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0, Introduction

In 1979, P, Dodds and D, H, Fremlin publisined thoir fazous result assere
ting that if E,F are Banach lattices such that B' and T hawve order continuous
norus and A7 U, Vil - are linear opersiors sueh thai 04U &V then the conpne
city of V implies the compacity of U,

3

Since then, mwany theorems of uad -t'remlin type for various classes of
operators were given, In part icular, the “?ubTQM of the inclusion of the order
ideal generated by an order bounded operator into the closed algobraie ide=l
generated by it was considered by several authors (C, o Aliprantis @nd 0, Bupe
kinshay [1] We g »alton and P, Saab [pl He Leinfelder [71, B, de |

D, Vuza [jil ete, ), ALl tnls was done assuning that the operators act beiween
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Banach lattices (or more generally, vector lattices eandowed with locally solid

topologies). The present paper considers a variant of the sane problem in the
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case wuen the operators ave defined on an ordered Banach Space which might not
be a Banach lattice (i.e. it is not a lattice and/or its topology is not locally
solid), The inportance of this case is due to the existence of an order relation
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The met on prineipal modules theory, This theo-

d
Ty was veloped by the author during the years 19801981 in a series of pagers

B s S

circulated as INCREST proprints (see D ’ B’]) Somne b"licquion$ of it were
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presented at the Pirst Romanian-GDR Seminsr on Banach space taeory neld in Bue

f]) and at the Injerantional Conference on operator alge-
ln Leipsiz, 1983 (see [15]).
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as well for various applicatisns to
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1o Prelininaries

1., will always denote the identity map of a set M,
L

™

Yor an ordered vector space E we shall use the standard notations:

E, = ixlxéiﬁ, 22079,
, [x',y]ziz\zéﬁ, XLzl y}.

o

We say that the positive cone B, in the ordered vectoyr space E is LeNECY A
ting if E=E +~B +° If E is an ordered normed vector space we Say tl‘x@ﬁ:,E‘b 18 Desire
ict if there is a>0 such that for every X €l there is ycE verifying -y<L Ly
and [|y(|£ aﬂx”. Lvery b-strict cone is generatimg, By corollary 1,28 of [‘l 1], Sk
the positive cone of an ordered Banach space is closed and generating, it is also
b=strict, v

The vector space of all linear maps between two ordered vector spaces is
ordered in the usual ways U0 if U(E+)C_F+.

For E,F vector lattices with F order conplete we denote by LT(E,F) the
vector lattice of all order bounded linear naps Uik — P,

If E,F are Danach spaces, L(E,F) will be the Banach space of 2ll linear
continuous maps U :E «— P, The dual of a Banach cpace E will be denoted by B,

A set H in a Banach lattice E is called L-bounded if for every €>0 there

is yEE, such that W1 zley) +Ré£ for every xé&il, Every compact set is Lebounded;

the solid convex hull of an L~bounded set is L-bounded, If E is a Banach space
and F a Ianach lattice, LW(Z,F) will be the space of all linear mops Uil —>F
which carry the unit ball of E into an Lebounded subset of P, Every coupact li-
near map from B to I is in LW(E,F).

Let E be an Archimedian vector lattice., The center of E is the set of

all linear maps UtB = F for which there is >0 such that [0(=)

< alx| for
every x€E, Denote by C@Iﬂ) the center of E; it is a subalgebra of the algebra
of all linsar maps on E and a vector lattice having 119 a8 gtrong order unit,
The modulus (U] of UEHG(E) is given by

{Uf (x) = lU(K)l

for every :£€E+.
Let E,F Db

sense of D, i. Fremlin {[35]) is an Archimedian vector lattice and there is a

Archimedian vector lattices, The tensor product EXF in the

@

canonical Kiesz bimorpnism \{J:E)(F —>EQF: we use the notation x@®y for \Ii(x,y) .

-

The couple (I K= \[/) is universal in the following sense: for every Archimedian
vector lattice G and every Riesz bimorphism cp:ﬁXF -=> G there is an unioue

Riesz morphism (p:;’;@}‘ ->» ( such that @ m@\? . W@ recall that the linear map
Ustkh -3 F is a Riesz morpaism if fU(x)l =U(1x]|) for every x¢X; bhe bilincar nap
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(:EXF —>G is a Riesz bimorphisn if |Q(x,y)|= ¢(|x],|y|) for every £ EE, yo P,
The canonical morphism \P induces an injective map from the algebraic tensor pro-
duct EQF into E@i’; we shall identify E®F with its image in & QF,

2. Principal modules

Ve colleect here the basie defiﬁit]xions and resulté ve shall need from
principal modules theory (see [12] and [13]).

A latbice-orderecd algebra with wnit is an Archimedian vector lattice 4
with a strong unit e endowed with a bilinear multiplication which is a Riesz bi-
morphism and admits e as algebraic unit, On every lattice-ordered algebra with

unit e we can give a norm by
|2l = inf $alaeR , |x|< se].

By a lattice=crdered subalgebra .of the lattice-ordered algebra A we shall mean
a subalgebra which is also a vector lattice,

Let A be a lattice-ordered algebra with unit., By an A-module we shall
mean a vector lattice E winich is an algebraic module over A such that the map
(a,x)=>ax (from AXE into E) is a Riesz bimorphism,

The center (L) of an Archimedian vector lattice B is a laeitice-ordered
algebra with unit; the map (U,x) > U{x) defines a structure of B(B)-nodule on
5 T ) :

: A principal A-module E is an A-module erdowed with =z locally solid topolo-
8y such that for every x€L the set ax‘ae A} is dense in the principal order ide-
al generated by x. This is equivalent to require the set {a,x\a 6[0,9]% to be

~ dense in [O.x] for every x€E_ or to require the set {ax\a e[—-e',e:[}to be dense
in [=-1x|, (AD for every x€B.,

THIEOREM 2.1.( [12]) Let E be an Archimedian A-module endowed with a locae -
1ly solid topology. Then E is principal if and only if for every neighborhood V
‘of 0 and every Xy }:26}*‘]‘ such that x1/\x2=<} there are By 3263 such that a1/\52=
=0 and xi-uaixie v, i=1,2,
1/\x2=0 we can
i"‘?i(xi):o’ i=1,2, Hence,
by theorem 2,1, E is a principal Cg(h‘)-modu},e for every locally so0lid topolosy

If E is an order complete vector lattice and Eys x2 E, x

find band projections Py Py such that P,i)\ P,=0 and x

on E,

If A,B are lattice-ordered algebras with units €y €9 by the universality
properiy of A@B there is an uaique structure of lattice-orderecd algebra on AR
such that (31@1)1)(042@‘:)2)::11512@‘{)1‘@2 for a,,a,€A, b,,b,€B; its unit is e,®¢,.

Suppose that E is an Archimedian A-module and also a B-module., Then we
can give an uaique structure of A@B=module on E such that (a®b)x=a(bx) for
every a€h, be€B, x€k,

Let E be an A-module and let F be a Be-module, Suppose tnat & and F are



principal, that F is order complete and its topology is order continuous, Do
note by L;&(E,F) the veetor lattice of all continuous linear maps in Lr(E,F),

Define structures of Ae-module and Bemodule on L;‘(E,F) by

i

(aU)(x) = U(ax),
(vU)(x) = vl(x).

Then L:;‘(E,}?) beoomes an A ®B=ncdule. The solid strong topology on Ll:‘(E,F)- has
as g basis of neighborhoods of 0 the sets SLU\UGL;,,(E,F), lU\(x)éVﬁ for every
XEE " and every neighborhood V of 0 in ¥,

THEOREM 2;2.( [1'5]) With respect to the solid strong topology, LI'.(E,F)
is a principal AREenodule,

3, Additional results about A-modules

It is well known that if B 1s a subalgebra of a lattice~ordered algebra
A and e&B then its closure § is a lattice-prdered subalgebra of A,

DEFINITION 3,1, Let E be an A-module endowed with a locally solid topo-
logy and let B be a subalgebra of A, We say that E is B-principal if for every

b

Xpo :{2(:}3 such that Xy /\x2=0 and every neighborhood V of 0 in E there are b,l, 5

B such that :{.,iobx,l ¢V and bxgé v,
THEORZH 3.1. Let E be an Archimedian A~module endowed with a locally Sow
lid topology and let B be a subalgebra of A containing e. Then E is Be-principal
if and only if E is a principal B-module, .
PROOF, We shall apply theorem 2.1, Let E he 'B-principal and let V be a
neighborhood of 0, There i8 a solid neighborhood W of O such that W+W V., Take
}:1, xzeb‘. such that };1/\112==O. By the hypothesis there is b &B such that x1-b;.c 3

i
€V and bz,€ W, Put b,=b, b =e~b, From

i 2

lxi‘"lb’i‘ Xil - Hxil »lbixj_\[ £ ‘ }{i-»bi}ii‘

1t follows that x ~[b) x, ¢ ¥, We have

2

(Ib1!/\lb2{ ):«:1é[h2[x1 = ]b2x1}

hence (lb-1\/\]b,_,\):§1e‘::ig similarly (1*{;1\/\]1321)32@;. Consequently, if c,=
=|1,) -.\‘a1\/\$b,)\ then ¢, €0, ¢, Ac,=0 and

|2y=c %, |4 | xy=lo ) x [+ D IA] B, )xy

therefore xi—cixie W+CV, As. V is arbitrary, we have obtained that B is Bmp;'in-,.
cipal, :

Conversely, suppose that E is Beprincipal, Let Xq xaeE be such that
Xy /\X2:0 and let V be a neignborhood of 0 in E., There is a sSo0lid neighborhood

W of O such that W+W(CV, By the hypothesis there are Cyo cgeB such that c,i/\c,)z-
[



“5”

=0 and y.’fcixi e¥W, 1=1,2; we may assume that cie_[o e] Let E}O be such that

g(x1+x?)é¥ There is bEB with |\c -»-’0\\46. We have

|2,=bx,| & |%,-c, x1|+\c .-»b\ 1
bx, L fo,x, |+ (o, | x, & o, (2,-0% )l +le cmglé-[v-c | %, &
élﬂcg 2% o\ 1b“"c\ L

hence :»:1«»‘[33{1 €V and 13}:26;V° As V is arbitrary, we have obtained that E is B-prin.
cipal. : =
THEOREM 3.2, Let B be an Archimedian A-module endowed with a locally
solid topology and let B be a subalgebra of A containing e. Consider a vector
subspace F of K and a vector subspace FO dense in F with the following proper=
ties:
i) BF,CE,
ii) Fnr cvcv;;r XeT‘ and every neighborhood V of O in E there is béBn[_‘O,v
such that bx) 0 and (bmﬂ)a 6‘1’
Then tne following are true:
i) The closure F of F is a vector sublattice of E,
i) (F)+ is equal to the closure of FNE_.
1ii) F is a principal B-module.
PROOF, First we show that for every solid neighborhood V of O and every
x(-,fE" there is yel’-‘f\E such that x -er Indeod there i8 be Br\[o,e] sucn that
bxy O and (0-:3)2’ €V, As bx¢F and

X, =bx = x+~(bx)+ = X ~bx € v

the result follows,

From the above assertion, i) follows at once. To prove ii), take any
xé(@)+. Ley V be a neighborhood of O and let W be a solid neighborhood of O
such that W+WcV, As x¢F, there is y€E€F, such that z-yeV. From

{z-y,| = |z =7,1 < |2=y]

it follows that xmg,r+€ W. There is also zeF(\E+ such that ¥,-2 &V, It follows th
X-z ¢V; as V is arbitrary, x belongs to the closure of E‘(\E+.

By 1), ¥ is a B-module., To prove it is principal it is enough, according
to theorem 3.2, to show that F is B-principal. Let Xqs :;:,‘,E_F e such that XgA Eg
=0 and let V be a neighborhood of 0, Consider a solid neighborhood ¥ of 0 such

that W+W+WC V. There are Ty yaei“o such that xi-yjew, i=t1,2, As

\y /\Ql (J1/\§f,,»/1AX,\4 \y1-..,<[+|v "Kal
we have that y1/\yoe W+W, There is b€ BN[0,e] such that

b(y,l-yz) %0, (e=b) (y1-—y2)+e We
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¥Ye have

Yy={yy=ro), = ¥ AY,E WL

Therefore
vz ol A (Y +{ e T oaF bl el
(c«-?:!):sms = (e %)(y1 (3? 02)+) He-b) (y, ;«,2)+exfmm1c,v.
On the other side

by, = by by -y,) = by,~(bly,=y,)) =0y, -bly=y,) =
= h(y1 ¥4 v) )evwcv

As V is arbitrary we have obtained that F is principal.

4, Bepairs

DEFINTSION 4.1, By @ Bepair we shall mean a couple (E,G) formed by o
Banach lattice E and n Banach space G ordered by a b-strict cone together with
o positive continuous linear map JiG - E,
DERINITION 4,2, Let (E,G) be z B-pair, A map Ué@t? ig called Gecentral
if there is V€ L(G,G) such that UJ=JdV,

Ve denote by ,, £) the set of all Gecentral maps; (B) is a subalge=
G 3

DEFINITION 4.3, We say that a B-pair (E,G) is principal if the G(B) =0
dule E is @(

If (15,6) is a Bepair and F is an order complete Banach lattice we let
LW (l, G,F) be the subset of all UL, (E,F) such that |U|Je€ LU(E,F).

PROPCSITION 4,1, .-nlr(i.»,,(},x) is an order ideal in L"(z.,ls).

E)=principal,

PROCF, Let M be the solid hull of J(B ), J: being the closed unit ball
of G, The assertion will be proved if we show that L‘&Y(E,G,F) coincides with the
et of all UeL, (“ F) such that 1UV(H) is L-bounded.

of course if |U|{M) is L-bounded then UeLwr(E,G,F). Conversely, let

{2}

UEL” (B,6,7). As (} is bestrict there is a>0 such that for every xéBG there
is ye @ with -N‘(“__v and ||\yll¢ a. Let ¢7 0. As UI(J(:\L‘%G)) is Lebounded there

iz z€F,_ such that el ul(a( ))l ~z)+l\é for every x€eB,. Consider x€H; there
is u€DB, such that |x|< [9(u)]. As wEB, there is vE ¢”‘3G for which ~v£u( viit

follows that |J(w)lg J(v), Fron

vl Gl < ol Q=) ¢1ul(]atw]) £1U]E(n)
and

i@ (n))-a) Il <€

we have that [J(1]U](x \«-5) | ¢¢ for overy x€M. Hence (U|(M) is L-bounded,
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Let B,F be Banach epacse, A bilateral ideal of L(E,F) is a vector sube
apaen y £ Ii.(L F) with the property that WUVE o whenever Uéi\/ V& L(E,E) and
We L(R,F).

We veeall that the dual of a Banach lattice has order cor Ltinuous nora
if and only if for every f€E) and every £ O there is y€E_ such that £ xey) ).IQ
£e for every XEB with |x||£1. Similszxly, B has order continuot us norm if for
every x€E, and every £>0 thers is gg—_E;_ such that (fwg)+(}:)$£ for every
£E€EY with | £]< 1 (for the proof of these assertions see [2]),

PHEOREM 4.1, Let (£,G) be a principal B-pair such that E' has order cone
tinuous noru, Let ¥ be a Banach lattice with order continuous norm, Consider a
closed bilateral ideal f_)’ in L(G,F). Then the set of all U6L1;‘!r(E,G,‘E‘) such that
Ug€  is a band in LV (E,G,F

The proof of the theorem will rely on theorem 2.2 and on the following

LEMMA 4,1, Let E,F be Banach lattices such that B' and F have order con
+inuous norms and let M be a bounded s80lid subset of B, Consider the 50l1id sew

minorm v, © (“,m) given by
D;{i(g} = sup i[\\ﬁ[(x){\}zeiﬁ

Let LEL L - (B ’E’}+ be such that U(M) is L-bounded, Then the solid strong topology
is stronger on [<U,U]than the topology defined by Dyye

l‘EC{,’J. It suffices to prove that for every £ 0 there is xéE’+ such thai
py (V)< | V()] +€ wihenover VE [0,U] (because if V,,V,€ [=U,U] then 1‘?‘1.,1?2\6 (0,2

and we may apply the above inesquality o 1V1"“f>1 }e

b e

Without loss of generality we may asctume that M is contained in the unit
i s ye P, such that o= my}_*ﬂéi/j)

x| ¢ 1, As F has order continuous norm there is i’ & Iﬂ‘;

H
)
=
£
“’a’

ball of E, Let ¢ 0, As U(¥) is L-bounded i
for every x €M t’\B with |

such that (f-f )_,{ YL €73 for avery fETF' wi
)

ith [|£1<£ 1. As B! has order Ceﬁtimmus
.

((x=x. ) )LE/3 Tor every x€E with [xlid 1,

1

54 5

norm there is "-gt: 3-;+ such that U'if
Let VE[0,U] and 1t x€MNE, £€F

£ ) (V(z ))+f (V{z-x, ))+E ”i"‘ Yo <

£(V(x)) = (f=
L(f- ) (u(“)}%’(; )((‘:«»:«t ) +L£(1(¢i)).

But
(£=2, ), (U(x)) = (25 ) (Ul)ey)+(£=5,) () £
Z f((u(m«)ny LHE=E ) ()2 2€ /3.
tence

f(v{ ))& Vgl z) +€ .



pM(V) = Empif(V(:‘;))\XéM/ﬂ%, Tel!, l(fllé'ig

the result follows,

PROOF OF TUHOREM 4.1, Let B be the set of a1l U€IW, (E,G E‘) guch that
UJCy Clearly B is a vector subspace, We prove first 'ﬁLﬂ,u B is an ordey ideal
of Lﬁ (B,0,F), Let V,Ue LV (ﬂ,G ¥) be such that | Vi<1Uland Ug B, By theorems
e smd 208 L (8, 7) 45 a prmr\ ipal @.(1 @)@ G (r)-nodule. lience there is a net
(a)C ‘@&(E)@d&g(j?‘) such that a.€ [«15‘,@11,,, 1’E®1.E,] and aSU >V in the solid
strong topclogy; clearly agueg[“\ux, [ul].

Let BG be the closed unit ball of & and let M be the solid hull of J(BG)

in B, By the proof of proposition 4.1, lU](M) is Lebounded, By lemma 4,1 it
. follows that x’:,.»(? UV ) > O, Therefore, for every 570 there is ac W@ E(r)
- such that p, (el *f Y<E/2. It is known (see]3) ) tt (E)@CQ(F) is dense in
cg&(r)g)@(y); as @( is dense in g @ (B) it Iollows that @Xu)@ G (F) is
denze in (6\1)@5@\“) ence there 18 bég (W@‘g(“) with Hb‘m H‘&('f’ ()+1)~",

Thus

(MAW<;J, ﬂUHﬂiakw\ MMM(UHdeQWé&;
as BG» c M the above ineguality implies
[{vi)a=vaf e,

As 7Y is a bilateral ideal we have (bU)J € ; as £f is closed and € is arbitra-

ry, VJE& ‘j.
Now let (U.) be 2 net in B and UE:L"*I (8,6,I') be such that OéU’ U. Ag
&

P has order continuous norm, US -=3U in the- 'u.d strong topology. By lemma 4.1,
P (% ~U) —>0; hence |[Ug J-UJ)|—> 0. As USJé and 7 is closed it follows that

Udeg’ Therefore B is a band,

COROLLARY 4,4, Let (E,G) and F be as in theorem 4.1 and let U,Vik —>F
be such that 0< ULV, If VJ is compact then UJ is also compact.

If E,F are Banach spaces, a wap UEL{E,F) will be called approximable
if it lies in the uniform closure of all finite-rank continuous linear maps.
-Bvery approximable map is compact; the set of all approximable maps is a bilatere
gl dideal. 1

COROLLARY 4.2, Let (2,G) and F be as in theorem 4.1 and let U,Vi:E —>F

be such that 04U<4 YV, If VJ is approximable then UJ is also approximable,

-y

vies of B-pairs. In a first place, we consider

322

1 . ¥ - - -~ 7Y s g
We pass now to some exan

O

t+he case of the Sobolev spaces, Lev L2 be d donzin in KR . The Sobolev space
iy o

kD - = : ; S o : :
W "‘(Q) is the spece of all peintegrable functions on {2 having p-integrable

(.)

derivatives (in the sense of distrivutions) of all orders < k; the norm is defi-
ned by

= k +...+k i
I£h = ( } I 43.,~( \%ﬁwmmmﬁﬁf i) - i %

o A AR N oy
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On the Sobolev epaces the following order relation is given: £330 if £(t)) 0
for almost every ted, In this way, a structure of ordered Banach space with
closed cone 1s obtained; however, these sapces sre far from Banach lattices
(for instance, the order intervals are not norm bounded), The wost importent
cases wien the positive cone is generating arve the following:

a) k=1, in which case w’”p(dl) is a vector lattice (though not a Banach
lattice),

b) () is bounded, has a smooth boundary and kp>n. In this case (369[51),
every functicn in Wk'?(JZ) is bounded: as the constant functions belong to the

space, it follews that the positive cone is generating,

Consider a space w*v?([}) with generatiug cone, Suppose that 1<I)<uq
Then the couple (LP(.(2), ’prL)) together with the inclusion map Jin Sbrey
—3IP(()) forn a Bepair satisfying the hypothesis of theorem 4.%. Indeed, ()
has order continuous duals to see that the pair is principsal, notve that the
Chsunction with compact support in 2 defines z et Heaye
1 T,€ L7 (0) ave such that

f1ﬁ\f2=0, there are conpact disjoint subsets KT' K2 of )y such that

multiplication by a
central map on L"(JZ). Now if ¢ 7 0 is given and f

(e%4]
\fw.(t)lp dt4€, We can find a C -function (p with compact support in )

SJL\I%. 5

such that Q equals ¥ on K1 and O on VZ Then

leg~qe,l ¢e o IpE,l €

(the norm being taken in LP(L)). The assertion is proved,

AS a sccond exauple we shall construct a B-pair (£,G) and s Banach latt-
ice F satisfying the hypothesis of theorem 4,1 together with & positive linea:
map Utk —=» F such that UJ is compact but not approximable, In this way it will
be proved that corollary 4.2 is not a direct consequence of corollary 4. 1.

Ye briefly recall the coastruction of A, Szanlowski's reflexive Banach
lattice without the approximation properiy (for details see [9]). Let 58 be
the algebra of subsets of [0,1] senernted by the 27 atons [{iwi)/@ /““),
i=1,..°,2n. Yor every n, let(P be the permutation of {1 2....,?“ defined by
‘?n(Zi)=21~1, q>(91 =1)=21, The map ?7 induces a permutation between the atoms of
3B ,, end therefore a map (denoted again by qﬁ) on 93n.

For every n;;gﬁ a partition Z&p_of [O,flimto Nn disjoint S@n-measurable
sets of equal measure is constructed., The Szenkowski space E is defined to be

the space of equivalence classes of measurable functicns onlo, 1] such that th

nornm
felliaic > . 7 dP(S L)l = agyP/Ey iR
nr2 BEA

is finite (A, p and r being certain positive constants),

A anhaent M 4n o Ranach cuacae B will bhe called aporoximable if for evoery
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£70 there is UEL(E,E) such that dim U(E)eo and [[x-U{x)|< & for every x¢ N,

: ‘ In the Szankowski space E the following nonapproximable compact set is

constructed: let En;be the set of gll Sanmeasurahle functions such that |f] is
(e50)

the characteristic function of QQ(A) for some AG}ZLn0 Then Mx{ﬂ}L)&:L6tanm

5 is a compact nonapproximable 5et9(%p being some suitable positive numbers, As
&

Pl 47

the sets En are finite, M can be disposed in a sequence converging to 08 M=
={f09 f1yee;Ba Let K be the elosed convex hull of {fn/nfn“1/2]nﬁ}03-and let G
be the vector subspace generated by K, Define on & the norm which makes K its
unit ball, Then G becomes o Banach space and the inclusion map J:16¢ —>E is come
pact but not spproximable (see the proof of thsorem f.e.4 in [81), The order
relation on E induces an order relation on G, Therefore, if we prove that (2,G)

is a 'principal B-pair we may take P=E and U=1_ in order to obtain our exanple,

5 B
! Firsgt of all%olet us show that G+ is b-gtrict, Observe that X is the
. &0
j set of all clements > a_g where a » 0, a &1 and g =£ /)If H1/2§ indeed,
; =y o n = mEenlEn

the set

Ci= iﬂaﬂ)\ e 7 0, g;g ané;1§

is a closed subset of the compact space [Q,f]m} as gn-@>0, the map (aﬁ) o>

co
e 2:5 a 8. from C into E is continuows, so it tokes C into a compact convex
s

subset of E, From the construction of the sets Er it is obvious that for every
£

n there is n' such that 1gn|=gn,. Hence, if

- nzmo g o
then
% [e2e]
$iL ?;;) a lg | EX

which proves our assertion,

Now we show that (E,G) is a principal pair. First we prove that the
nmultiplication by the characteristic function of an atom of San defines a Ge
central map on E, Indeed, from the construction of the sets En it is easy to

| see that U(gn)é;G for every n) 0 and that U(gn) is a convex combination of the
gj's for sufficiently large n; therefore the restriction of U to & is continuous,

Yow let P = L) §8“. The set of all YS-measurable functions (that is, the
R
functions which are 93nnﬁeasurable for some n»0) is dense in E, By the above'
argument, the multipiicaticn by such a functinn defines a G-central map on E,
,» B,EE be such that h, Ah=0, We can find 3-mea~
surable functions ha, hé’such that Hhimhiﬂéép, i=4,2; replacing hi by hiah%/\hé
we may assume that h%ﬁ\hgz . Now let @ be the characteristic function of the

Let £> 0 be giwen and let h

support of h', We have



-

Il =gh | £ 1 (=) (i, =t M +NCe-p)ndllE
il & NPCin,,=ng) I Hlpuslize

(e being tuhe function identical one), The proof is complete,

5. The czse o¢f a reflexive Banach space

with closed generstiing cone

DEFINITION 5,1, Lef'E be an crdered vector space, A latticial extension
of E is a vector lattice f such that B is a vector subspace of ﬁland E+mE(\%aj

Let B be an ordered Banach space and let E be a latticlal extension of
i Accordimg'h3§4, a nmap Ue;QZ(ﬁ) will be called E-central if U(E) CE and the
restriction of U to E is continuous: the subslgebra of all L=central maps will
be dencted by QZ#?ﬁ,

DEFTNITICYH 5,2, We say that an ordered Banach space I haé s principal
latticial extension if there is a latticial extension E of B and a dense vector
subspace E. of F with the following property: for every ¢ >0 and every Xesﬁb
there is UE qgé(§3f)[0,1§' and v €8 such thatfyll<g , U(x) 20 and (1§wU)(z+)é Ve

THEOREM 5,1, Let E be a reflexive Banach Spaée ordered by a closed gener
ting cone and let F be an order continuous Banach lattice., Suppose that E has
a principal latticial extension. Let C/ be a closed bilatersl ideal in L(E,F).
Consider U,V:ili =3 F such that 0LZUZV and VELW(E,F)nY . Then Ve .

PROCF, We shall construct a Banach lattice H with order continuous dual
such that (H,2) will be a principal Bepair with the following property: for
every positive U:E —» ¥ there is an unique positive %QH ~=>» B such that U£§&.
Thus an application of theorem 4,1 will conclude the proof (vie remark tnat E+,
being closed and generating, is also begtriet).

Lot %Jbe a principal latticial extension of I and let K be the convex
s80lid hull of the closed unit vall BE of E in ﬁﬁ Denote by ¢ the vector subspace
of E spanned by ¥; G is an order ideal of B, nence a veclor lattice, As u(g)c e

~ ~,
for every Uéiqgg(ﬁ), it follows that G is a ?2E(E)amodule. Define the solid

seminorn p on G by
p(x) = inf§alaeR , x€ 1&}

By theorem 3,2 w2 have that tue closure B of & with respect to p is a vector

sublattice of G, that (E)+ is equal to the closure of E+ and that E is a prin-

i

s |

-
L

cipal %&(y)nnodule. Put GO=E{\9°1({O}) and let I be the completion of

<}

JiE —> I is the canonical map, (H,E) is a principal B-pair, Bvery positive
(nence coniinuous) linecar wap U:E —>» F is continuous for the restriction of
p to E; therefore there is an unique continucus linear 5G}1q4> P guch that UéﬁJ.
ks H,_ is tlie closure of J(E,) it follows that U 1s positive.

It vemains to show that H' hags order continuuus dorm. To this purpose



it suffices to prowve that for every £>0 and every linear positive £:1E >R
continuous for p there is y é(ﬁ) such that £(( \x{«y) Y<¢ for every x& B with
plxlizeas

Lot §' be the vector lattice of gll linear forms om I continuous for p

]

=3

X LR a ok § : Aot
and let (F') be the vector lattice of all order coatinuous linear forms on ¢

obviously, E"C_Lw(i?,,ﬁ{}. As B_ is closed, the restriction of every fE€E'to E is

)

s

continuous, lience the restriction of the map k1B (I ))< given by k(x){(f)=f(x
to B is continuous for ¢’(E,L') and g‘(("m>< BEr)e As B is @ (B, ) -compact it
follows thab “(B ) is o (3] e JEt) wcompact, Let €70 ;X’ld let fé(ﬁ‘")% . As Ev
is order complete, 62E-and 826 in [4] imply that there is (Qé( ")>< such that
(|x{x)| - (£)4E for every x €Bg. Uxamining the proof of 81H in [/’—l we see that

@ can be taken of the forn

S0 [y, )|
e

1 - ¥ D A
with yie E. As +
< %iyo lience cpé}( ) wnhere y~-}:z By:31C in Ez}:\ , k is a Riesz morphism, It

follows that i

is t,\,aeratzﬁw for every i there is Zy E+ such that mzi_é_ v £

£ xly),) = B [x]-9) ) (0) = ()] k() (94
(|x(x)] =), (£)

for every ER,J,. The set i:\xé B £00[x] my)*’»)éﬁ} is & closed solid convex set
containing B.; hence it contains every x€ B with p{x) £ 1. .

COROLLARY 5.1, Tet B and F be as in theorem 5.1 and let U, VB =T be
such thot 04UZLYV., If V is compact then U is also compach.

COROLLARY 5,2, Let £ and ¥ be as in theorem 5.1 and let U,ViE =3 F De
such that 0&U&£V, If V is approx:’unzible then U is also approximable.

We consider noy some exauples of. spaces satisfying the hypothesis of
P

5 L = s 2 k
thoorem 5.1. In the first place, take E to be the Sobolev spnace W ’P(-.(Z:) such

that 1<peed, kps>nu and [y is bounded and has a smooth boundarys these conditions
~S

3 ™

ensure tnat ¥ is reflexive and E+ is closed and generating, Let B be the vector
lattice of 211l functions on b clearly % is a latticial eztension of E. To see
it is principal, let 20 and let fEE be given, Take g to be the function idene
ticequal to ¢ on () » C being a suitable positive constant such that lellee o
As f is continuous ovl._Q; ([5], theorem 5.7.8), the sets M= ‘t]t&fb, £(t)% cg
and M2 % ‘céz,QJ, )= O% are disjoint cowmpact uuo.aet of [Rl‘ Therefore thnere is
a Ce?'zum u<‘o ith compact support on RY such that O £€9(t)e 1 for seR”, @(t)=1
for ‘bém1 g C?( =0 for 4% e‘vi,. It follows,\:;‘fmt the map U defined by the multi-
plication 17(}3 hns the properties: Ug (@3(3)(\ [0,1'21,'], u(f) 20, (1@4~U}(f+)§_ Ee
Thes proves our asscertion,

As a secend example *take E to b2 the space w ’p(O 1) with 1< peeo, It
consists of the closure in \I‘{’p(() 1) of the subspace form“d by the C -:{'u*w‘tlona

with compact support in (0,1), It can be oroved that a function f is in JIO (0 1



>

:L’r
"4f and only if £ and the derivatives E,...% for 1< 1<k« are sboolutely continue
dat r,
def

ous functions on [0,1] vanishing at 0 and { and mw}«; is in L ((),,1). The space B

is ordered by the closed cone of all functions taking onlv positive values,
5 Sk
For k) 1, this cone is not normal (though it is latticial for k=4); for k. 2,
the cone 48 neither latticial, Nevertheless, we prove that this cone is generge—
ting. Indeced, lot FEE be given and let a0 and b>0 be such that f{t)c ac
k ; ; : : ; ’
<b/4 k]l for every t 6[0911. Define the functions Boeoes €y CG,1/4].m.}t§a by
a f :
g lt) = (— t)) -
? dt ;
(£~ ;.).(s)ds, 1 L4 4%,
€321 o *

By induction we have that (m(t))
dt

6[0,1/4]; on the other side

bi(t) nence (f(t))+é_go(t) for every t &

i

1 b
golz)7 o 7 Be
Clearly, g (O)MO In the same way we defins the functions hogoee, h, .['5/" 1:\-»;’
—> R by

e
: as”

, ¢
h. (1) = B (a)ds, <1<k,
Lt 4 i
Clearly (f’(t))+é h.D(’t) for 'té[?}/d-,ﬂand & 4’:10(3/4). llence we may find a C e
=function (e on [O,i] such that

i i

o L : A

hfg(%) i@go(%) , 044i< k-1,

e at

3 o i

L) =), afili
2 14 _ki G

dt dv

and L?("c)7 a for t 6[1/4,3/4]. Then the function £, given by
£,(8) = got), t€[0,5]
e < 1
£,(t) = 0(t), el o7

£,(t) =h, (%), te[g,ﬂ
is a positive function in E such that féi’o.

Now we prove that B has a principal latticial extension;y thus, it will
provide an ox'mple of space satisfying the hypothesis of theorem $.1. Indeed,
the space Ia of all functions on [O 1:2 is a latticial extension of B, As we have
already mentioned, the subspace EO consisting of mfunctloas with compact SUPPe

ort in (0,1) is dense in E, Let £¢ E, be given, There is g €B, such that g is



identically 1 on the support of £, Let £>0 be given and letﬁlwﬁ/ng[. There
is ¢ € By such that 04Q ()41 for t€[0,1], Q(4)=1 12 2(2)7 27 and G(t)=0 4f
£(t)<£ 0, The map U given by the multiplication by @ is in %2,‘n)0 Clearly
Géiféﬁﬂfauj h( £) % 03 on the other side, as (1m@{t))x ")éﬁlh‘ for té@h1],
it LoLlewa at (1« o BN S +)éﬁ%ﬁa The pryoof is cemplete,

b
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