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by Sanda CLEJA-TIGOIU
r

INTRODUCTION

In this paper we discuss the isotropv of the thermoelasto-
viscoplastic body with instantaneous plasticity (or shorter
thermoviscoplastic (t.e.v.p.) body) defined in the previous
paper El},

The point of view adopted there is the same one with that
presented by M.Mihdilesc-Suliciu and I.Suliciu LZ] and E.Sd&o0s
i3} in which the conceots of the plastic and elastic deformations
are simultaneously introduced with the aid of the constitutive
and evolution equations; these deformations are not thought of
an kinematic concepts.

Here the gradient of deformation is multiplicatively de-
composed into its components.

The local configuration [4,51 is used in [3] to defined
the current local thermoplastic deformation PP which as thermo-
plastic deformation r® is not a gradient of some alobal de-
formation [9~ll].

The term "instantaneous plasticity" is added to those of
thermoviscoplastic as in 26,7,8} in order to specify the presence
of the rate independent part in evolution eauation of FP and of

the work hardening varialbe.



In the first section we briefly recall some of the basical
assumptions. of ‘t.e.v.p. [110

Two concepts of the material symmetry maybe used for t.e.v.p.
body, i.e. k-material symmetry related to k reference configura-
tion and KXt~material symmetry corresponding to the current 'local
relaxed configuration as both of them are invol?ed in mathematical
description of t.e.v.p. behaviour of the body.

Here we consider only the material isotropy.

We point out some questions: what is the relation which
can exist between the two concepts of the isotropy, which of them
is addequate to describe the behaviour of the appropiate t.e.v.p.
body.

Since the admissible thermoelastic constitutive function
by means of the evolution system becomes an operator depending on
the history up to time t of the gradient of deformation, Fk , and
of the temperaturé 8 Noll's concept XlZ,lB} of the isotropic
body relative to the reference configuration k, as a simple ma-
terial may seem naturally to be considered.

In the second section of the paper we consider the restric-
tions which can be imposed on the constitutive equations if the
material has isotropy in its reference configuration. We prove
there: if t.e.v.p. body is k-isotropic then’ the thermoelastic
respons function is an isotropic one with respect to the left
Cauchy-Green elastic tensor v® and the proper values of the
current local right stretch plastic tensor uP are all equal.

There are no favoured proper directions of the plastic deforma-
tion at X. In this last point of the proof we essentialy use the
relaxation condition which is the usual adopted one in the des-

cription of the plastic deformation.



Tt follews that t.e.v.p. body k isotropie and plagtically
incompressible undergoes only thermoelastic (finite) deformation
and on the other hand the evolution functions describing the rate
of plastic deformation are skew symmetric valued tensor. But
a thermoviscoplastic body maybe plastically incompressible de-
forﬁed also by torsion.

In conclusion the concept of k isotropy is much more res-
trictive and it will be not addequate in the description of the
t.e.v.p. behaviour of the body with specific material symmetry.
Thus a t.e.v.p. body is essential dependént on the reference
configuration k.

In the theory of dislocation it is assumed that the orien-
tation of the crystallographic structure is maintened during
slip deformation,[l4}. There exist one favoured configuration
the local natural configuration at the initial moment to i thias
may be the fixed k.

We pass to the other concept of the isotropy this being
independent of the previous one. We present KXt~isotropy in the
fourth section. We conclude that the thermoelastic constitutive
function is isotrOpic in V° and Fp, and the evolution functions
in ' and FP, where ¥ is the Piola-Kirchhoff symmetric tensor
relative to KXt’

If we consider that J satisfy the temporarly invariance
condition [3] then all the functions will result isotropic in
v® and respectively in g , as there were assumed in the men-
tioned paper.

In this case we obtain the existence of one relaxed con-
figuration %%t deduced from the actual one by a pure elastic de-

formation and such that the rate of deformation is additively

expressed by means of the rate of thermoelastic and thermo-

plastic strain.



This choise of the plastic deformation such that F® - the
elastic deformation -~ becomes a symmetric pure deformation is
proposed by E.H.Lee [11§e Some cases when the additive represen-
tation of the rate of deformation following from the multipli-
cative decomposition of the deformation gradient are presented
- in [15]. |

This means we can develope the theory based on additive
decomposition when we consider t.e.v.p. body Kthisotropic vieri-=
fying also the temporarly invariance condition. This was a basis
for much works in elastic plastic analysis.

The second concept of isotropy is addequate for t.e.v.p.
body. We can call this kind of the isotropy the plastical iso-
tropy since it is related to KXt which is used to define the
current local thermoplastic deformation tensor.

The equations describing the behavior of the isotropic
elasto-plastical deformed body where considered in [6w8} . There
the relaxed configurations are isoclinal.

We deal in the third section with the concept of the
thermoviscoplastically equivalent configurations which will be

used in the definition of Kyi~isotropic t.e.v.p. body@

Here we use the following notations:
Jo - a body,

% - euclidian space with translation vector space WF,

i

Lin XA:WT-—+ V' 1 linear mapping }.

Orth

%QG;Lin \QQT=IS the orthogonal groun,

Invlin € Lin - the sed of all invertible linear mappings,

i

Sym {AéELin\ A=AI}, where AT is the transpose of A,

{a €rin | |det A|=1§ ,

il

Unim
Psym - ‘the set of the all positive-defined symmetrig

mappings,



Skew - the set of all skewsymmetric tensor,

%A}a, %A}S ~ the skewsymmetric and respectiv symmetric
parts of the ktensor X,

KX ~ a local configuration at the peint X, i.e. the
eqﬁivalence classe defined by the configuration K by the rela-
o K= {*"X’configuration of B : V(¥e K_l)\K(x):I}'
y’x - the tangent space at X i
R - the set ofbreal numbers,

Q%HQJ(ﬁJ,Q , )€ Sym is a tensor-partial derivative of

QY 7, 0,4 ) with respect to € gy, Loe;

lim -i;—(?( T+ s2,0,0)- F(T,8,4))= ’97.,?(57,9,0().;&
s-0 7 g

1. THERMOELASTOVISCOPLASTIC BODY

We briefly recall some of the basical assumptions of the
mathematical (axiomatic) presentation of the thermoviscoplastic
bodies with instantaneous plasticity [l]; abbreviately denoted
TSV

Let b be a t.e.v.p. body. Then we have the following as-

sumptions:

A.l, For a given material point X at time t for any (X, 8)

where X:is a motion of a neibourhood J/x(: j3 of X and 8- the

i . 74 '
temperature field, there exist th(EInvlln (.fx,lr)—the current
local relaxed configuration (e.l.r.c.) and a(K € R - the work
: ; : i e
-hardening variable (w.h.v.) and a function fK so that

Xt

A.2. The Cauchy stress tensor is given by

e

) (latle)



where F? - the current local thermoelastic deformation at X
\Xt ’
is defined by

ST )

e
I : (1.2)
KXt Xt
&.3.. The actual rate of th is given by the evolution
equation
= ot
e @R T T BEE e
Xt Xt Xt At Xt
(i)
# %A v B AT B EeE )
Xt Xt xt Xt
together with initial data
th =Ko (X) (1.4)
o
in which
FIP< =KXto(vk(x))"'l (5]
Xt

the local reference configuration k;ﬁ(.,to) and \ﬁ% is the
: Xt
symmetric Piola-Kirchhoff stress tensor corresponding to KXt:
B =detF  (FZ ) T he(x,t) (B )T (1.6)
' Xt Txt Xt
Here 'AK is the. plastic factor asspciated to the curremt yield
Xt - :
surface ¢, (T, ,0(X,t) A, )=0 defined by.
XL Xt Xt
(ad L v o
N =0F el )T+ T 2, )b (1.7)
xt T “xt xt ¥ ik xt

in which Z:(jk ,0(x,8)) .
Xt

A.4. The evolution equation for X

TR Ryt

is given by



LN

=l dmar 3Rl s mo Ak (1.8)
Kee  Bxe Bl Rt Bxp Bk

with the initial data

D(K :(){O(X) (1.9
Xto

_ : £ e
Xt and the function “th satisfy

A.5. - The configuratien K

the relaxation condition:

the positive-defined symmetric tensor Uo.is such that

£, (Uo,®(X,to),d

K ) =0 {1.10)

Xt Kot

if and only if
U, =l 7 (dddy
By taking into account some other assumptions [1] the fol-

lowing proposition and remarks hold:

P.l.1. The thermoelastic constitutive function has the

"objectivity property", i.e.

£, OF%0.  )=0f, (%04 Q" e
Xt Xt Xt Xt

for all Q¢ Orth.

2) The Piola-Kirchhoff symmetric stress tensor j% % is
given by '

J\KthhKXt(c§Xt, e<x,t),dKXt) | (1oiah
with

Ce e TFe (1.14)

=(F )
Kee B " RKge

Remark 1.1. From (1.2) and (l1.5) one gets the multiplica-

tive decomposition of the deformation gradient F, into its

k

Components



CHen
P EE , (L 157
e

Remark 1.2. Together with initial data one of the reference

configurations of a neighborhood of a material points X must be

given too.

Remark 1.3. In order to obtain some evolution system for

Ko &
Xt %X E
evolution and constitutive fonctions in the form:

the variables FP and<KK from (1.3) and (1.8) we rewrite all

A, F=p (Bl < ,BE ) (1,169
Ryt dKXt k Ryt Bxe '

So both reference configuration k=X(.,to) and current re-
laxed local configuration Kx are mentioned.

t

The evolution system for (FF A ) is obtained in the

Ryt Kyt
form:
%i (Fg 3= e (B ,F§ )+ <A > B, (2,4, ,F? ) L
XE Tk Xt Txt Xt Xt Txt
« =1, (z,%X ,FP )+ <A > n (Z, K ,Fp ) 1+.18)
B T R < Rxe & Kxt  Fxt
in which
z=(ﬁ}( , 0 (X,t)) {1 19)
(6
with
~ ! -«1: B D ~-1.8 P
o =n_(§F, (FE )THTF (7R ) FO R K, R ) (1.20)
th KOV TRy k" Bes § Ryt Exe

as it follows from (1.13)-(1.15).

To (1.17)~(1.20) one adds the initial data.

Remark 1.4. By means of the complementary plastic factor.

K may be written as

1) jSK the plastic factor A
Xt Xt



N Ven o R eh é(x,t)+cK . (1.21)

when %JK > 0, therefore as depending on (L(x,t), Q(X,t))u Both

Xt
'ﬁK and ;&K have the samesign. All the funetieons in (1,21)
Xt Xt
(‘Q
are expressed by means of h and o rewritten in the form
Kxt Rxt

(l.16) m

In the above relations the.dependency on g = the tempera-
ture gradient has not been mentibned in order to simplify this
presentation although in the previous paper g was presents

One may therefore draw to the following conclusion:

The admissible termoelastic constitutive function written
under the form (1.16) by means of the evolution system becomes an

operator depending on the history up to time t of the function

s — T(X,8) = (F (X,8), ©(X,s)), (ls22

2. k-ISOTROPIC THERMOVISCOPLASTIC BODY

Noll’s concept [12,13] of the material symmetry for a sim-
ple material may naturally be considered if we take the above
conclusion into account.

Further on the thermomecanical response of the material
will only be considered.

In order to discuss the concept of k-isotropic t.e.v.p.
body we start from Noll’s definition.

Let

T(x,t)= & (FF, %) (2.1}

k

be the constitutive equation of a simple material at a particle

X, where k is a local reference configquration with %=k (X).



D.2.1. Two local configurations k and k are materially

isomg@p@}c at X:«df

O
(B ) = (%

¢ @t %) (2.2)
’ |

s
‘T(X,t)-’: Jk

hold for all FJC in the domain of (¥? and
S () =P (&), (2.3)

where k(X)=x , k(x)=X

We suppose that the domain of & contains the history of
-all invertible linear mappings.

The local deformation ‘from the configuration k to the lecal

configuration X will be denoted by H:

1 1

H= ¥V (Kek ™) (k(X))szo Ky (2.4)

D.2.2. HeInvlin is k-symmetry transformation at X if by the

local deformation H to the reference configuration there corres-

ponds a local conficuration k that is materially isomorphis to k.

jiv)

B2, L Let gy(x) be the set of all k-symmetry transforma-

tions. Then

) g @ ={HetninlF %1, 0=F_(+%, for all F(veInviin} (2.5
2) The 'two symmetry groups gk(x) and gE(E) are related by

_ -1
gE—ngP (2.6)

with P-the local deformation from k to k.

D.2.3. A t.e.v.p. body-at X and at time t is elastically

ﬁeformed iF

vk =1 EE
Xt
where U§ is the positive~defined symmetric tensor from the
Xt -
polar decomposition of Fb

Bt



T2 .1.71et B 'baa k—symmetry transformation for B tieav.p.

eyt o=

body with instantaneous plasticity at X. Then

e e
SRR ¢ o IR RN B (2.8)
Ree - e R . e
for all (Fe,Q,&)é%K - the domain of fK , with
Xt : Xt
o p =l

H =F7 H (R ) ‘ (2.9)
KXt KXt KXt

Proof

. LE H égk(x) there exists a local reference configu-

9

ration k materially isomorphic to k. Therefore to a given history
up to time t of the deformation gradient F and of the tempera-
ture .0 the same values of the stress corresponding to the choice

of k and k respectively as reference local conficurations are

—

equal. Thus two local motions X and % may be defined as

=],

F(2)=F, (X,2) = VAKX, ) (Vk (X)) (2..10)

F (1) =Fp (X ) VA(X,T)e (VE(x)) 1

i (2::11)

s v

The temperature field in two processes (X,8) and (%,6) is
considered to be the same, i.e. § (X,7)=0(X,r), V CT€ R.

By using A.2. two pairs (K « ) and (K :<f ) may be

Xt' " Kyp Xt e
determined such that
f= (Fg 0,4z )=f, Fy O AL ) (2.12)
Xt Xt Xt Xt Xt Xt

The connection between the thermoelastic constitutive func-

tions corresponding to a change of c.l.r.c. is given by formula

(2]

—e = —e P(t),0,o ) (2.13)
Xt Xt Xt

with 8=90 (X,t) and



-1_
thvKXth(t)G Oxrth (214

The: relation between the corresponding current local thermo-

plastic deformations is given by

1

FR =%  ofUT -1 Py
F Ky o(VE (X)) P(t)Fy H (Zelb)

=IO

KXt

Xt
where H is defined by (2.4).
Using the decomposition (1.15) of the gradient deformation

into its parts

; F§ =§§ ?% (2.16)
Xt “xt  ™xt “xe

and connection (2.15) between the current local thermoplastic

deformations when both motions are considered there results

e =r® #P P )~LypT

e
= JPT(t) (22095
Ket  Rxe Kye o Bxe
or, with (2.9)
FE =r® u_ pT(y) (2.18)

et Bxe Ky

From (2.12), (2.13) and (2.18) one obtains formula (285

The tensor HK
Xt

if (2.8) holds for all (F%,0,«)€%
Kxe

ellnim is called a KXt~svmmetry transformation

The set of all th—symmetry transformations will be denoted

by g
K
Xt
T.2.2
p 8] -1
1) FKthk(X) (FKXt) chXt : (2.19)
2) HK =y I then



n;l he el 8 A )H;T -
Xt s Xt
(2. 20]
i e
=07 (B e G o
Bt e e B Kt

with Ci given by «(1.14), for any (Ci 0 ) in the domain

Xt Xt X
of h
KXt
Broof. 1) 1f H<§gk(X) then HK defined by (2.9) belongs
X
Q- g
KXt
2) With the notation
%; =i W (221
Xt Xt Xk
introduced in (2.8) we obtain
~ve e
TRpeiefe e B, ol PE S i) (2:22)
Le. - X Xt Xt Xt
The Piola-Kirchhoff symmetric stress tensors T and J
Xt Ryt

associated to the same T(X,t) but corresponding to the tensors

Fe .respectively are related by

KXt
i =H;<1 T H;T _ (2.28)
Xt Xt Xt Xt
since
e = e ~a =], ~e =
JTK =get/Es ) STx ) lES (2.24)

Xt Xt XE Xt
If we consider the thermoelastic constitutive equation (1.13)
then from (2,22) and (2.23) the following. condition on the func=

tion h has to be satisfied:

. =h (c”:i e
5, Qi Xt Xt Xt XXt Xt Xkt Xt

with



. He o e
K = o : _ (0. 26)

So we state that H € g involves (2.20)®
R o
Xt Xt

We consider % an isotropic body at X and k an undistorted

local - configuration,

‘We state the follewing:

Te2e20 LE % is 4 k=-isotropic t.e.v.p. bodvaiat X then

1) The thermoelastic function h is an isotropic mapping
Xt
of Ceg CE & Psym, i.e.
Xt
' Ik
B, ISR =En len 8 E (2.2
XE Xt Xt Xt

for all: He Orths:

2) The local current thermoviscoplastic deformation is

conformal, i.e.

o p :
P —-/L R (Z2.28)
Kev /[ ¥xe Bye

K

with RE ¢ oOrth, /kK € B
Xt Xt

3) The symmetry group with respect to KX will econtain:the

t

ortogonal group.

4) The symmetric parts of the evolution functions. AK

Xt
and B, may be spherical, i.e. {AK 1T and §BK ! ® satisfy this
X Xt X
condition
Lo o2 . % 2. oW )
§ Bye Kyt % K Kyt



Proof. We begin with the second assertion. If B is a

k=isotriopicat . .cavip. body ot % then

= B
He SR GEGE e g
e e T Kxt

for cald H<50rth=gk and: (2.20) is satisfied. Prom (2.8) writien

for FE =1 we obtain
Xt

) =0 (2:-2.99

since the relaxation cendition A.4. helds. The pedaw decomposi-

tion applied to the nonsingular tensor HK involves
Xt

B e gl : (2. 30)

o b Eop

with R? € Orth and UE & RPsym. The "objectivity property"(l.12)
N

Xt Xt
of .the function £ gives
K
Xt
A
Ri P (Ul il et )(R;I g (nzT)
ke300 Xt Xt Xt
H ; ; e .
Buss s ol GO,cKK }=0 if and only if Us =T sdnece mad
Xt Xt 19,Ge Xt
holds. Therefore '
I=(U? e H§ £ =(F§ )_THTCE H(Fi o (222
boeg %E Xt Xt Xt %t
for any H@Orth, or
c§ H=Hc§ (2 28
Xt Xt :
where
C§ =(F§ )TFE ; (2534
Xt Xt Xt

Since Cg eusSym 12.33) holde for all H €0rth if emd only if
Xt



o) ae R ‘
@ = I ; (2:35)
E i
So
- ;
U~ = 1 (2-36)
Kzt /kat
with /L € R, and the polar decomposition of FD involves
K ++ K
_ Xt it
P D
P = RE (2537)
Kee /kXt Kee ‘
as  the ‘right streteh tensor Uﬁ is spherical.
Xt
With (2.37) introduced in the evolution equation for F?
Xt
we. obtain 4).
3) We have proved that HK =R§ € Orth because of Ui =T.
Xt Xt Xt
S0 we have eobtained g. = Orth.
K
Xt
1) As H may be any orthogonal tensor the relation (2.20)
Xt
implies that h is:an isotroplec mapping of its first argument.
Xt

Remark 1.5. If B is.k-isotropic at X then the thermoelastic

constitutive function is an isotropic one for any KXt—c.l.r.c. and
the proper values of the current local right stretch termoplastic

tensor Ui are all equal. There are no favoured proper directions
Xt

of the plastic deformation at X.

Pi2.2. Iet Bbe a k-isotropiec body at X with k an: undis=
torted reference conficuration.

1) If all the thermonlastic deformations are incomnressible

then the body undergoes only thermoelastic deformation.

2) The ‘evolution functions A and B are skewsymmetric
i Byt

tensor valued.



Proof. We work in the hypotesis of T.l.2 and we suppose that
k is an undistorted, reference conficguration, Therefore «(2.28)
holds. Since all the plastic deformations are incompressible

i.e.tr I¥ =0 then by (2.28) there results

L
. =) .ﬁKXt o i
L§ zyg (F§ ) =~«-WMI+R§ (Ri ) (2.28)
Xt Xt Xt ﬂKXt Xt Xt
SO
fo
Ryt
As Fg =5 lone FP =R € Orth) then /” =1, ‘The gradient OFf
K o K
Xt o Xt

deformation is therefore expressed by

e e e
poans BE -1t R , 2529)
K Bie Oxe s Bxe
with
§:R§ R§ ' (2.40)
S et '

&

So t.e.v.p.. body at any time t undergoes only thermeoelastic
deformation since (2.7) holds.

From (2.38) and (1.Y7) we obtain that

B il el bl kT w0 € SKew @
Xt Xt Xk Xt

In conclusion the concept of k-isotropy is much more res-

trictive and will be not adeguate in the description of the
t.e.v.p. behaviour-of the bodym
So t.e.v.p. body depend on its reference configuration k.

Further on this will be fixed.

MeoAd 24 nas



3. CURRENT LOCAL RELAXED CONFIGURATIONS THERMOVISCO-

PLASTICALLY EQUIVALENT

L

TheNde finistion of th—isotropy which will be adonted

in [4]uses the eonfigurations QKXt thermoelastoplastically emui-

valeg; to th. This means that QKXt as well as th may be used
in order to characterize the thermomecanical response of the
t.e.v.p. body at X.

Therefore it will be necessary to analyse the consequences

that follow from the definition of thermovisconlastically (e v,

p.~ally)s equivalent configurations.

D.3.1. Two sets of configurations Ky and Ext (teR) are

t.e.v.p.-ally equivalent at X if they correspond to the same

process (X, ) and

Ly )
S B
Gt s bl e S D )
B by B e b g Ryt

with 9(X,t)= 0 and

e -1 e e
ES = VAKX, £)e R P TR e R (B3
B Xt e Xt
where
.,:. - -1 oy
Ko (R ean - e d s ol i gl o > By (e e
s S K Ko S KXt Kx
oS Wi e (3.5)
Ker KXt Kee Kot KXt g Ko t
and at the initial moment
e e PO (3.6)
Xt o Row o



The pair (K- o ) is also the solution of (1.3) and
Xt th

(1.8) with the initial data

Ko =R 0 el = o (3.7)

One necessary has

-1 !
KO(KO) —Poé Orth (3:8)

as a consequence of the below proposition.

58 Hid th and ﬁxt are t.e.v.p-ally equivalent confiau-

rations: at X then

Ry Ky =P (£) (3:9)
2 F% =F§ D* () : (3.10)
Xt “xt
o~ 2 o~ T
3) Jl—ﬁ =P (t) JzK P (t) (5. 11
Xt Xt
4y P2 =p gl ' : (312
o Kok :

B

Proof. The first property is a conseguence of the relaxation

conditions and of the "objectivity property" [see l].

2) From (3.3) we have the following equalities

e e

= =l i e Lot ]
%&£~Vﬂxmjﬂ&t(%QJ&Q_%&tmm:%ﬁ) B2

Se: a3 o0 ) Sfel lows-From (3.13) swith (3.9),

3) As a consequence of the definition (1.6) of the Piola-

-t

~-Kirchhoff stress tensor ~”§ relative to ﬁXt and the formulae
Xt



(3.2) and (3.10) the following relation holds

W}A =dt FC P (t) (F

e —1 -
P ). L1 ) TP (b)) =
Xt Kyt R, KXt Xt

T ERLTRE e

d
4
[N

By using the definition (1.5) of the current local thermo-
plastic deformation and taking into account the relation (3.9) the

tensors FE and FP will be related to each other by
Ryt Kyt

rE =R o (JTk(x)) t=p( (Vk (X l=P(t)F§ (315

Xt Xt

Pedela EE th and R—Xt are t.e.v.p.-ally equivalent then

1) £, (F° , 0, d &, 0,4 ) (3.16)
Ryt Kx th Ryt
2} The pair %= (:‘TY , 8 (X,t)) lies on the current yield sur-
i .\Xt = o
face, i.e. ,fK (z,cKK )=0, if and only if Z = (/3 , @) lies on
g b @ Xt Xt
the current yield surface Sﬁ (OUK‘ ) dLe. ?”ﬁ (T D(»K ) =0
Xt Xt Xt b & o
3) ~If ﬁﬁK (7, o(K )} Sr,éo for all points ZC«TSK (o\’K ) then
. Xt Xt _ Xt X
sign AK =sign A'ﬁ (31 7)
Xk Xt :

Proof. We assume that the process (%, 0) is such that at

the moment t, 2 &S (X ) and the process is a loading one and
Ket  Fxe '
on the other hand: "Z"=(:fr*1v< , 9)%8»12 (O(rﬁ— ). From the assumptions
Xt Xt Xt

{ll concerning a t.e.v.o. body there result F (z, « =00,
| Rxt Kxt
Q{_ (Z,d= ) <0 and the followina evolution functions are zero
KXt Xt

B Z, A= )=0, ms (F,As )=0 (3.18)
iXt Byt Ryt Bt

So we have



¢ -1
s TRE b R R, Sy W - R O (3.189)
2 ne B Rxe  Bxe By By
ik = 1
K - AN (R (3,200
Xt }xt th th

and

7, = ) (3o

KXt Rkt KXt)+ KXtWSﬁfZ({ K %£Xt{%gk Ky

By means of (3.19) written for the nlastic complementary

factor (1.21) the evolution system becomes

‘

‘p P ——1::N _— u»’v o o
F (F ) Ak (M)+(ak=L-ika +c:k)]3k (M) (35223

2

e

Here‘Ak # Bk Py %k and respectively 6% are composite func-

tions, i.e. for instance

cS ,e,«_ ,FP ),0,«

Ak(M)EA hk( K

ek ) ' (3aae )

Let us consider now a linear continuation of (%, 6 ) of

€ .) at time t on the interval (t,t4+ 2 ) with g£350

direction (Ll’ 1

that corresponds to a loading proce555'he.CX> g,

44 /
Let (K P AY

XT
X ol - a2
tion of the system (3.19) and (3.21)l for (A, ©) which satis-.

). with ze (t,t+ El) and El<‘€_be a solu-

fies, at the moment 7 =t, the following conditions

%, =K ol L,
promet 7 ~J - {
Xt Xt Rop “Kyp

This solution loclly exist since all constitutive and evo-

lution functions are continuous with respect to (F§ . Mk ) [1).
Xt

Therefore K may be arbitrary as (L,, 8 ;) is an arbl—

Xt+0 1EF

trary given direction of the linear continuation of (%, g) at

time t.



o 22 -

poz )
Ky

for | X,E ), with the conditions

Similarly we consider one locally solution (?Xt

of the system (3.20), (3.21)?

I S R
K,,=K,, ,&% =&~ at time ¢ =t.
Xt "Xt KXt th ;
The right hand derivative at time t EXt+O does therefore

not depend on (L , @ 1):?' =K

On the other hand there exists P(s) e Orth such that

=R

=3

xs (Kyg) =P (s) W) s e (t,tt €,) (3.24)

If we diferentiate (3.24) with respect to s and we change s into

t we get

(£)+P (£)F KD {£) : (3.25)

Here

D (£4+0)PT () = W(t)e SKew (3220

By means of the equations (3.19) and (3.20) the relation

(3.25) becomes

B - 7, o=
Rxt Ryt Kt Xt :
(327

=W(t)+P(t)7LK By (z, )P
Xt Xt Xt

By considering the symmetric and the skew-symmetric parts

in (3.27) we obtain

{3z (Z, dz )-P(O)A, (2, £ )P (t)§ F=0 (3.28)
Xt Xt Xt Xt
and
£y s_ T
A P(t) 4B, (z,«, )Y} °p (t)=0 (3.2
K K K .
Xt Xt Xt
Y s ;
aAs A may be arbitrary we get {B (Z, )} =0 which
K K K
Xt Xt Xt
T -
contradicts the hypotesis. Therefore ‘fﬁ (Z, de )=0 as

Xt Xt



Fg (B, o, )=0
Xt Xt
In order to prove assertion 3) we suppose that
2 = it : - ' : . Aw‘ < =
Z = (4 , O(X,L))éﬁSK (c%K It AK > 0 and 7z S 0. Then the

Ryt Xt Xt b Xt
formulae (3.19) . (3.20), (3.21) hold. -By a similar argument to

that used in 2) we obtain (3.29). This leads to ;MK =0 which

Xt
contradicts the assumption AK =0, So if JRK » 0 then )%ﬁ S
Xt XE= Xt
And we also have Af~/‘5 0 if and only if A £ 0.
K K
X, Xt
t :
Further on we show that for a given vrocess ( X, 0) there

is not possible to have A - =0 and A < 0 simultaneously. By
Ket Ryt

using P.4.4 from [l} there results that for any £»>0 there exist

a ?%e(t,t+€] such that

K ‘K IQ(XI ?2 )IO<K )<0 and ?’"‘ (37?—

IG(XI (CE) ro[‘i" )=0

We have already proved that leads to a contradiction.

P.3.2. If zeés; (dy ) then

il Xt Xt
Ao - =de 4237 DF . (7 )12, e (£) =0 &

Kyt Rxe 7 Ky Ryt %
with
e T :
w (£)=P~ (£)P(t) (3l
Proof. By the definition of the plastic factor AK 1
o : Xt

follows that

(3.32)

>
:
It
1
S
2
{
i3
e
=i L
+
Q)
[on)
S
i
Q\
|
D

xt 7 Xt Xt Xt

with the notation



G, de Vzgr P
b~ Ly kr =07 = (J/""' 1910("" )
2 Kyt “OEXt Rxe Kyt Kye
ST e e ,'9,o<«. )

0 T o Q%JKXt Kyt Kye °

By differentiating (2.11) with respect to %, z>t, we obtain

T o <t){3z”K + T, T 1% (e) (3.35)
Xt4+0 Xt Xt Ryt

On the other hand from T.2.1 we have

O ~ 7 = '
0, Fz (ix 6.g 1=0F (T, .8, ) (3.34)
0" Kxe  Bxe Kxt Zb Kxe Kzt Kxt
and
£ i
Pl(t) ) & (@, 4= yp(r)= D Fa@, L, ) (3.35)
7 Ryt gk Xt '
If we come back to (3.32) with (3.33) - (3.35) one obtains
the following relation between A= and A :
R K
. Xt Xt
}"R =d, 42 W7 Fz, oL I} ar)
Xt b6 o # Xt
Remark 3.1. If ﬁ'QMJYZ,C(K ) ¢ Sym then A’f &= AK for
B A Xt . b Xt
any 7 €Sy ((XK ). For instance if ;TK (2, ) =
Rk Xt Xt Xt -
T (3T, 1,8 &8, ) with (I ) the invariants of
%k Xt Xt Xt
jTK then the above property holds.
Xt
_ IPNEET T
Remark 3.2. If A =0 then gﬁ 2_F } 7. w(tk0 since -
G Kzt i Rzt

also vanishes.

T.3.2. Let th and KX be two t.e.v.p.-ally equivalent con-

t

figurations at X and at time t. Then



1) The symmetric parts of the functions A and B
K K
Xt Xt
satisfy the following relations

iag @, )i =p(e)ia,

(z,4)}%0T (t) (3.36)
Xt X

when we pass from one c.l.r.c. to an equivalent one; EXﬁ
2) The rate of the transformation P (T)=K_, K

XXt
aecil n - T = a
~P (t+0)P(t)-iP(t)AK (Z,£)P" (£)-By  (Z,£)F° +
Xt Xt '
(3.37)
+<h > {P(0)B,  (2,%)P (t)-By (Z,0} 2
¥t Pq- Xt
with the functions A,  and BK' satisfying
Xt Xt
o o . a T =4 ‘_‘_ a__ : \
VT FE, ) %ga, (2, L)-P (B)Ag  (Z, )P (£)}%=0 (3.38)
, Xt Xt
on the yield surface.
3) For any z €8S (« ) the plastic factor correspondina
K K
Xt Xt
to th and KXt are equal, i.e.
Ao = A (3.39)
e Xt '

4) The evolution functions corresponding to the two consi-

dered ‘t.v.e.p.-ally equivalent configurations are also equal

1, (2, )=l (Z,<), m

- (2, )=Me (2, ) (3.40)

Xt Xt Ko Ryt

here

Z=(% ., 8 (X,t)) and Z=(P(£) J . Pr(t), & (x,t)).

Xt Xt



nJ

Proof. Let (X ,9) be a linear continuation of (A,6 ) at

time t of direction (Ll’ 8 ,). We denote by (K, ,K., ) for some

i Xs' Xs

tL4s< t+ ¢ dthe t.v.p. eguivalent configurations which satisfy dt

n/

o
the moment t KXt"KXt . KXE:KXt . Therefore from (2.4), (1.19)

and (2.9) the following equality results

ay (B, %)+<Ay > By (Z,R )sﬁ(t>pT(t)+P(t)[AK (Z, )+
Xt Xt Xt Xk (3.41)
4—<AK 2 .. B (z,«)}Pf(t)
Xt Xt
But  =«% is equal to « = &ﬁf by definition (3.1) of

Xt Xt
t.e.v.p-ally equivalent configurations.

By writing the symmetric and the skewsymmetric parts of

(3.41) we obtain

Te)-a- (Z,% )} 5=0 (3.42)

(Z2, oL )P
Ryt

%P(t)AK

Xt

and

'Y i s_<i T
<A >3 P(t)B (2, )P (£)}"=<Ag > Bz (Z,%2)} (3.43)
K., K K. K
Xt Xt Xt Xt
AL "~ .
since the factors A and A= dermend linearly on (Ll’ 91).

Xt Xt
The skewsymmetric part of (3.41) is nothing else than (3.37).

From (3.37) and (3.30) we obtain

Ae = d, =247 2 F}%.{n,

—PTAﬁ p{? (3.44)
xt  Fxe 7 Xt Xt

2 JXKXJ (7 %7? }a.§BKXé —2<%?Xt> §4 Qﬁ-?}a.ngB.Ktiga

We recall that A= has the same sign as %, (see 3.17)
Ryt Byt



The particular case A = A =0 leads te.{3.38). Sinece
' "Xt Xt
(3.44) all the functions without X and N~  are independent
Kyt Ryt '
of (L, Ql) the relation (3.44) with (3.38) imply
;\? 42 <A’ ':k* >' {77’9 g}ae%PTBk‘ P}a=
Xt "Xt v Xt
(3.45)
i1 ~ a a
=>LK +2</\K > $72F] .§BK
Xt Xt * Xt
TE.. & and P\§ are both negative then from there results
i . Xt Xt "
A?' = AK . If both KK and ‘kﬁ are positive then
Xt v Xt Xt Xt
W . a T a 0y = 9 a a ¢
A ez §37 95 F1%p {Bz 1%m)=), (217 %F (s, 17 (3.46)

Xt Xt Xt Xt

By using relation (1.21) for the positive value of plastic,

(3.46) may be written in the form

(ap ..Ly+bg 0 +cg ) (1+2 §5F5’z>3’§a.PT§BR %)=
Xt Xt Xt Xt (3.47)
=~ ola a
=(a, Lytb. g e, ) (142§ TLF{E g 19
Ree 1 Bxe b EByy Kyt
there (Ll,é l) is arbitrary but defining a loading process. If
1+2 {ﬁ'%7?§a.§BK ga is not zero then c{xﬁ = kK , when
Xt Xt Xt
n
}\K Y 0, with
Xt
L =(1+2 { 0% % pTyme 1Py /142 (WO, T2, 12
K i K
Xt Xt
S ~ "o
independent of (L, 9 ). We have A"K‘ - /\K if both Aw  and
Xt Xt Xt
A, are negative. Therefore  =1. Thus we obtain from (3.48)

KXt



that the functionB
= K
- Xt "
the plastic factors AF' and A:?
\

Xt s

satisfy (3.38) too and the equality of

Xt

4) Since the corresponding Wa v, are-equal by (3.1} the
evolution functions that enter into equations (1.8) and (3.5)
have the same values, i.e. (3.40) holds.

Remark 3.3. The t.e.v.p. equivalence of KXt and th impose

the restrictions (3.36) on the symmetric parts of the functions

A and B . Their skewsymmetric parts get into (3.37) and
Kxe Kyt ) ) |

are subjected to the restrictions (3.38).

Remark 3.4. If lﬁ%%?fé Sym then (3.38) holds and the

actual rate of the orthogonal transformation P(t)=§Xt K;i is

given by (3.37) without any conditions imposed on the skewsym-

metric parts of the functions A and B
Kxt Ky

\

J
/

4. THERMOVISCOPLASTIC Bero— ISOTROP IC BODY WITH

Xt
INSTANTANEOUS PLASTICITY

D.4.1. The t.e.v.p. body 8 is X -isotropic at X and at

Xt
time t if QKXt and KXt are t.e.v.p.-ally equivalent for all

Q € Orth.

T.4.1. If B is a t.e.v.p. isotropic bodv at X and at time

t then
1) The evolution functions A and B are such that their
K K
Xt Xt
corresponding functions Ak and Bk respectively
AT, 8, L F)=2, (3,6, L) | (4.1)

Xt



are isotropic in their tensorial arguments, i.e.

L (QF G ek, (‘)FD)--OAk i,6,4FP)a (4.2)
for all © € Orth.
2) The thermoelastic constitutive function hK is such
Xt

that the function hk is an isotropic mapping in its arguments, i.e.

h (ac®Q”, 0, &, aFP) =oh, (€%, 0,4, 7P) 0" e
for all Q¢ Orth with
=% TF% T | (4.4)
3) The functions & ;o My and lK are such that their
Xt Xt Xt

associated functions ‘Qk’mk and 1k are lsotropic mappings, l.e.

F orat, b, d,orP)= % (F,6,4,7P) (5]

7]
k k

D.3.1., by using the assertions of the theorems T.3.1. and

T.3.2.: Ore get

o = : (4.6)

QKXt Xt
The relation (3.36) written for the two configurations

=QK and K give us

Xt XE Xt
P s T o e~ T S
Q§AKXt<w,0,d>§ 0 —{Afxt(g.ng 09,0 (4.7)

and one similar relation for BK since the theorem T.3.2. holds.
Xt
1
By using (3.37) in which the orthogonal transformation KXtKXt 0)

nmust be constant we have



{QAK (in\l/&r&)QT”A“l‘(’ (Q jTQTIOIO()ga—F

Xt Xt (4.8)

" T i a
+ <A, > $OB.  (F,0,0a-B- (QFQ,8, «£)%3%=0
Ket % Kyt Ry G

Since KXt depend on the history up to time t of (X, ®) and

»

it is independent of " (L(x,t+0), 6 (X,t+0)) from (4.8) we obtain

the connection of the skewsymmetric parts of A (and B res=
Kt Ryt
pectively) with Aﬁ (and B respectively). Thus the evolution
Xt Kyt |
functions AK and B are changing by this rule
' Xt Xt
o T =2 i
QAK (d,6,)0Q =l (QiQ™ ,6,«) (4.9)
Xt Xt
when the c.l.r.c. th is replaced by KXt:QKXt On the other hand
if z=(7,8) ¢ Sg (L, ) then
Xt Xt
ot 7 7 s T \
I % (Ji, 8,4)=0 G%>cf? (QiQ™, 8,L) =0 (4.10)
Xk Xt 4

gince ‘"T.3.1 holds.
Already the reference configuration has fixed and by using

the representation (1.16) and the formulae (3.1), (3.11) we have

A, (X B o, V=R (T 8 ,oL L, FD ) (A 0a)
Rt Byg Rye' kB Kyy et Exe
and .
Az (G ,0,d= y=a (0%, @, 6, ,qFR ) (4.12)
Py - e Kepo K Rt Kyt Bxe

From (4.9), (4.10) and (4.11) it follows the isotropy of
the functions Ak and Bk with resmect to their arguments (ET,Fp),
i.e.

QAk(ﬁ,e,x,Fp)QT=Ak(QIQT,O,A,QFP)

for any pair (6,4) and for all orthogonal mappings G =



3) By using (4.10) with (1.16) one gets the isotropy of

the scalar function ﬁy with respect to (ﬁin), i.e. (4.5). Star-

A

ting from the equality (3.40) the isotrony of the functions lk

and mk also result.

2) Finally we discuss the property of the thermoelastic

function tht when the body is K e

and KXt t.e.v.p.-ally equivalent configurations corresponding to

- : 7 =NW
%t isotropic. There are th QK
the same process (X, #). Therefore the appropiate thermoelastic

constitutive equations are

Tg =hg (€€ ,emx,t), o5
Xt Xt Xt Xt

and

, 0, 1), « ) : (4.14)

with the Cauchy-Green right thermoelastic corresponding deforma-

tion tensors

e e T e e T e

C= =(F= ) F= and C =(F ) F (4:.15)
Bpp  Bge " R Ko Bpp By

From (3.11) with (4.13)-(4.15), (3.10) we obtain

hy (0ck ', 6, dg I=oh, (¢S 8,4, 10T (4.16)

Xt Xt Xt Xt Xt Xt ¢
If we rewrite (4.16) in the form (1.16) it results

n (0c®oT, 6,4~ ,FE )=on (c%,8, « P ypT (41

) e = FTTR A = ey K "R

Xk Xt Xt Xt

with (3.12) the last is nothing else than (4.3).

P.4.1. Let B be a thermovisconlastic KX -isotropic body.

t
Then

~/
1) -Theve is-d c.lieirs, th such. that

) (4,13



Fo =Vy & Psynm (4.16)
Xt Xt
F% :Eiug : (4.17)
Xt Xt
with
S
R=R} R§ (4.18)
Xt "Xt
and
To o 'opl ot oo @ )T (4.19)
Xt Xt Xt Xt
2) The functions Ak and Bk réspectively satisfy this rela-
tion
_RP ~ RP
By QI 07,6, ,QuP)=0a, (I, 6, «,uP)QT (4.20)

P
for all Q€0rth; where JTR denotes the tensor

T ~T ~
) I ®R )= TJu? R (Aol
bid; b5 o Xt Xt

3) Thermoelastic constitutive equation relativ to %%t be-

comes
J~ =h (8%,0,« RUP) | (4.22)
KXt k

with

) (4.23)

Proof. We can pass to the configuration th from th by the

local deformation RS & Orth
KXt

. =r® x (4.24)
Xt th Xt

as follows from the definition D.4.1. Thus from (3.11) and (4.24)
we obtain (4.19). Therefore the current thermoplastic deformation

e
corresponding to KX will be given by

s



i K (v ¥ (x))7=rS W D (4.25
g Xt URE Xt
ot
with R introduced by (4.18), and RPY ¢ Orth, P e Psym the ten-
K K x
Xt Xt
sors from the polar decomposition of F%
Xt
The current thermoelastic deformation corresponding to KXt
will be equal to
e y ~=1 _e e T ..e
Pg = V%(x,t)cKXt—FK (Rp.~ } =V (4.26)
Xt Xt Xt Xt

where V§ is the left thermoelastic stretch tensor. In the fol-
Xt

lowing picture there are ploted the above mentioned confiaurations

and their corresponding deformation tensors:

%

Ky =

ruf

~
Kxs

2) If we put in (4.2) Q(Ri )T for Q we obtain
Xt
p —
a7 07,0 ,4,00P) =0 ®P) A (7,6, «,7P) RPQT | (4.27)
since
Q(R§ )TFE =QU§ ' (4.28)
Xt Xt Xt
and
RP )T ~ rP QT= ‘TRp QT (429
Q(Rg Ik TK @y )



By using the isotrOpy‘of the: funetion Ak in the right hand

of (4.27) we obtain (4.20).

3) If we use the thermoviscoplastic eauivalent configuration
~J

th then
Ty =hy (3 10, Ao )=h, (CZ By K GER ) (4.30)
bo e - Xt Xt Xt Xt ¥t s
From (4.16) one gets
g =g )TF§ = (Ve ) 2=p® (4. 30
Xt Xt Xt Xt

By using (4.31), (4.17) the relation (4.30) becomes (4.22) with

PRT,
0<K K
Xt Xt

Remark 4.1. Here i%t is the local current relaxed configu-

ration deduced by a pure elastic deformation from the actual one.

In such way the case considered in [11,15] has been ocbtained.

P.4.2. Let B be t.e.v.p. K t~isotr0pic body with all cons-

X

titutive and evolution functions satisfying the temporarly inva-

riance condition, i.e.

f (M)=f (M) (4.23)
Ryt Ry
for any t,t’ €R and for any M in the domain of the, function fK
Xt
Then
1) The functions A and B are isotromic in Piola-Kirch-
: K .
Xt Xt
hoff stress tensor, i.e.
P -~ T
Ap (Qi07,8,0)=08, (4,8,4)0Q (4.24)
Xt Xt

for all - Q€0rth.



2) The thermoelastic function fI< is also an isotropic
Xt

function with respect to the right Cauchy-Green thermoelastic

tensor, i.e.

fo (00%0%7,0,0=08,  (v°, B,)0" (4.25)
Xt Xt
3) The yieeld function ‘¢K and the evolution function
Xt
mK 7 lK are isotropic scalar functions, i.e.
TXE Xt
£ QTQT,0,0=% (7,6, (4.26)
Xt Xt
4) All the constitutive and evolution functions are indepen-
S p
dent of FK

Xt
The proof draw immediately from T.4.1 if we observe the

independency of FP of the constitutive and evolution funétions.

It follews

~7 ? -\-]' —— o -_l
oxr
P - p
fk(M,}"K ) fk(M,FK ) (427

Xt Xt'
from the temporally invariance condition in which has been used

(1.16). If we take to for t’ in (4.27) the independency of rP

results.

T.4.2. Let B-be t.e.v.p. Ry ~isotropic body which satisfy

the temporally invariance condition.
Then
1) There exists a c.l.r.c. iir deduced from the actual one

by a pure elastic deformation and such that.,

2) The deformation rate is additively expressed

D=De+Dp (4.28)



L ~l, 8 ¢re e
D= BRI Bt FufuS (R (4.29)
Xt Xt
of the rate of thermoplastic strain
DP={FP (P )y S (4.30)
RET RE

3) The thermoelastic constitutive equation is an isotropic

v . 3 : e .
function in its tensorial argument B, i.e.

0 e =hy (B, &,4) (4:31)
Xt Xt
and
e T & A} e T
hy (0B7Q",6,4)=0h, (B%,8,«)Q (420

for all Q¢ Orth.

4) The constitutive and evolution functions are independent

of FP
KXt

Proof. In the hypotesis of this theorem T.4.1 and D.4.2

hold. So the existence of §Xt such that

WUx,t) e K =F% =vy =V EPpsym

X Key  Kgy

, ~o e -1 .
has been proved by P.4.1. Therefore K= (V) % TX(X,t); this means

NS
that the configuration th is deduced from the actual one by a

pure elastic deformation.

The isotropy of the functions hKv 5 AK and BK with

Xt Xt Xt
respect to their tensorial argument has been proved by P.4.2.
-~

The thermoelastic constitutive equation (4.22) relative to Kot

becpomes (4.31) with hg lsotropic in B®.
Xt



These functions will be symmetric valued with their appro-

piate representation. For instance the representation efil
Xt
is given by

—~
A, ., 0,0= YGF ),0,H1+¢ (50, ),8,0d 4+
xt Byt T Ky f1 Ryt Kyt
(4,33

o T2
+ %Z(j(JlKXt),O,m)JIKXt

where j(j ) denotes the invariants of Ji .

Therefore QTﬁ has the same principal axes parallel to
Xt
those of B® or ve.

From (1.15) the expression of the velocity gradient

L(x,t)=§§ (xS )“1+F§ %§ (¥P §7L e gl (di 3y
‘Xt Xt Xt Xt Xt ‘Xt

results. We consider in the second term of L the evolution equa-

tion (1.17) for rP

K

Xt
T TR TN T (A (@ 0,00
Xt "Xt Xt Xt Xt Xt Xt
‘ (4:+35)
LA > B (T 0, 0) ® HTwS )T
Xt Xt Xt Xt Xt
By using the isotropy of A and B ;, the temporarly in-
' Kxt Ket
variance condition and formulae (4.19) from (4.35) one gets
B0 i _)—l(FE ) 1=
Xt "Xt Xt Xt
(4.36)
=vo{ay (Tg ,8e)+<A> By (Fy 603w
Xt Xt Xt Xt Xt

Since A% and BE' are isotropic we obtain that they have
Xt Xt
the same principal axes as N ;, as also has v€. Thus the
Xt
nultiplidcation of v® with Ap.  and B?%t respectively is
Xt Kt



commutative; so T and (V in (4,36} canecel. Thus- . (4,36)

becomes

(4.37)

=Av (G ,@,o()+<?tK> B (Tg 40,K)
& A Xt Xt Xt

Concernina the rate of FE we state that
Xt

g FE (F

Xt - PR % ek vt Bxr Byt Xt

=

(4.38)

D, l)+<A_ 5 B ( Ty b, )
4 F 7 ' 4
Xt Xt Kyt Bye K

or

]
FL,

(e B A+<A > By (Je 6, o) (4.39)
Ryt Bxe Ryt

= AKXt Xt e B

since F% is related to F§ by (4.25) and the function AK
Rt Xt Xk

satisfy the temporally invariance condition.

The first term of (4.34) may be calculated by means of

Feyr =V as
Kyt Rxe
k% )TI=RS (&2 ) TS vs 7!
Xt Xt Xt xt Xt Xt
(4.40)
= “é+F% s 1t
Xt Oxt
The relation (4.34) with (4.37), (4.39) and (4.40) becomes:
Lix, t)=Fy (F% )~1+F§' (¥R 17 12 s, ) 0P (e (4.41)
Xt Xt Xt “xt

By taking the symmetric parts of (4.41) the rate of defor-
mation is additively expressed in (4.28) by means of the rate

of thermoelastic strain (4.29) and thermoplastic strain (4.30) =



In - coneclusion the concept of K. ~isotrony leads to the

Xt
isotropic constitutive and evolution functions in the pair

e \p f“l p 1 “ = | . .
(V7,F¥) or ( 4,F") respectively. If we add the temporally in-
variance condition they become isotropic with respect to their
first argument. When we supnose that the constitutive and evo-
lution functions depend on FP only trought its positive-symmetric
part we obtain the same.

In this last cases there exist a c.l.r.c. th deduced from

the actual one by a pure elastic deformation and such that the

rate of deformation is additivelv expressed by means of the rate

of thermoelastic and thermoplastic strain.
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