now in a position to prove Theorem 4.

a) Suppose first that S is an irreducible curve which is not rational. We prove that $K \mid_S$ is ample.

It is easy to verify that $H^2(S,\mathbb{Z})\cong H^2(\widetilde{S},\mathbb{Z})\cong \mathbb{Z}$ for any irreducible curve and if F is a holomorphic line bundle on S then F is ample iff c(F) (the Chern class of F) corresponds under the above isomorphisms to a strictly positive integer. Consequently we have to prove that $c(K|_S)>0$.

We remark first that $c(K|_S)\geqslant 0$. Indeed, if $c(K|_S) < 0$ then K^{-1} (the dual of K) is ample when restricted to S. By Theorem 2 we obtain $H^1(X,K\otimes K^{-1})=0$, hence $H^1(X,\mathcal{O}_X)=0$. If \mathcal{I} denotes the ideal sheaf of S there is an exact sequence of sheaves on X:

$$\circ \to \mathcal{I} \to \mathcal{O}_X \longrightarrow \mathcal{O}_X/\mathcal{I} \longrightarrow \circ$$

Since $H^1(X,\mathcal{O}_X)=0$ and $H^2(X,\mathcal{J})=0$ (by Lemma 1) we deduce from the long exact sequence of cohomology that $H^1(S,\mathcal{O}_S)=0$ which implies $S\cong\mathbb{P}^1$. This contradicts our assumption that S is not a rational curve. So we must have $c(K|_S)\geqslant 0$.

In order to prove Theorem 4 in case a) we have only to verify that $c(K \setminus_S) \neq o$.

Suppose that $c(K|_S)=0$, hence $L:=K|_S$ is topologically trivial. If $\pi:\widetilde{S}\to S$ denotes the normalization of S from Lemma 4 there exists a holomorphic line bundle L' on S which can be given by constant transition functions $\{g_{k\ell}\}$ with $|g_{k\ell}|=1$ and such that $\pi^*(L\otimes L')$ is the trivial line bundle on \widetilde{S} .

By Lemma 2, S has an open neighbourhood U which is Kählerian and shrinking U if necessary we may assume that there exists a continuous retract $\rho:U\to S$.Let ScU'ccU be a strongly pseudoconvex neighbourhood of S with smooth boundary and let $V=\{V_i\}$ be an open covering of S such that L' is given on $V_k \cap V_\ell$ by the constants $g_{k\ell}$ with $|g_{k\ell}|=1$. Set $V_k:=\rho^{-1}(V_k)cU$ and on $V_k \cap V_\ell$ consider the transition functions $g_{k\ell}:=g_{k\ell}$. Since $g_{k\ell}$ are constants it follows that the cocycle $\{\widetilde{g}_{k\ell}\}$ defines a holomorphic line bundle \widetilde{L}' on \widetilde{U} and $\widetilde{L}'|_{S}=L'$. Moreover \widetilde{L}' is Nakano semipositive because $|\widetilde{g}_{k\ell}|=1$ for any k, ℓ . From Theorem 3 of Grauert and Riemenschneider we get $H^1(U',K\circ\widetilde{L}')=0$.

Now consider the exact sequence on U':

$$(*) \qquad \circ \rightarrow \mathcal{I} \rightarrow \mathcal{O}_{\mathsf{U}}, \longrightarrow \mathcal{O}_{\mathsf{U}}, /\mathcal{I} \rightarrow \circ$$

where \mathcal{I} is the ideal sheaf of S.

From (*) we get the exact sequence on U':

$$(**) \quad 0 \longrightarrow K \otimes \widetilde{L}' \otimes \widetilde{J} \longrightarrow K \otimes \widetilde{L}' \longrightarrow K \otimes \widetilde{L}' \otimes \mathcal{O}/\mathcal{J} \longrightarrow 0.$$

By Lemma 1 $H^2(U', K \otimes \widetilde{L}' \otimes \mathcal{I}) = 0$. Since $\widetilde{L'} \downarrow_{\widetilde{S}} = L^*$ the long exact sequence of cohomology implies that $H^1(S, K \mid_S \otimes L') = 0$. But $\pi^*(K \mid_S \otimes L')$ is the trivial line bundle on \widetilde{S} and from Lemma 5

it follows that S is a rational curve which contradicts our hypothesis. Consequently a) is proved.

b) Assume that $S\cong P^1$ and $n=\dim\ X\geqslant 4.$ We shall prove that $K\big|_S$ is ample.

Let $N_{S|X}$ denote the normal bundle of S in X and K_S the canonical line bundle of S.If we use the adjunction formula $K \mid_{S} = K_S \otimes \det(N_{S|X}^*)$ we obtain the following formula for the Chern class of $K \mid_{S}$:

$$c(K|_S)=c(K_S)-c(det(N_{S|X}))$$

Since $S\cong\mathbb{P}^1$ we have $c(K_S)=-2.0n$ the other hand a result of Laufer [6] gives the following estimation: $c(\det(N_{S|X}))\leqslant -n+1$. Hence we obtain $c(K|_S)\geqslant n-3>0$, and Theorem 4 is completely proved.

Remark If dim X=3 and $S\cong \mathbb{P}^1$ it may happen that K is trivial in the neighbourhood of S.If $N_{S/X}=\mathcal{O}(c_1)\oplus\mathcal{O}(c_2)$, $c_1\leq c_2$, is the decomposition of $N_{S/X}$ into line bundles and K is trivial in the neighbourhood of S then $(c_1,c_2)_{\epsilon}\{(-1,-1),(-2,0),(-3,1)\}$ (see Laufer [6]). Hence Theorem 4 does not hold if dim X=3 and $S\cong \mathbb{P}^1$. If dim X=2 and $S\cong \mathbb{P}^1$ easy examples show us that K S may even be negative.

Theorem 5 Let X be a 1-convex manifold such that its exceptional set S is an irreducible curve. Assume that:

- a) S is not a rational curve
 - b) $S \cong \mathbb{P}^1$ and dim $X \neq 3$.

Then X is embeddable.

Proof

In case a) it follows from Theorem 4 that K \mid_{S} is ample. By Theorem 1 X is embeddable. A similar argument shows us

that X is embeddable if $S \cong \mathbb{P}^1$ and dim $X \geqslant 4$.

If X has dimension 2 then S is a divisor and if we denote by [S] the corresponding line bundle it follows that $[S]^{-1}$ (the dual of [S]) is ample when restricted to S.Again by Theorem 1 we deduce that X is embeddable.

Remark It seems very likely that Theorem 5 should hold for any curve S.

Let now X be a complex manifold; ScX an irreducible, compact curve and $\pi:\widetilde{S}\to S$ its normalization. The image of the fundamental class of \widetilde{S} in $H_2(X,\mathbb{Z})$ is called the fundamental class of S in X.A straightforward consequence of Theorem 4 is the following topological result:

Theorem 6 Let X be a complex manifold and ScX an irreducible exceptional curve such that:

- a) S is not a rational curve or
 - b) $S \cong \mathbb{P}^1$ and dim $X \neq 3$.

Then the fundamental class of S in X does not vanish.

Remark In [13 b] Vo Van Tan has proved that any 1-convex manifold X with 1-dimensional exceptional set is Kählerian. Unfortunately, as we shall see, his proof is fundamentally wrong, and very unlikely to be "patched up".

According to his notations let $\pi: X \to Y$ be the Remmert reduction of X.We assume also that the exceptional set S is a smooth curve and let T be any point of S and set $Z:=X \times T$, $\check{S}:=S \times T$. If \widehat{E} is a holomorphic line bundle on Y we set $E:=\pi^*(\widehat{E})$ and $L:=E \mid_Z$. The author asserts that if \widehat{E} is positive then there exists a metric $\{h_i\}$ on L such that:

where $T_{S,x}$ is the (Zarisky) tangent space to S at x and $N_{S,x}$ is the complement space of $T_{S,x}$ in $T_{Z,x}$.

We shall show that (*) does not hold. We take \hat{E} to be the trivial line bundle on Y which is positive since Y is Stein. It follows that L is also the trivial line bundle on Z and (*) implies the existence of a C° function h: Z-*(o, ∞) such that -log h is strongly plurisubharmonic on Z and and alog h is strongly plurisubharmonic. Since -log h is strongly plurisubharmonic on Z it follows from the continuity of second derivatives that -log h is plurisubharmonic on Z. By a well known result concerning the extension of plurisubharmonic functions (see Grauert-Remmert [4]) there exists a plurisubharmonic function p on X such that p z=-log h. The maximum principle for plurisubharmonic functions implies that p s=constant, hence -log h s=constant. This contradicts the fact that -log h is strongly plurisubharmonic.

The gap in the proof of Vo Van Tan is the following: since $S:=S \times T$ is Stein the metric $\{h_i\}$ can be suitably modified such that $L \mid S$ is Nakano positive [8] but this can be done only on S and there is no control outside S. Lemank Under the assumptions of Lemma S it follows that S is a national curve with dim $H'(S, \mathcal{O}_S) \leq 1$. This can easily deduced from humann-Roch theorem for singular curves. Consequently all our theorems hold of we assume that S is a national curve with dim $H'(S, \mathcal{O}_S) \geq 2$.

REFERENCES

- [1] BANICA,C., Sur les fibres infinitésimales d'un morphisme propre d'espaces complexes.Seminaire F. Norguet.

 Fonctions de plusieurs variables complexes IV Springer-Verlag Lec.Notes in Math. 807(1980).
- [2] COLTOIU, M. and MIHALACHE, N., Strongly plurisubharmonic exhaustion functions on 1-convex spaces. To appear in Math. Ann.
- [3] GRAUERT, H., Über Modifikationen und exzeptionelle analytische Mengen. Math. Ann. 146(1962) p.331-368.
- [4] GRAUERT, H. and REMMERT, R., Plurisubharmonische Funktionen in komplexen Raumen. Math. Z. 65(1956) p.175-194.
- [5] GRAUERT, H. and RIEMENSCHNEIDER, O., Kählersche Mannigfaltigkeiten mit hyper-q-konvexen Rand. Problems in
 Analysis (Lectures at the Sympos. in honor of Solomon
 Bochner, Princeton Univ., Princeton, N.J., 1969), Princeton
 Univ. Press, Princeton, N.J., 1970, p.61-79.
- [6] LAUFER, H., On CP₁ as exceptional set. Recent developments in S.C.V. Ann. Math. Studies, Princeton, N.J. (1981) p.261-275.
- [7] LOJASIEWICZ, S., Triangulation of semi-analytic sets.
 Ann. Scuola Norm. Sup. Pisa 18(1964) 449-474.
- [8] NAKANO, S., Vanishing theorems for weakly 1-complete manifolds. II, Publ. Res. Inst. Math. Sci., Kyoto Univ. lo(1974) p.lol-llo.
- [9] NARASIMHAN,R., The Levi problem for complex spaces. II, Math. Ann. 146 (1962) p.195-216.

- [lo] PETERNELL, T., On strongly pseudo-convex Kähler manifolds. Invent. Math. 70(1982) p.157-168.
- [11] REIFFEN, H.J., Riemannsche Hebbarkeitssätze für Cohomologieklassen mit kompakten Träger. Math. Ann. 164
 (1966) 272-279.
- [12] SCHNEIDER, M., Familien negativer Vektorbundel und l-convexe Abbildungen. Abh. Math. Sem. Univ. Hamburg 47 (1978) p.150-170.
- [13] VO VAN TAN, (a) On the embedding problem for 1-convex spaces. Trans. AMS 256(1979) p.185-197;(b) Vanishing theorems and Kählerity for strongly pseudoconvex manifolds. Trans. AMS 261(1980) p.297-302;(c) Embedding theorems and Kählerity for 1-convex spaces. Commen.

 Mathe. Helve. 57(1982) p.196-201.

Mihnea COLTOIU

National Institute for Scientific and Technical Creation

Dept. of Mathematics

Bd. Păcii 220

77538 Bucharest Romania