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ADDITION OF CERTAIN NON-COMMUTING

RANDOM VARTABLES

By Dan Voiculescu

The non-commuting random variables in the title
P ‘

can be illustrkd by the following exanmple.
Let G be the (non-commutative) free group ohn two

generators and let u, (J=1,2) be the unitaries in @%G)

i
correaponding to left translation by the generators and con-
gider € ¢ gig) the function §(g)= %k? Let further Xj be
éperators of the form ij fj(uj);Tbe operators Xj nay be_
viewed as “random variables™ with moments <X§ (3 , §> ,or
equivalently with distributions given by the analytic
functionals /u;j where ,ﬂj(f):: <f(X3)§,§> ;Wi‘ch thege
conventions, the distribution of X1+X2 depends only on the
distributions of Xi and X, and the aim of the present papsr
is to explicitate this relationship.This may be viewed ag

a non;commutative analogue of the addition of independent
random;variables.Indeed if G in the above example is replaced
by the abelian free group on two generators, then we have
preécigsely the usual situation of independent random

variables for which addition means convolution of the dis-
tributions; ’

In @d}, where we began the study of this kind
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of pon-commutative independence of random variables, we

7

constructed a certain functor from real Hijbert spaces and
cpntractions to operator alé@bras with epecified trace states
and unital comﬁletaly pogsitive maps.This functor maé be re-
garded ag the analogue in our non-commutative framework
of the functor which associates to a real Hilbert space the
L“’walgebra with reépeot to the gaussian measure on it with
the trace state corresponding %o this measur&lﬁelated to
this we also obtained the corresponding central limit theorem,
the limi% distribution being a certain modified arcsine law.
In the commutative situation,addition of randon
variables corresponds to convolution of distributions, which
in turn corresponds to addition of the logarithmg of their
Fourier—trapsforms (near the origin). In the present paper
we exhibit the analogue of the logarithm of the Foﬁrier
transform for our noncomuybative situation;lt ig obtained in
a rather different way; For the distribution p of &

random variable congider ite Cauchy transform

G(z) :Siﬂ—i%
By
-3

- i
G(z) = 2z “+mg2 THmsZ THeees
where the mj are the moments of the random variable.Then

there ia a series

szi(z)le(/z)+329ﬂ ) Z+R5(F )22+....



guch that for

K(z) =2+ 3@/« (z""l)
we have
K(mwgww)ﬁ 7
G(z)

The geries .f/4(z) is the analogue of the logarithm
of the Fouriler transform;Thus %, /H//“z/)“s are the distri-
butiong of Xi’Xg and X1+X2 in the example given at the
beginning; then we have

Rpg(a) = K2 Ep(a)

This giveg then the poggibility of computing the
Cauchy transform of A5 and then /g itgelf.,

If our non-commutative random variables are seli-
adjoint then their distributions arve probability measures on
R ;We gtudy alao the analogue of infinitely divigible
meagures and of semigroups. We prove that infinlte divieibility
of VAT - the present framework is equivalent to ﬁhe reduirement
that SQfa (z) have real coefficients and an analytic coﬁé
tinuation to the upper half plane such that

Inz > 0 =2 In \/’R/t (z) 20

For a semigroup of measurag (aﬂt )t?% 0 let G(z;t5 be fhs
Cauchy-transforn of /{t.Then G(z,t) gatisfies a quasi-linear

equation of the conservation law type

A (z46)+ 96

$ G ,t} =
o S5 P (6t = 0

where ? :-fE/u .Thig equation may be interprated as a sys-



el

tem of two quaailinéar aquations for a and lts Hllbert-
trangform.

The paper has four sections;

Seotiob 4 ig devoted to preliminary material;

In gsection 2 we obtain our main result about the se-
rieg 5%/% which gives the gsolution of the addition prob;em:

Section % containg various résults about the addition
we are studying in the self-adjoint cage i;e; tﬁe digtributions
are probability measureg on K.

Section 4 deals with infinite divisibllity and semi-

groups.



8 1
Thig gection contalns ﬁreliminaries about free
families of non-commutative randommvariaﬁles;Reduced
C*’«algebraic free producte, tbongh conceptually related,are
not included here, their role being reduced to a minimué in
the present.paper.
We begin by recalling , in & glightly adapted version,
facts from § 4 of [ﬂo];
Let (4,¢) be a unital algebra over € together
with a gpecified state ¢ (i.e. a linear functional
‘(N.A"*“> C guch that ?(1)21);An glement a € A will
e viewed ags a "random variable' the "distribution™ of which
is the functional At Cx]— ¢ given by
pa(i)mi)f%ﬁxn): Y>(an);1f A is a Banach algebra: and % ig
continuous then /Qa extends to an apalytic functional such
that /Wa(f): (f(f(a)) where f is a holomorphic function on
C ;In cage A ig a C¥ ~algebra and ¢ ‘is.a ¢ ¥ ~algebraic
state (i.e; ¢ ig also positive) then for selfadjolnt a,the
digtribution /fa ig a probability measgure on R with

compact support.

1.1.Definition.((21)).Let (4,¢ ) be a unital algebra

over € with specified state ¢ and let 1 € 4 C A(LE I)

\0(&1&2 K an ) = O
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ﬂﬁeﬂ@‘fﬁr Ela & Aj—j m__@h i,l/é iz)}é coo £ in .gqu 03""10 (a:j> _@22

N< 44 noA family of subsets X & A (elements a € A) will

be called free if the family of gubaloebrag AL, gengrated by

{ﬁ& v x (respectively {i,aa?) free.

19

n.2.Troposition ([441) .If {a,b} is a free pair of

B

elements of (4, ¢ ) then fiﬂab depends only on M and f@ b
=% o o

There are universal polynomials with integer coefficients

>

Pn(xi""’xn’yi"“”yn> guch_that,assigning degree § %o %y
and 008 have

1) By 59 homorencous of degree n in the x and ¥ variableg

taken togmethers

(111) Pn(xﬁ,“"7}:0337)]_9“’yyHDZPD(yls““:yn»xipnn,:}fn);
(kv) 2 = {§ : éﬁ[x]-»—w%@:}g(l)ﬂ, < linear{  is

an' abelian group for the op ration

(gg}rg/}<xn>zz>ﬁ< ‘§(X),;.;, "§(X”), fzz & e ?(;f:"’))

A.%.Propogition. There are universal polynomials

Rn(x&,...,xﬂ), guch that considering Xj ag having degrsee J,

we have

e

(i) R, is homogeneoug of desree n;

(ii) Ru(xi,...;sxn)xxn+§g(xi,....,xnni)

i) = (CYREY y(Ehpiis( € B s
= e » @ , ).
R (CE () yeeees K& ))+R( 7 Gl Y £x93)
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v

The polynomialsg Rn gatisfying (1),(ii),(iii) are upique,

Proof.Excepting the uniqueness statement the propo-
gition coincides with Proposition 4.4 of T14].
If'ﬁn are some other polymials satisfying (i)-(iii),
then there are polynomials Hn(xi,,,o,xn),homogenaoua of degree
n such that

i,oao,Rn>

o
and
L
anttr pag - s
Hn (XQ" L ’Xn>~~>\n+l_1n (.l{ﬂ‘ss s & 0 ,J:n”;l)

Then (11i) implies H 1is linear,so that

H (Xﬁ.,....,xn):}(

n n"

QeE.D,
For a linear functional % : (@ [x]—C with

f(&):i, we shall write Rn( § ) for Rn(.f(X),..., g(Xn))f

Note that if f/? extend to analytic funchionals,

then 'géﬁ ? also extends to an analytic functional,lndeed

if §,9 are analytic then it is easily seen that we can
fipd C*-algebras with specified states (A39 Yj) (§=1,2) ‘and
e et (e i = ! ~ — - an P ning 1%
..elements aj €A, such that ¥ = /(a'l’ 7’/’&2 and forming the
reduced free product (4, 7’1) %G(Aa, f 2) (see [11] 8§ 1
we have §£Hfz = /“( o(a )+ & .(a.) which is anp analytic
; e ar=g

functional.

Similarly,considering self-adjolnt elenents it is

gagily seen that if g/ ? extiend to compactly supprorted pro-

bability measures i o d
| y maasures on R then gﬁ‘}? also extens to




B

a compactly supported probability measure on

The opcration E} for analvytic functionals or compactly

f"

gupported probabllity measures on z}{ will be called fres

convolution, abbreviated F~convolution.

Let we algso recall some facte about a certain ¢xtension
of the Cuntz-algebra 0O (see (5] [Fief, {9l 9] ) g in (7D
thig extension may be realized. on the full Fock-space

roren e ®

2 ;i ® ¢ 1

Ty €19 G 8

my 1

where Hn ig an n-dimensional complex Hilbert space with an
ort‘norgwmcfbasis es,l,...,en..']?he algebra we are interested

£ 5 .
insis the C*-algebra ';?n generated by the left creation ope-

rators f (A€ 3&4)

J
«
gaf C . B S SCQJ(ﬁ)
Congider also the gtate £ on Z’ given by

6] 4]

g, (X)= (X1, 1> =Tr(X (I- {n F*..."VD(‘;”Z)

As explained in ([11] § 2 or [2] ) the pair ( E é n) nay

n?
be viewed as the reduced free product of n copies of
( éfig & 1> Thig implies that a family 85,...,8, wiere

as cc(()c? ig freg in ( £

n n"g‘n)'




g2,

In this section we obtain our maln result concerning
the addition problem.We first exhibit certain Toeplitz
operators for which the addition takes a particularly simple
forn;”e solve the addition problem by shéwing how one finds
such a Toeplitz operator, given its distribuﬁiﬁn;

We vae¢ throughout the definitions and notations

introduced in § 1:

2.1.Lesna. In (£ _,€ ) the "random variable"
el el el n ¢

n
# * = 5 ;
X:( €1+..o+ €n>+ °<I+Z_ 4,,_ c<i .._li p;i'._'fi
' =] 1< 1J n el 01 iid
GAQJ £ k
where only a finite number of e . i are non-zero,nas
lol- k "

the game digtributlon as

g0 A

¥ £ _
ng MRS Ml . <L, ~)fk

}J_ o s e Loa e ee ok
k= izélju_n % kK Ya
: 1£3§£k -
Proof.We have to show that En(Xm)z En(Ym)

for all m>0.This can be geen as follows.Note first that

g ( g,cg.f. f. Fwa €. Y=0 whenever p+q > 0 and & _(I)=7.
! p q
i e ; ; .
With this in mind, after expanding ™ and YU our assertion
g w.‘ é M‘h’a
follows from the following remark.Congider ““ - 4
where the gymbols Uﬁj designate either the exponent 1 or

) W,
the symbol % of the adjoint.Then, replacing each €4¢'by

¥
some f&.in cage uﬂjzl and by (& *--'*‘eﬁ)in case a%': s

&

pe ki
it ig easily seen that &, ( ‘ w Jis left unchanged by

4

hese replacements. ' E
QOE-D
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2.2.Corollary., Congider in (:i, £, ) the "randon

A P et T

variableg®

where only a finite pumber of 1 ﬁ?k are non-zero.Then thse

palp  X5.%,5 is free and X1+X2 has the game distribution as

XBO

2.%.Froposition.Congider in ( g’ﬂ, Ei) the "randon

variable "

ER.-
X:€+ K,O( gé

k=0 X+ 4.

where only a finite number of =, 's are non-zero.Then ¥s have

R, ()= o, (e >4

where Rn 1g the polynomial defined in Proposition g s

Proof.Expanding &, (X7) it is eagily seen that
oS iarmmarimaisl 4 o
& 9 :1 4 o, & e @ 5(

where En ig homogeneous of degree n when 0<3 ig agsigned
degree J and

5 ( o 4 ( X

&t e o e = il - b P

ln( i 3 Kn) nt+n TG i
hi i 53 i - )Q'- ;.{ :."‘.F ¢ ®» 6 0 0( B 2 f‘ O( e v e CPC \':.
This implies ‘n(/ X) :n( act T : n) where “n( a0 $ )

ot : -

= o{n+Fn( Qdi"""‘in~i> is howmogeneous of degree n.By
Corollary 2.2 Fn ig a linear function of 0¢1,...., ¢<n g0

that Rn (,‘-’L X)z"( 4



]
finitencss assumptions for the gumg

o

2.4 .Remark., The

B e

appearing in Lemma 2.1.,Corcllary 2.2 and Proposition 2.3

are lnessential.ln fact one may replace ( Efn, En) by

the algebra of formal geries of

E . isg

e
V€ g7 if gl iheng

Yhe form
4 A

3 -y £ F o f e*"i

>
p20,0<qg s N """y 1~°w§q 1q o

P+ a2zl B ' G

and ED(S)::/2 Then in ( g'n,(gn) the statements of 2.1,2.2

X

g agssumption.Indeed the m-th

any finitenes

hold without

2 i
nmoment of
L) =
Ry SR
W Q..:L : t"
| koSgaia

% % “
X:( g 1"{“0 ¢ ot gn>+‘ 0(_! 4 44
k=1 A£i1&n

depends only on « and

Propogition 2%.shows that the connsction between the
nd the polynomials RD in

moments of a “random raviable®™ a
the connection between the mo-

A8

these moments ig the same a
menta of the "random variable"™ X,considered there,and the

"(’mé
our next)will be %o find formulae for

nunbars K oot 1

the nonen
2.5, Leana.Congider in ( égﬁ, él) the "random variable"

P
xs byr 2wy G
k=0

val

of o k's are non-2ero.then we

only a finite nunber

whera

have




.”12...

fela
- = 9
& (X >-~Q”S D) “"’”"‘""“"—'<'7 ‘1., ‘Z@ ot ZK)L]-’;-'l
2 IM{*.L k=0 e

where Res depoftes the residue at zero.loreover the same result

B=0
holdg also in (&4, ) without the finiteness condi%ion on %the
odk'g.

Proof.We have
el
g et 04, £,1)-

=t (X w'n, ¢ D= wﬁm Ir ['Xm.ds g«lj

-+
Using the Helton-Howe formula ( [81,[%]) with the

Jacoblan written with respect to 2,z instead of x,y we have

|
E‘i(}\ )::
= £ g (BB 29 e
C 2 (1) mg A 95 &7

*"”2 i 1 Izl €1

L@l (iz)::
1

=(Z+f(2)) dz A a7

it follows that

€ : (x1) = sl S e

el st ™

- (Fre(2) ™ az=

= : g M(zmi-d(z))m'{',ldz):
i ¥




Sl

For the more general regsult in ( %5, ét ) note that
. ol 3 1 , m'f‘i 1
both £,(X7) and Res. ~—e(z” +f(z)) depend only
Z-TIO It L

on oty -er g Ky, g0 that the regult in (5: ,Qf follows

from the one already obtained.

QeE.D

2.6,Corollary.For the "random variable™
VT -~ 4
K= gﬁ?‘ é
kMO &k+i
: (f” e ;
Ef
in = g1} we have
- = ] 1

o) i} B 3
&,1(X )m /> m! oA 1 Cﬁim

n ranﬁ.»..+mn_:m Sl n

a I 7 PTR | I SO - &

i R (i Mg nm>!

Equivalently,we have

=

T / - ml. o ({ ( ))H,l
i) = il Ry (%
e - Ii =3 &) ¢ o @ i HE o e 8 T W ! 5 i
Dp+Eho+ e o otlil =1 ﬁii. B (m+d hy—s nm) el
HJ}O}_ nu

a..(R (xﬁ,,..,x D)

ProofﬁBy Lemma 2.5 we have

(Xm)zR@sﬁ ww~g-«~z"m"1(1+ ;2; K n+4

T

e

g

and the formula for éq(X“) follows from the multinomial theo-
rem,The gsecond assertion follows from Proposition 2.3,Remark

2.4 anpd Propogition l.5.

QoE.D.
m!
2.7.Renark.The coefficients
“ 7’mwmmm$; i gdeeveny Patrlong—ooomn )1
are integral, gince the coefficient of o T 3
) G " in




P et "
1 . ; f N ;
&q(Xi) ig clearly and integer.Moreover thisg actually implies

ot e

that Rm(xﬁ,.,o.,xm) ig also a polynomial with integer

coefficienta.

2.8.Corollary.Let

T
A= Zfl"%‘ k%?) mjk.fr’l 5’1 € é)l

and let

wranaen

k]

<
k=o &

be a power gerieg with radiugs of convergence f . Assunme f:>§X]{

and let p<8< 1 be sueh that (-8 )" =(i~ § )<f-[Xll. Then

we have

o~ [124]
E(F (X)) = e 5 ek 2 CRLE
2Wi j7l L& k=0

Proof.By the bagic facts on Toeplitz operators (see

fe=s
5 2 n = k ~ o 3 :
[6] ) the power seriecs /%y 2% CONVErges in the open

1{ s O x.+'

P

unit disk %o a holomorphic function having a continuousg exten—
gion A(z) %o the closed upit disk.Moreover we have

Xl =sup {E+A(z)l
\Z\ =f,

and

qup gz”1+ﬁ(z)fzau§ } A- & )"EEQA(Z){ £
lZl -8 1zl =0 $

< ((1- & )Mq~(ﬁw $ ))+sup }%&A(z)sé
‘:}’Jl :::'l.-- S
o

gy e § 9 Iz €S

() CRR A 3 a
gince z+A(z) is harmoniec.

3 ey



il B
If F is a polynomial, the cqna]1iv 0 be ggtablishsd
1s an imnediate consequence of Lemma 2,5. Qur assertion for
general F is obtained by congidering & a sequence of polynomials
which converge uniformly to F on compact subgets of the open
disk of radiuﬁ,?.

Q.E.D,

2.9.Theoren,Congider the formal serieg

g .
G(z):z”ﬂw- ¥ g.z"ami

gl Y
Let further
=
H(2) =2+ h.z™d
j=o0 Y

be such that G(z)H(z)=1 apnd let-

(o2 s A
K(z)=z+ 22 kama+*
J=1

be such that H(K(z))=z.Then we have

R: 'x:i?j(k:;{ g o oo s ’if’j>

€l

where Rj are_fhe polynomials defined in Propogition 1.3,
&
Proof.It is eagily seen tbat i; and kd depend only
on a finite number of gk‘seHencs it will be gufficieft %o

-

prove the ftheorem only for a restricted class of powen
geries,provided for every'n >4, given gi,...,@n,thefe is a
geries G(z) in this class with the given first n coefficients.
Thus it .will suffice tovprove the theorem for

G(z)= g((z-0)")

where 4
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Indeed, gj: élﬁ(XJ) and “‘1”"””{n can be determined so that

ErsoeesBy have the prescribed values.

=) X 3 B , - .
Let | {P*{ Xl .We shall uge Corollary 2.7 with

wh

Iﬁ*(z)xgn( § wz)wgug -z»fn('lm g”iz) where gnf‘{’; has béam chosen
arbitrarily among the possible values;while gn(i«“g;i) ig
defined for {z;({?§f apnd equals O at the origin;Thus, if

0 < §< 1 ia such that (1- & Ve G L e

we have

£n
b ”"ﬂ ﬂ. ( ¥ "'{L 1"(‘:
£,((3-5 )= — S Bl (a2 iy 7D))an
2T i {4 A-§ K=0 ;
Paltaa]
K i s
I_ + O ¢::, -3 '-r/ 'ﬂ‘ Ty X W t“r'\ﬂ A= r"')“| ﬂc{«j.v 6’( '1,\ T o a S-'!T}’t"i ~
184 w ‘L D8 gucn aav 2 “1'},:,.:\) k%{ié De an dna.Lyuilc

)

igomorphisw of the disk {Z }Ez}ﬁiﬁ»} onto some neighborhood

V of 0 Assuming .%};>2?x s [% we choose & =~ ﬁ

and consider [?€ V the image of the circle {z l(z‘ :1~€:}

1

upder %his igomorphism.Define K by
e <
o L W x{
ECg " )=¢ T s Wit 1
k=0
m l % ﬂ.
The inverge of B e o K(2” ) i thdn G(z)s ~——=
H{z)
where H(z) is the inverse of K(z).We have
* -4
g (( Z ~X)
= e £ G g en( ~2)G'(z)dz=
5?’1 1

wer P

awy p

(the final application of the Gauchy formula being for the pary



i
of V boundede by [' ,which contains ~0 and & ‘when |Z] ig
gufficiently big).Thus for

(o)

| L g '"‘*K
| o Q( F‘J
K( Zo) = Zde <.’§.~.. kL 4

the corresponding G(z) is

e e Zé,l(x%g “H

and since 0<j:Rj< £ i(X>""’ SQ(XJ)) our asgertion follows.
Q,Oj'{QDO

D.do.Definition.lf f{ ig the digtribution of sone

random variable,then the geries
o

ﬁﬁ (2)= };Zo Ryn ) zh

jg called the R~geries of /w.
Theoren 2.9 provides a way for computing the R~gerieg
of f from the gerieg
- s
83 """-1. = = S ""‘:L
G(z)=2 "+ :Zﬂ /1(Xn)z B
g=t
Tndeed with the notations of the theorem we then have
(?) T -1 ""l-rn s v f e ine
.f«(z):&(z Yz ~,Thig also solves the problem of computmng

*4é§v%z o1t faeh 51 G, . K.

a’ J
for /%j (j=1,2), then we can find 52/%}(2) and hence also
R ()= R poe R
The K~geries of /'4,5?/1& ig then

K(z)=z+ R (p, tZz’ﬁa) (z=h

j are the corresponding series

so that applying again the theorem we can find

el

a)=sl 2 (p Bp, YDz

N A UL LI e
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In case‘fi ig an analytic functional,the corregsponding

G-geries ig the Cauchy-trangfornm

G(Z)::g 0(/4(5

o
e L.
2 >

In case /f ig a compactly supported probability
7 e :
measure on 53 the computation of /a from G amounts to solving

a moment problem,



STy
o | G

ros
\N

This section is a collection of various facts cop-
cerning the F-convolution and the R-gerisg of compactly
supported probability measures on R .Part of this material
gerves as & preparation for the next secﬁion;

By (P we shall denote the get of probabllity

-

measures on K with compact support.ﬁbr /{@Cp we gshall
denote by L (/4) and n\/{ ) the least upper bound and reg-
pectively the largest lower bound of the support of M o Then
d(ﬁ )zm(/{ )~E(/€ ) is the diameter of the gupport of T
Recall also that
R, (p )= fz d (%)
g /!
Ry(p )= §xPa p (x)-( [ %d a (x))°
2 _ /u e
With respect to F-convolution (F is a genigroup and
OD ﬁ 1 bgenis bR Inte ala that
f,e ﬁl f/ =0f ig a subsgsenigroup.Nots also that
fﬂé?é% ag for the usual convolution ig the corresponding
< e
tﬁahslate~mf/v " UKCP and 35@3 will denote the sets of
. : o _
R~geries of measures fron G and resg CCuLVF]y G? ’
The following two lemmas give estimates for the

<

supports of F-convolubtions.

W oA A oo et

J.1.Lenna.Let y. & OD We have
/44#!/3 e

B e S

(1) MCpa d+Ry (f1) & M [ H g )
m( g IRy ( pp ) % m( /Mﬁ.f«:z)
(ii) ma}q(d(/“ )80 py )) £ d(/v,,éﬁ’im& VE Al ra(p,)



S
ggggﬁé(i) Let (A, ) the von Neumann factor gene-
rated by the left regular repregentation of the free group on
two generatorg G together with its traoe;Let uj(jxl;E) be
the canonical unitaries generating A and let X3:X§€'<uj)" be
guch that fijm f{d (jzﬁ,z);ﬁince ¥ is falthiul M(/%‘) and
Eﬂﬁﬂ452ﬁz ) coinoid@ with the least upper bounds of the
gpectra of XJ and regpeclively XQ«XE
Let GiC: G denote tﬂe subgroup genefated by the
first generator and let § € fg(G) be the function jf(g)x
= 6 gve;SinceA(ui)" hag no minimal projectiong we can find

2y

z 2 :
Q&_G ¢ (G ) - !(G) guch that ﬁ?@@ =1,1im (?@1§;’$O and -

kv

lim <5Xi ? K? ? k>’ =gup Oﬁ(xi)“ﬁ<fﬂ Jis

o
e
Since .7 K g g CGi) w§ have
~
(g W yr P ” = =Ry (M)
Thig gives
il ' " e €3 " ; '_' 2 vl % 7 \ 5
Mm( /44@2'/’{3 ) =sup O"‘(Xﬁ.%xg) 2 éllzism <(L14X2) '?7 - fk/ =
Tor the other inequality it suffilces to replace Xj
bf "“X'e
3 J
(ii) The lower bound for d(fg ﬁ%ﬁz) follows from (i).
The upper bound,with the potatkons of (i) is immediate from

d(/.f{gg{/b_ Y=int [ix,l+:<:2—ﬁft{/£

< inf | X,-61{ +ing X, ~6TW =d (u, )+d(p, )
teR i Le 2 ﬁ1 f% i
5% G



m,.—.—m

TN
\}
\./
g S22
x.}
i\J
=
27N
g
B{;}
N
=
F
) S
N
&
=
TN
>
A g
..§.

=, 1/2
2 7
B0 g;l c(/“ J)>

whegg‘_N(/c{):émax(/m(l;zg )/ ’ [ i (,J; )/) "
Proof.The lower bound for N(ﬁ 69 é?ﬂhq)
follows immediately from the obvious inequalitisg
3 : 2 172 . 1/2
M 32l L B DM e Ry B
For the upper bound we consider G the free greup

on-m generators Gpsee0 18, and the subsets W (1'fg<<m) COon=

e Ioelin: Lk Wy ; A
gisting of words of the forn g;‘ €4 ero with [T S
‘ 1 2 4

3&_ kiﬁ o Lat (A %’) be the von Neumann factor generated by
- the left regular representation of G and Y its trace.Let
further Up seoe sy be the canonical unitaries gensrating A
_and_leﬁ Xj & (u,)",Xj:Xj* be guch. that [, z/M,.Then
we have N(/Mé e ﬂ<X and N(ﬁ? ‘o dyfuﬂ /:;1+nv.+£ //
Let Pj be the ortsogonal projection of f (G) onto
z 2 ¢ '
£ (B.) C 4 (G) and let Eﬁ € é (G) be the function
_§(g): gﬁ,@.Simce
&9 .
(XJ.‘§I§> = ‘(’(XJD“R{L(/“/ Y =0
we have
27 h) E i < & ot 1/2
[| ®y%;CI-, )“ = | x580  =RyCp 0™
and

(I B )X
J(I-P J)=0



D 3 e

Remark that jZ k = PJPK:O so that

Ced G 3 | 20/
ﬁZ{ e %L-g “ij(I—Pj)H )

52 PPl & me [/P X2, I

1€ j€n
Hence we have

] = %.a. '
/{5—5 xj[}{_é ot P PX (1B + 1132:_1 PxP €

J=1
1/2
& At Z Rz(/q ) + max N(/H
g J’
i= 1£€i€m
QQE'DI
We pags now to the R-geries of measures in CP «The
following lemma gives a characterization of the R-gerieg of
thege meagures,obialned as an eaéy congequence of the theory

of the Nevanlinna-Pick problem (see for instance Caly.,

; ; g
3.3, Lemma.Let ??(z): Y an+1zn be a power gerieg. The

-
-

following conditions are equivalent

wy ype RO

(i1 P ié con&erﬁemt for Jz1 < C; C 7>Cﬂ ‘f(E): ?Z;;
and fthere is 01;}~C"1 such that for any Zy,...,%, 6{ } 7Cq s
Iﬁ z 0} ggg; L3 e we_have

# 0

N

;EE“* zjmﬁk y o o §.,§
s - g 5 Bak

n<jren 23 Bcre(zg -0
Proof. (i) => (ii).Let H e'(f ,ﬁét G(z) bve the Cauchy—
trangform of A and consider ags in Theorem 2.9 the geries H(z)

ey

and K(z).Assume K(z)=z+ %(E“J).Sinoe G(Z)=6 z) is convergent in



e B
some neighborhood of 2 we clearly have that P (7) = %T?ZS ig
convergent in gsome neighborhood of O.Remark that
In z 2> 0=» Imn G(z) < 04 In H(z) >
Hence by the theory of the Nevanlinna~Pick problem we have

B(Z )=HZ )

~ NP2 =
o —ZE S5, 2o

1<4£j,k€n 35« ;k
for any ;z! < gty -.Z%, with Im 7;3 >~ 0 and Aseses § 6 0:

If C; is such that {zl_[z[ 2 Cy »In 7 > OfC{H(z)] z t‘:‘ff} Im z>Of
the inequality in (ii) follows; ‘
(ii) => (1) Consider K(2z)=z+ f(%) and let H(z) be

guch that X(H(z))=2z in gone neigbborhooé of = ;By the theory

of the Nevanlinna;Pick problem there exists a holomorphic

function Hﬁ defined in the upper ﬁalf plane such that

Img > O =D 1In H,l(z) >0
and which takes the saue values ag H in a neighborhood of “9;

This proves H, 'ls actually the analytic continuation of H to -

1

hag the expansion at #o
H(z)

the upper half plape.Then G(z) =
of the form

G(z)xz"1+giz“%f. |
and since Inz >0 = InG(z) < 0,G(Z) G(a) and G(z) ig holo=-
morphic in some neighborhood of oo ,we infer that G ig the
Cauchy-transforn of a measure in OQJ

OED
The last topic in this section are certain affins

endomorphisms of ( &?




i

Congider firat a formal power geries q/(z)az+

o
4 :Ei anzn and let 9 Ca)= 1 S and ¢ (2)
n=2 ' Y (2) Z

the serieg such that YJ($(z))zz,Than with the notations

of Theorem 2.9 the map at the level of G-geries G—> ¥YoG

1

corregponds at the level of R-series,where R(z):K(z"1)~z" t0

B —> . Rof 4-? . If the coefficients of the G gserieg are
the moments of a random variable,then we have ogtained an
affine endomorphism of the semigroup of distriﬁutions of
random variables,
Tet now G be the Cauchy transform of some measure
/u € Op. Agsume W ig holomorphic in sonme neighborhood of
({,\&)(){Ofand mofeover
v(@)= Y(z), PO=0, ¥ (0H=A
Inz >0 =0 In wp (2) >0
Then Yo G is also the Cauchy transform of a meagure
in 07,wbich we shall denote T(ﬂy )ff ;Iﬁdeed

In z >0 =>In( Yy e G)(z) < 0

(po O@=(p e O

and y o G hag the corresponding behaviour at = . Thus

s R )f# jg an affine endomorphism of ( 07[9 ) i.6. we

have
2y (e d pe ) By (=
oy I ) H Ty DB p )
Remark algo that

TP ) o Py, )=T(p, oYz )

-
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§ 4.
This section ig devoted %o infinitely divisibie
medsures with respect to IF-convolution and to F;coﬁvolution

genilgroups.

4,1.Definition.A measurs m € P - ia ealled Beippio

pitely divigible if for evéry n € M there ig Mt e P
guch that

/“l 55 f('l/néy“ - ég/{i/n
b &

n-sunmands

4,2.Lenma. Let ? be a holomorphic function in

[

et

some neizhborhood of CCA\R iV, {of guch that
p@= ¢ .
Inz 20 = In ¢ (z) 20

Then % € CR 03. |

Proof.We shall prove that condition (ii) of Lemma
5;5 ig satisfied;We choose Ci great enough so that f be
defined for [z}< Czi and,
sup ] ‘{0' (z)['( 2 C?‘L

lz‘,dcml =
1

For zi,;..,zm @{EZG d:([z\ 7 CpsIn z >0 % we

nugt prove that |

B= i i > 0
- ENE |
T8 2 a Ve

A . a
1€ j,k<€n



mgag

Recauge of our choice of Cl we have

and hence

—tlmes

the mXm matrix with all entries equal 1, £R denotes

the Hadamard procuct and

5 @z P
d S 44 jk<n

i k

4
5 - - ) - . 4 )
Since Imz » 0 = In ¥ (z7") &£ 0, by Nevanlinna-Pick we have
é&xChuince the Hadamard product preserves positivity we infer

B »0, the desired conclusion.
Q.E‘D.
ol

4,%,Theoren.A geries gf(z): ZE; a 29 ig  the
et el

divigible meagure in Cp,if and

R—series of an F-infipitely ¢

b 2

only if ‘f ia the Taylor series of a holomorphic function in

8018 nelvﬂbormood of Qﬁ \3R)QJ {0?_gpch that

e

P(D= ()

Inz2 0= Imfp Cz)e> 70
Proof.The sufficiency of Ythe condition follows from

Lemma 4.2 applied to t ¢ (% 7 0

Concerning the necessity it is lmmediate that ?ﬁ is

holomorphic in some neighborbhod of O and ¢ (Z)="%(2),80

% ;
what must be proved is that has an analytic continuation



o7
to € \TR agnd that Im 22> 0 => "In ‘f(é) - O;

Assﬁme s is the R-gseries of an infinitely divisib}@
neagure in (¥ sthen 1 v for positive rational t ig algo in
R P, vsing the characterightion of X iﬁ LennsE ot ke i
dengity of @Z in K we infer t? is fhe R;series of a measufe
e € * for every t 2 O,‘u;é- R ;Cl.early fhs = & aéd

fe & fa = fees - Consider K(z,t)=z+t ¢ (70) ,H(z,t) such

1
H(z, %)
~the Cauchy transform of [t «It will be also convenient to

that K(H(z,1) ,t)=2z and G(z,{)= so that G(z,t) is

. ~ -1
congider G(z,%)=G(z

e 5 )
With these preliminaries settled, the rest of
: the proof , which is rather long, will be divided into

% gteps.

Step l.The geries ?9 ig the Tavylor serieg of a

holoﬁzorvphic function in some neighborhood 53‘.’ (‘f \R)U{O/”,
Since G(z,1) is the Cauchy ~transform of /w,we inw
fer that ¢ is analytic invsome neighborhood of O;Hence there
is a neighborhhod of 4o 'where K(z,t) for O£t £ 1 are all
univalent;
Let a > O be such that supp M, [~a/2,a/2 ] and
hence by Lemma 5.1 supp /%*C. [:-—a,al for 0 £ t<£4,.This implies

[6(z,0)| € (inf [z-x] )%

-a £X €8
or equivalently

Ia}(z.}‘h)[, = (inr (z “g:;{i)“ﬁ‘

T
RS 8

'y

Ay Ty



28~
for 04 2 1 signoe ke Bana b oite {5‘(*)} Sy
Qr £ t £ 41.Hence the functliong W cetel Aare
N A R
un1¢oruly bourued on Gonp&Ot gubgetsg of@:(ﬁlﬁgi«a 38 )
Since G(.,t) is the inverse of K(«,t) in some neighborhood
of ro ,independent of Oéfté”l,lﬁ is easily seen that
e : ar l :
t —® G(.,t) is continuous when the G(.,t) are considered
with the topology of uniform convergence in some neighbor-
hood of O.By the uniform boundedness on compact subgets of
¢» we infer that ¢t — G(.,t) is actually continuous
for the = -z topologzy of uniform convergence on compact
gubsets of w .For ;o e C\R letr’ be the segnent LO ;’]
and let K< W be a compact conveﬂ neighborhood of f’
Then, glven § > 0,there is £ > 0 such that
[G(Z,0)- g]<$

[ -4 Gz, 0-a]<8
dZ

for g@;‘ K and 0 £ t£&. ,This giveg
“ -
{G( g’i‘,w-«c}( Z ., e (zﬁ ~-Z)] < $1%, g

L4

[€C 2,,0-0E ) 7 - £) 1Z,-Z. |

{\

.Lf §”§'c L Bnd 0 e [For 5*”1,5{.#) isg unlvalfn“c
in K if 04 t £ € .Let K, < KX be another conveﬁ compact
'neighborhood of /7 and assume
S SR “3;.&]

5K

1
2.8 CN\k

T [ C(Z )= B ] <6 gop: £ € © K implies,in

e



~29.
view of the fact that (G(.,t))(2 K) ig the beundary of
~S : fd =
(G6e; 8)I(R) that (G(. ,5) (K 2 Ky for O £ t<€ £ .Hence for
/ . '
0L 58, {he inverse function of & (.,%t) which in gome

neighborhood of O isg

4 z
q‘,’s) 'fbmz‘f)(z)

K(z"~
hag an analytic continuation %to some neigbborhood_of r7 ;The
polnt 7;0 GKK:\%i being arbitrary,we infer thét % hag an
analytic continuation to some nelghborhood of ({7\%{>ng&f‘

An immediate consequence of Btep 1 is that H(.,t)

Gt o8 o, 7 3 el
19 injective in some neighborhood of (f\&)u%mf.Indeed in

somé neighborhbod of ¢ we have
; @

sl
H(z, %)

z= H(z,t)+% i (
and since ¢ is defined in some neighborhbod of @7\¥Uif~(o}
and (H(v‘.gt))(‘(ij \R)Y< €\R the équality will hold for gz
in some neighborhood of <¢7\§2)£}{°af iunplying the injectiviily
of H(;,t),

We define jzt-bj
5 £ {H(Z,t)}z&‘-(f G R - O}
Clearly Jzéci {z eC {Imz'> O};

3tep 2.We have

-Jzt: {z [Imz > 0,Tu (z+% ¥ (z”i)) > 0 },

Since Im z>0=> Im H(z,t)> O apd

2=H(z, )48 § ( ——m)
we infer



“QW:(: {z l Tz >'O;Im (z+t ¢ (z"i)) } 0 f.

Por the opposite inclugion we ghall gtudy the differential
gquation satisfied by H(zst);

For =z ig gomeé neighborhood of ¢ ,which may be chosen in
an uniform way provided t remains in some compact set,we
have

H(z+t ¢ (2~ ) t) =2

and hence

éLgéA%t i g ),t) f(z”i) “‘H (z+% ' (z"i) ) =

o g

Replacing z by H(z,%t),for each T >0 there is a neighborhood

VT of e guch that

:H (75%) ‘(’(»»-ww )+ wgﬁ (z,t)
(245) ¥t

fop (a6 & Vi ZfO,QJ;Like in Step 1,Lemma 3. 1 impliesa
that the gupports of the Nte are in some compact subgset of
R while 0<€ t £ 7,which easily ggives‘that the H(.,t)
for 0 € t < T are uniformly bounded on compact subaets of
€ \R , which in turn easily gives the continuity of
[Q,T]E>t”mw-~4> H(.,t) where the H(.,t) are considered
With thé tgpology of uniforn convergence on compact subgetsa
of G:\‘mi ;Ths gamé conclugsion then also holds for

By
«miL-,, i We infer that in the equality

<-*mm%z 5 ¢ ( » 1 - Yat=H(z,t)~2
H(z,t)

both terms are analytic for z & C \\Ei and hence itg



S
validity for z in some neighborhood of oo implies its
validity for (z,t) e(C \R)x[o =) .This in turn implies the

gxlgtence of aaﬂ (z,8)  Zor (zs4)€ (Qf\z’?«)”\[o"*’) and we
’ t

have

EF o >H
2y B yh)=0
= (z,8) ¢ ( H(z,t))+ 5 (z,%)

s = : A ) “ :

for (z,t)GGtV@{ X [b;ﬂﬁ JAg ig well-known ([4]) for such

quagilinear equations H(z,t) is constant on the characterié~

tic l.e. on ecurves gl ( ~w~1-) with z(%) € dﬁ‘\ﬁi for

at H(z,t)

0<%t €T and which therefore are straight lines.Thus

H(z,t) is constant on {(z +8. 9 (2 "1) t)l 0£ % <’Tf rovided
4oy JLind i) 'O ( uo 3 R - p OVLIA&C

zo+t (z;l) does not cross the real line,i.e. provided

Im(zo+t (f(zo"i)) doesn't change i#s sign.So,if Im B >0,

""ﬁ- : 1 . '-"'j.
Im(zo+t P (zo )) >0 then zO:H(zo,O)zH(zo+t f(zo ),t) and

hence zoé?Jzé,which concludes Step™ 2.

M X, o

Step 3.1f ? ig not a constant fthen o
Car

f-ze MR let ’

_m ¢ (hH
In 2z

so that

T(Z):

R ={ae CR|1mz2>0, M2) < e

We have

sadl
- z
1linm IZ‘ET(Z)z lin In ¥(z ) =
Z = R 7 ~>eo Im z_1
Im z%0
A Tgo (% e T G L )~ _f(Re 2 ))
g"‘wo Im 'é ‘2;.«-?0 Inm g

InZ 0 Ing £ 0



~o=
=1im IH)( ?(Reg +1 Img)"“ lf(R@ g )
£—>0 Ing
’ Img;é 0

=lim Re %p (“{ez +1 i&;nmg ) =Re (f/(O)':.RE(,M’ ) 0
?1
§)~’

Hence there is C 2 O guch that that for zé G\Z}\)
with )z 2 C we have

5=1

[21 ™Ry (py ) < W) < 2 2] 2Ry(p, )
It followg that
.)2{_[) {z éf! {2} 2 C}C{z[ Tunz > O,‘z}>(2"1R2(/u‘) t)'l/gf

JL N fzeC [izj?,c}‘D{z\m 2 >0, (2] > (2Ry(p, )t)UE}
Since JZ& is connected and since for large t we have
‘Rt n{zéf {zi ::C} = we infer that for large f
B, ¢ {z|mz >0, 2 > (/\4§>t>1/2f

and hence mﬂmﬁj the desired conclusion.
i) O

To see that Steps 1-3 imply the assertion of the
theorem,renark that by Steps 2 and 3, we have ({ ? " »m?‘l" a cowll
e | I8 2> 0,In (Z“‘1 of[cR =0
7

t>0 €
Hence Im §< Qi==> Tn P (’g)( 0 and since

PRI

ﬁv(g )= c(»(g) we infer that In £%0=> In cp(§j>04/ ¢
s mel a comnlonl . aND.
In ﬁhe course of the proof of Theorem 4.3 we actually
gtudied F-convoluiion semigroupé.We ghall briefly discurss

some properties of these seamigroups.mostly consequences of the

-preceding proof.



BB

Phus let [0,0°) ® t —»p.€ P Dbe an F-gonvo-

lution semigroup i.e. ﬂJM: /i &Taz/tt,s_ and /"é depends

continuously on & when CP ig endowed with the weak topo-

lggiévsing Lemua 5;1 i is gagy %o see %héﬁ 5?/% = fﬁ%ﬂ{
and Cfo, is characterized by the coﬂditioﬁs in Tgeore@
Q;B;If G(z,t) ig the Cauchy;transform of f end v (z)=
S 93H4(z), then G(z,%t) satisfieg the quaéilinear equation

SG (z,%)=0
et

98 (5 4) P (G(z,8))+ -
2z

g e BT T g O
Moreover G(.,t) is univalent in the upper halfplane
and H(.,t)({ z€ C | Inz > Of);}?tz z 61:{ T s 0,

In(z+k (z~1)) > 0} where H(z,t)= . S
G(z,t)

H(;;t) being a conformal mapping one MAY derive re-
gularity properties of e by gtudying ﬁhe bouhdary of}faﬁ.
gince we do not intend %o make a detailed study of regularity
: éroperties of Fe here, we shall only présent;as an axampieJ
gome regularity properties of f% for large t;obtained iﬁ
this way;

Agsgume the gupport of fta is not reduced %o a single

point.Then there is %, such that if & 2t ,t0en /4 is abgo~

lutely continuous with respect to Lebesue meagsure and itg

Radon-Nikodym derivative m, ig continuous.Moreover there are

At’Bt € i (> to) guch that



Bl

(At’Bt) 2-{867R l H‘.ﬁ(S)fé Qf

and my ig real analytic in (At’Bt) and

m%(a) e My, (a)
lim &« + o Llinm : = 4 o0
7 :
a"aAﬂ a""tit éi"‘th :B_b""a.
a>At a<Bt
Also
I m \ 24
lim L (R.E( [ ))1/‘3 ":77,1“"'
fi—p=e ti/‘?

To gee that this is indeed so, we begin by remar-

king that if |z| and t are sufficiently large, then

s} (z+t %>(z"i)):0 has precigely two solutions Nj(t)
(j=1,2) and we have o<j(t) e R (§=2,2) and x, (£). 24,(%) <O.

] 1 ""'1
Indeed,with (A we have

o

Z

(z+t ¢ (2—1)):14} 5’1&0,(;;)
Our assertion follows from F (2:):?(5/ and L10/(6) >0,
On the ofher hand if |z| is sufficiently large,

2 ,
then -5%? (z+t ¢ (z—’l))zé O .This is obvious from
z

3?'2 (z+t ¢ (Z"/l))::t fvs (2 ‘f'(g)'** 7 ‘(’/'& Z))
Z .

Next,assume B gL o L % 0 (ne N ) are guch

that Im(zh+t‘ (p(zn“i))zo and lim Zy= X e R then if ¢ is
p—ves
gufficiently large, we have X € {aq(t), X, (t)f Jote

. A : .
that since Im(z _+t (z.""))=0and-t ils large, the proof of
h n

Step 3 implies z, is large., We have

8]



=4

H

R o
=lin {zn‘ Re ¢° (Re z "+i @n Im 2+ )=
n ~veo

o<9¢‘<1
:o(wg‘(’{(o(’)
which implies < E{Jog(t),eg_(t)f
Uging these facts and the proof of Step. 3 it is
easy %o gsee that
o :{zé‘.@: { Inz > O,im (z+t P (z"'l))::O}'
ig a real analytic curve with limit points °<1<t) and o, (%)
and finite length;The boundary of ~Q¥ equals ?Pt zJ€§g<t),
+o®)(}(“°°; o(z_(t)]()("“}’ wheres o, (t) > O; o, () <O;
This implies G(.,%t) will have a continuous extension to B
guch that {s é-@.l Im G(g,t) 4 O} is an interval (At;Bt)
and Im G(s,%) is real analytic for s € (A%,Bt);But mt(s):
= ?%—~Im G(e,t) which gives the desired result about the
real apaliticity for mt;

The assertion about the behaviour of g at Aﬁ and

: : 2 (o ST
Bt is a consequence of Eii(u?t ?(Z>>Iz:<(j(t) =0 and

: )
=) * o

oo
L ig inmmediate from the
pi/2

DPhe -linit. of

proof of Step, 3.



gk

REFERENCES

[i];ﬁkhiezer N;J;,The clasgical moment éroblem,(russian),

Moscow 1961;
[2.;1 Avitzour D., Free products of Ck~algebras, Trans. Amer.
Math . Sec. ,; 27.1 (1982 423—435._

[3] Clancey K;;Seminorual operatorg,Springer Lecture Notes in e
Math. 742 (1979). 2

[4l Courant,R.;Hilbeyﬁ D;,Methods of mathematical physics .,
vol;E:Partial Differential Equations,lnter;
gclence Fublishers,l962;

(5] Cuntz J.,Simple C*;algebras-generated by isometries,ﬂommun;
Matb;Pbys; o (1977),175m185; =

[6i DauglaS,R;G;,Banach Algebra Techniques in the theory of
Toeplitz operators, 1975;

[7] Evang, D;E.,On O, ?ubl;R;Ilm;S;, Kyoto Univ;16 (1980) ,

915-927.

.

[8] Helton J.VW.,Howe R.,Intezral operators: coumutatorg,traces,
index and homology.?roc;Conf.on Operator
Theory,Springer Lecture Notes in Math; 345
(1973) ,141-209.

n,Michigan

C9j Paschke,w;,Salinas N;,Matrix algebrag over O
Math;J.,26 (1979),5;12.
(10} Pimgner M;,Popa S;,The Extmgroqpa of some C¥-algebrag con-
gidered by J.Cuntz,Rev.Roum.Math;Pureﬂ Appl;
2% (1978) 1069~ 10 7&

£417 voiculsscu D.,Symmetries of some reduced free product
C*-algebras. {(NCREST fNPJfMﬂf Ne 29/1983

R



