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THE COMMUTANT MODULO THE SET OF COMPACT

OPERATORS OI' A von NEUMANN ALGEBRA

by

Soxrin FOPA

INTRODUCTION

Let »(X) be the algebra of all linear bounded operators
acting on the Hilbert space Y and X (W) c »(X) the ideal of compact
operators onX . Let Mc ¥ (¥) be a norm closed x-subalgebra. Then
the operators Te ® (W) that commute with M modulo the set of
compact operators have an important significance in the study
of the algebra M. A first prcblem to be settled about such
operators is.to decide whether or not they are compact pertur-
bations of some operators in M’, the commutant of M in ¥ (W).

If T is the projection onto an infinite dimensional. Hilbert
subspace then a typical obstruction for it to be in M'+F(MW) is
‘to exist a unitary element in M whose restriction to the corres-
ponding Hilbert subspace has nontrivial index. However, if we
require M to be closed in » (W) in the weak operator topology, in
other words if M is a von Neumann algebra, then such nontrivial
index cannot appear. This fact was clarified by Johnson and
Parrott who proved in 4] that actually any operator commuting

modulo the compacts with an abelian von Neumann algebra M<& R(¥)



has a compact perturbation that commutes with M. From this they
derived the simiiar result for preperly infinite von Neumann
aigebras and for finite wvon Neumann algebras with diffuse center,
thus reducing the problem to the case when M is a type II

1
ftactor.

In this paper we settle this remaining case in the affir-

mative and so end up the proof of the following general result:

THEOREM A, If M is a von Neumann algebra acting on a
Hilbert space X and T is an operator in ¥»({) that commutes modulo
the set of compact operators with all the elements in M, then T

is a compact perturbation of an operator that commutes with M.

In fact in their paper Johnson and Parrott study a more
general problem: they consider derivations of the von Neumann
algebra M into the compacts, i.e. linear applications %>ﬂ4—¢'

(W satisfying J (xy)=2(x)y+x%(y) for x,ye M, and prove that

if M has not type 11, factors as direct summands then % =adk for
some‘KéﬁiﬁQ. Thus, for these algebras the‘first cohomology
group Hi(M,:K(x)) vanishes. In particular, i1 f-Di=ad M for 4n
operator Te¥ (M), this result implies that for some K €X(XN),

ad T=ad ¥ on M and hence T-XK& M’. Thus theorem A is an immediate

consequence of H4 (M, Xk (W) )=0.

We shall actually study this derivation problem and the

preceding theorem will be a consequence of the following:

THEOREM B. Let McC % (W) be a von Neumann algebra and

DM — X(M) a derivation of M into the set of compact operators.

Then there exists K& XK(X) such that D=ad K.



The proof of the theorems will defnd heavily on our previous
result [8], which shows that a derivation of a finite type 11,
factor M into ﬁhe compacts is automatically continuous from the
unit ball*of M with the strong operator topology into K (X) with
the norm topology. For the sake of comﬁ%teness we therefore in-
cluded an appendix with a proof of this result. The rest of the
paper is devided into three sections. In the first one we prove
the theorem up to.& technical lemma. This lemma is proved in

section II. In section III we make some comments and mention

some consequences.

i. PROOF OF THE MAIN RESULTS

To prove the theorems we need some lemmas. In order to
justify the lemmas we alternate them with a sketch of the proof
of the theorems. Since we actually prove theorems A and B for
type II1 factors, we need to introduce first some notations
regarding finite von Neumann algebras.

So, unless we made other specifications, we denote by M
a generic fiﬁite von Neumann algebra with a fixed faithful
normal trace %, w(l)=1. We let (I x u2=?XxXx)l/2 denote the
Hilbert norm implemented on M by & and L2(M,z;) be the comple-
tion of M in this norm. When we regard the unit of M as a vecpor
in L2(M,13) we denote it by §o.

Note that M acts on L2(M,73) by left and right multipli-
cation. We identify M with the left action on L2(M,13) so that
M’ ., the commutant of M in75(L2(M,6)), is the set of operators
of right multiplication with elements of M.

If BeM is a von Neumann subalgebra (allways assumed to

contain the unit of M) then Ey denotes the unique normal trace



preserving conditional expectation of M onto B({l@). Then EB is
just the restriction to M of the orthogonal‘projection of LZ(M,E )
onto ﬁhe glostre of B go s L2(M,13).

Let now $ be a derivation of M into the ideal of compact

operators on the Hilbert space LZ(M,‘Q), i.e. i>:M S

77f(L2(M,Z;)) is a linear map with the property  D(xy)=
= H(x)y+x Dly) for all x,ye M. Let AcM be a maximal abelian
#—subalgebra of M and assume P &anishes on A. In case M is a
type IIi factor it follows that A has no minimal projections.
Thus if ¥ €K would be a compact operator such that [K,x] =<§(x)
for x€ M, then in particular &K,AI=G. But a compact operator K
cannot commute with a diffuse abelian von Neumann algebra unless
¥=0. Thus we have to prove that from S”A:O if actually follows
that $z0.

Assume % #0. Since M is spanned linearly by its unitary
elements, there exists a unitary element véM such that o (v)#0.

Now we want to construct with the help of A and v some
other abelian subalgebras of M on which ‘5 beﬁaves as bad as
possible. The key technical part of this construction is con~
tained in the next lemma. Its proof is gquite elaborate but has
little to do with the rest of the proof of the theorem. This is

why we prove it separately, in the next section.

1ol LEMMA: I£ ACM is a diffuse abelian von Neumann sub-
algebra and v& M is a unitary element then there exists a se-
quence of unitary elements (un)n in A such that ((unv)k)n tends

to zero, in the weak operator topology, for all k#O.A

The next lemma shows why Lemma 1.1 is important for us.



2 .
1.2, LEMMA . et ‘5:M —p (LT (M, )) be a derivation, v and
(un)n some unitary elements of M such that ‘%(un)zo for.allin.

k ;
it ((unv) )n tends to zero in the weak operator topology for

k

all k#0 then (3)((unv) Vel s (unv)p t,» tends to

¢S ) io,v %O> for k=p» 0 and to. zero for all other k.and.p.

PROOF, . Since %)(un)=0, we have

B ((a, v) 1) =2z% u v)sun %(V)(unv)k—sn'1

and

k-1
g((v—lugi)k)zzi:(V—iu—i)s %(Vmi)u—l(v—iu—l)knsﬂi

n n n
s=0

for any positive integer k.

k-s-1
7

since S(v) and %(v—l) are compact operators and (u_v)
u"i(v—iu—i)k—s—l

- v tends to zero in the weak operator topology it

follows f{see e.qg. [2], chap. 5) that %(v)(lzxmv)k“s_1 b ke lin 0,

plihpl el sl lesgn

and (v
) n n ‘o Ead

k-s-1 2 0, tend to zerc in norim.

Thus, since u ., v are uniformly bounded in norm, we get:
(1)l o g s Pl sy o SR O
: n o) n n o) n

G BTN e

o n
for any positive integer k. If k <0 then the statement follows now
eagdily; by Aii).

If kx>0 then by (i) we have for any P

1<B0m™ 1, (P gy =<6 gt (a wP



prk+1

But if p-k+1#1 then u;i(u V) tends to zero in the

n
weak operator topology, so that ‘:b(v)xu';lll(unv)p—kﬁL &o tends to
zero in norm.

The case k=0 is trivial, because then (unv)k=1 and

$(1)=0. O:B.Ds

It turns out that the preceding lemma is a key cbservation
in the proof of the theorem. To see this, let’s suppose for sim—-
plicity that 2 iv) éo,v io> =1. If we assume further that
t((unv)k)=0,xugﬂ, k#0, and denote An={unvk" then the deriva-

tions © , restricted to the subspace A_ ¢t _ , are spatially
iAn n-=e

isomorphic to a.sequence of derivations ¢%n:Lm(T,fn ) ———
—viK(LZ(T,f«)), by sending (unv)k t, to z° and the operator u v
to the multiplication by z operator. With these notations lemma
1.2 says that ‘Bn tend to behave as the derivation ad P imple-
mented bfy;}ojection onto the Haxrdy space HZ(T,/A). But by
4.1 it follows that én are uniformly so-normic continuous,
so that ad P would be so-normic continuous as well. This is
easily seen to be false.

0f course the.unitaries u, v may not generate.abelian von

Neumann algebras in the nice way we need. But we can slightly

modify them teo do so.

1.3. LEMMA. Suppose the finite von Neumann algebra M has
no atoms and let (wn)n be a sequence of unitary elements in M
such that E(wﬁ) ~Bf¢0 for all k#0. Then there exists a sequence
of unitary elements (vn)n in M such that 3(VE)=O, k#0, and

R S g.



PROOF. Since M has no atoms each i is contained in some

diffuse abelian von Neumann subalgebra AncMMdﬂlsegnﬁbhaprahmljxen

(An' Cin ) can be identified by some measure preserving isomor-
n
phism R with LN’(T,p ), where m is the normalized Lebesgue

measure on the thorus T. Moreover Y, can be chesensso that

27 1t):eZWT1hn(t)

wn(wn):f , wWhere fn(e for some nondicreasing

n
function hn:&O,il o iO,ﬁl. By Helly'’s selection principle there

exists a subseguence (hk )n tending everywhere to some nondiCreas~

I 2w ity Zaili(e)

g Functiion e 10 40— 0,4 Thus, A& f(ec ) = then

k

i tends everywhere to £ so that by Lebesgue’s theorem ‘SfE dpa
n n
->h£fpdp for all p, which by the hypothesis impligs _ﬁf?dy\=0,

p#0. Thus gq(f?éﬂzquf for Laureant polynomials g. Let z=e2T'Tlt

Al i f 0854t

Then g is a pointwise limit
0  if tessd

S
and denote gz(e"wls)zi

of continuous functions of norm one on the thorus. Thus by the
Stone Weierstrass theorem o is a poinﬁwise limit of polynomials
g with 8 gt £1. It follows by Lebesgue’s theorem and the pre-
<
ceding equality that fg ofdr=jg dyv which means that f d s &
Z zZ :
: hi(s)s &
where A is the Lebesque measure on EO,il. This implies that

h(t)=t and hence f(z)=z is the identitv function on T.

Now, since hkn are monotone and coﬁverge

everywheye to a centinuous function it follows that hk converge
uniformly: to h, i.e. | ,hkn".h \ . —> 0, so that | fkn?f W — O.
But f was taken to be any limit point of fk (in the everywhere
convergence) and shown to be equal tothe idgntity. Thus, £ being

the unique limit point, !1fn—f W, — 0.

1

We can take vn=*€; (F)i.- Sinee gfp=0, 'K(VE)=O foraalh

p#0. Moreover |\ w -v_|| = ot = e o T = e B a0

We are now ready to prove the theorems.



THEOREM B. Let YA be a Hilbert space and MeB( ) a von

e Ao

Neumann algebra. If DM - K(K) is a derivation of M into the

ideal of compact operators then there exists a compact operator

¥ eK(W) such that D =ad K.

PROOF. Note from the beginning that by 1.2 in o, %) is

automatically norm continuous. By {47 we only need to prove the
statement in case M is a type IIl factor. Then M lhas a unidie mors
mal faithful trace © with %(1)=1, and we can use the notations
introduced at the beginning of this section. We consider First

2(M,T>) and

the case when M acts standardly on ™ , soO that W\ =L
M acts on it by left multiplication.

Let ACM be a maximal abelian von Neumann subalgebra. Since
M dis of type 111 it has no minimal projections, so that A is a
diffuse abelian algebra. By [4] there exists a compact operator
K such that 6(a)=[K,a1 for all a€e A, Thus, by taking if neces=
sary %)—ad K instead of © , Wwe may assume §4A=O. We show that
in fact $ =0 on all M. To do this we proceed by contradiction.

1t % is not identically zero then there must be a unitary
element veM for which % (v)#0. Since ¥Q=L2(M,7;) we have
ﬁ‘E,O= {;ﬁ=>{ so that there exists x,,%,&M such that
<o)l %Oxi), v%ax2> =1. Thus, if we déhote by xi,xé the corres-
ponding operators of right multiplication by %4 and respectively

r’:{t ! 7 = e
Xy then e X5 %(v)xi( go), v {o>' 4. Note that Max r——>

\Axéx 6(X)x£ is 'still a derivation of M into the compacté, va-

= ol

4

nishing on A. Thus, by replacing if necessary %;with xé )x,_,L

we may assume, in addition to the preceding hypothesis, that

e vt vk vt



By Lemma 1.1 . there exist unitary elements (un)],1 such that

((unv)k)n tends to zero in the weak operator topolegy, for all

ket .. B2, 4 %j((unv)k) 20,(unv)p §O> tend to 1 for k=p?>» 0

and to 0 for all other integers k and p. By 1.3 there exist

unitary elements Ve M such that ey Wm0 fand ‘6(vi)=0,

for k#0. Since © is normic continuous this implies. that
< %(VE) go,vg §,” tend to 1 for k=p>0 and otherwise to 0.

o S\Vnﬂz " and p_ be the orthogonal projection of
h1 =L2 (M, %) onkto K;Tzo' Then Py commutes with An' Therefore all
the applications An‘:’ a b—s pn% (a)pn are derivations into the
compacts and, since || P, S (a)pn e | ? (a) \\ , they are by 4.1
uniformly so-normic continuous cn the unit balls of An.

Bt 1T (T,f%) act on L2 (T,f«) by left multiplication (j"“ is
hte normalized Lebesgue measure on the thorus T). Denote by =

the measure preserving isomorphism of s (’%‘,/«») onto (A_, Gl )
n

defined by (M },)=v}:l , where Mg is the operater of left-multi~

n

o)

) ) ‘ .
plication by f¢ L™ (T,/« ), and by Un:L"‘ (T,/N) —s L (M, ) the
. k ;
correspending isometry at the vector space level, i.e., z being
g 2 k )
the usual orthonormal basis in L (T,)M) i Un('7 )z /S io‘ Thus

% -2 . Lan] i 2 l§ ' Tvn & o
Unzpn. Then define %n.L (T, ) > R (L (T, M Yy by un\l\/\{)

o Tﬂ: I\ o . \ ol v ® l_‘l =i a1 : N 7 ha e
__[Jn g(fn (M{;/)Un' Since Un. ‘ﬁn (M{)Un il{_for all fe€ ff’(’l,/m ))Ve v
a il s gL il -1 g R e

om(l‘(\g%) =B e m*}) ®n (m%)pnun Up @ (%y \f’\;;) g

[y —1 X _1 ? 2
5 [~ o) ) & = (MM, +« M {4 P
o (Mg U U rn(m{_,unu By (wZ)U 3 MM j;%n 9
Thus %n are derivations and since U}:i ‘:o(x)Un are compact

operators, %p take wvalues. into the compact operators on
L2 (T,/A). Moreover, since hw ([’_@!\2" F"\ l‘v) and ! UnFUn\"\‘ Lo A
for . fi€ i R ) and e \AS(L (M, %)), it follows ithant
| Bn N 4 t D and that ‘Sr are uniformly continuous from the unit

kS

bell: ot 1> (T,jus} with the norm [52 into :R.(LE (T,/v\)) with



the usual norm . By the definition, %n also satisfy:
4%11 (Mzk)’l, z‘p.} tend to.41 for:k=p >0 and to 0 otherwise.

Let w be a free ultrafilter on IN. For each fe I/° (Typ)
dénote A(PyJ=w~lin1 %njww),Then.ggis a linear map andjsince

é' 1)~ W2
o) =lims 50 MG 1im - 8 (MoMs MmMlim 5 MIM+lim s, =
QCV\% o o ‘g%}n«;w ot Rl %Mgﬁﬁ( %)n—ow%n e gbn(ﬂ%\
o ' . 3 : 00 .- : 2
=5(M£Mﬁ%ﬁﬂégﬁﬂ%lﬁlls a derivation of L (T, m) into (L™ (T, m)).
Since A(F@}is a weak limit point of '%n(ﬁw))by the inferior

sémicontinuity~of the norm in the weak operator topology)it Fol-

lows that [\Q(M;) | & sup Hén(mgw‘l . Thus @# A\ & sup \\l;)n §« |l é i
n n

and A is so—-normic continuocus on the unit ball of Lap(ﬁ,f«).
rMoreover ¢ A{Mzk)ﬁ, zP > is equal to 1 for k=p »0 and to O
otherwise.

Let now P be the orthogonal projection of Lz(T,ff) onto
the Hard§ subspace HZ(T,f«)=§§gh-§zkl k>_01 . Then an easy
computation shows that

<(PM_-M P) (z"),2P> = {am,) 2", 2P >

and hence A coincides with ad P on Laureant polynomials. But,
since A 1s so-normic continuous cn bounded sets, this and the
Kapalnsky density theorem imply that A =ad P on éll LMB(T,/A).
Thus ad P.is so-normic continuous on the uhit'ball of L&°(T,fa).
This fact is well known to be false (e.g., see SZK, chap.7) .
But let’s proceed with another argument, more in the spirit of
is a rank one operator so that (ad P) (M)
this paper. Note that Q(MZ)=lP,MZ§Wfis a cg%pact operator for
any Laureant polynomial 9. Hence, by the Kaplansky density
theorem and the so-normic continuity of ad P on the unit ball
of L&D(T,;«),vit follows that ad P takes values into the com-
pact opérators. Thus by 14K there exists a compact operator K

o

J ey ;| :
such that EP~Ky By (T,[\il=0, Since L (T,fﬁ) is maximal abelian



in Q>(L2(T,p Y) cd9t follews that P"K:M%, for some “Ye¢ fﬁT,/A).
Thug,. L(P=R) (z’{) ,zk> = S( %(z)zk)z“kdz: _g’\()(z)dz, for.all kK:.-But

lim. £ K(zk),zk> =0, while < P(zk),zk> is 14 for k»0 and 0 for

VKoo
k £0. This gives the desired contradiction.

With this we finished the proof of the case wﬁen the type
11,4 factor M acts standardly B Ag |

In the general case M’ is anyway semifinite and by EG}
there exists a unique semifinite trace ' on M"guchs that -for
any projection e'e¢ M’, %' (e’) is the coupling constant of M in
e’ N).

Let Ac M be a maximal abelian #-subalgebra and assume

Y| 270

alx
2

If v{’t,vée‘, M’ are partial isometries with v vi=vév:’2m=e’ and
%' (e’)¢ 1 then M3X t+—» vé % (x)vi can be viewed as a derivation

of M acting in its standard form. By the first part of the proof
it follows that vé D (X)Vé'—-—'O for any x& M. Since Mvé and v,_’LM,
where V'_’U'Vé satisfy the above conditions, form a total subset of
M, it follows that D(x)=0, xe&M.

N.E.D.

THEOREM A. Let M be a von Neumann algebra acting on the

Hilbert space X . If T is an operator on Y such that Tx-xT & X(W)

for all x¢£& M then there exists Tr¢ M’ such that T=T1€ * ().

EBQ_QE Let % (x)=1T,x] , xe M. Then D is a derivation and
X (M) ¢ K(X) so that by the preceding theorem there exists
KeX (W) such that ©(x)=1K,x], x¢ M. Hence 1-K,x)=0 for all
x €M so that T'=T-Ké&M'. .

Q.E.D.
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2. PROOF OF THE TECHNICAL RESULT

We prove a slightly more general result than 1.1.

2.1. LEMMA. Let M be a finite von Neumann algebra and AcM

a diffuse abelian von Neumann subalgebra. Let (vn)n be a sequence

of unitary elements in M. There exists a seguence (un)n Of uni—

: k

tary elements in A such that (TT(upvi))n tends .g-weakly to zero,
! i:___i 2

for any k2 1.

)

PROOF. ‘Since there exists a partition -of the unity . (p

pEE N &

with pfojections in the center of M such that Mp, is countably
decomposable. for each i, it follows that it suffices to: prove
the-statement for M with a normal faithful trace © ; T(1)=1. We
may further assume M has separable predual. Indeed, instead of
A we can take a diffuse countably generated x-subalgebra of it.
If M is countable decomposable this subalgebra will generate to-

gether with the sequence (vn)n an algebra with separable predual.

£ : : LD,
We use from now on the notations introduced at the begining
of section, 1.
q,)
Let &»0, p&N and ¢ be a finite set of elements in M.

We denote byl the set of partial isometries w in A such that
k ‘

Vomeat (wyi))\ < ﬁtﬂwxw) for any 1 ¢k 4p and any k-tuple of
i=1 '

elements YgreeerYy & ¥ . Endow W with the usual orgder: W S W,

: x F .
i.e. w_=w wow%It is easily seen

ifw. “isa restriction w
o 18 estri of 1t o g

that  (F, 29 isin&udweﬂ ordered. Let u be a maximal element of it.
We want to show that u is a unitary element.

Suppose e=i-u "u70. Since A is abelian and ué A, e& A and

ehe is a diffuse subalgebra of eMe. We denote the corresponding



k
ol
reduced algebras At Me by AOC_MO. Let *S'o {eyllﬁz (uyi)e 1¢k ¢p,

¥ € gg . éyo is clearly a finite set and we denote by N its
cardinality.
Since AO has separable predual, there exists an increasing

sequence of finite dimensional %-subalgebras (A_)

nnszOon’

1 &An for..all n, sueh that L) An~A . Then
nza

»> 0 for any vy é M _ (see for

O

W (Y)-E, ., (y) ||
AIN M Aln M, 2

instance 1.2 in {7]).(Here and in the sequel EB y for. BL MO with

the same unit as MO , dendbtes the conditional expectation of MO

onto B that preserves the induced trace %, on Mo’ CO(X)=
= C(e)_’l Glx) , e eMe=MO. However the elements EB(x) are allways
regarded as elements in M DeMe=MO and the norm || \\2 refferes

as usval to the & -norm in M). Thus if $> 0 then there exists

some n for which /_ | I By (y)-E,, (y) ‘.\2 <S4 e lf
> n M A’ nM 2 2
PG o) o' o

e e are the minimal projections of An then 2 e;=e and

1’0-. m

ez ] . & \
EA'ﬂMO (y) Ze.ye. . Moreover, since ey commute with hA(’)/\ Mo(y, ’

we have EA(';{‘\ M Z e, EA /‘\M (y)ei. Thus, using that

e, (ymEAéﬂ Mo (y))ei are mutually orthogonal, 1¢i¢ m, we get
B L USINE elEA'nM (yde; Il =7 lée - BIAM e Il <
Y& oo L yed i

<S%Z Ne 2 .
i

It follows that for some 1%i¢m



Lo Meve e (y)e, <%;, i\\g

1 1AnM

so that by the discrete version of the Céuchy~8chwantz inequality

L1E we denpte this e; by e, we have:

1) ZT lleve e F (vie W< 8 /%G e

o"A! N M

Note tnaL in partlcular, QO#O.

{ o 5
Denote §’ ‘iTT eOEA r\M(y )e \1Sk$p, Vgreee1¥y € }O} .

Let now w be a unitary element in Aoeo such that g(wn)=0,

for n#0. The choice of w is possible because Aoeo is diffuse.

It follows that (wn) is ¢ -weakly convergent to zero so that

nxzi
if n is larger than some ng o, we have | B(w'z)l < B‘C(eo) Ean

: i T
any z in the finite set J,.
1
no+i
Finally, we denote by W =W E,Aoeo and resard it as a
partial isometry in A . Since wOELAO has the support orthogonal
to uXu, it follows that u =utw g ista partial dsemetry-in A that
extends u. Since WO#O, uoﬁu. We show that actually Q)Q'zﬂﬁ;

let YogreeorYy be an arbitrary k-tuple in &, ekep, Then

k k
(2) \@(;11 (uoyi))\=1‘6(i'(11((u+wo)yi)\ 2
k ek s
< |elW (uyi))\+Z_\C(TT (w. z. )\
5= 1=

Yol
where the last sum is taken over all s-tuples z <12 € ﬁ and

AR

1¢s¢p. The last inequality follows by the definition of }- and
b=l

by thHe faet that any préduct eof the form (10 (uyi))(woyt)x has

t-1 5
the same trace as w_ ey, x (717 (uy.))e
LR R



For a fixed s-tuple zi,...,zqéagg we have the formula

S S
ol DT (2o ye 30 TT W z:))e 7] (w.e B (z.)e )
o Aof\Mo o j=t+1 o) o 4=1 o 3o A f\M i o

Applying the Cauchy-Schwartz inequality we get the estimate

=1 s

4 > .Ts. . i E 7 7
(4) \?((j:&_i(wozj)) (e z, e el AonMo(zt)eo)j:fjg;{L bages

‘EAéfiMO(Zj)eO))l=l.G((eozte0~eOEAéfﬁMo (ageo)

S ‘ t-1
b(jztg-m (WOCOEA A Mo(zj) eo))j-(-j'l wz. )| &
S -4 .
¢ || ez eOP,A Ay (z,)e, H I« Z;Y (w_e E“r M (2,)e_}) (T\i«wozj)) |,

‘ h s . s (z. 0 ¢ 3z,
Since w_ is supported on e and \ EAén MOij)d . kz]\\,

it follows that

S
5) N (TU tre By (25)e) 'Y 2 Ml ¢ < maxliz, 1) e Y
L ety oM 2 3 i G =2

Thus, if we put together (3), (4), (5) and denote

K=( max “y\l)p, then we have

ye&o
6 *(13’ z.) 5K‘?i% 7 e —e z)e Y. .lle 5
I o jzi(WO j N @;{Ke to o A AM, "t o \2 o “2
+\"Z;(TT wOeOEA(,)nMC(zj)eO){ .

=1
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Since woe AO commutes with E

5 ; £9¢ i
A(,)ﬁMO(ZJ), 1¢9¢s, and since
wg:ws(no+1) and s(no+1)> o it follows by (1), (63 that

- 1/2
(7 VBT oz ) £k 8 mle ) +E s (ey)

J=1.

This last inequality gives the desired estimate for the
terns of the sum in the right hand side of (2). Noting that there
are at most pr terms in that sum, it follows by (2) and the,
definition ‘of ' that

k

| (T (uy; )| & 2 (™) +piP (kN
1=

1721y B ()
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A

Thus if we chdse © so that pr(KN

C

+1)34 &  then u _=u+w
o o)

satisfies

k ”
1 ) & aliu’ 3
\ .E(igi(hoyi))\ < é,c\uouo)

s

for any k-tuple yi,..,,yk&:§, 1¢kép. Thus uogﬁj and, ‘as we have

seen, uoz.u, uo#u. This contradicts the maximality of u. Hence u
must be a unitary element in A and it satisfies | & (7TV (uy;)) st

i E=4

for any k-tuple of elements in &, 1tksp.

It is now straighforward to construct the sequence (un)n(:A:

We fix a seguence (xn) M, with xo=1, dense in M in the

nxo &

5 ’T— "' :
5 and for each n denote by ;tn—§y.le 1¢ien, O&jéq}.

Hilbert norm 1| |l .

By the first part of the proof there exists a unitary element

U & A such that

k
| RO (v Ve 2™

i=1



for any. lfke2niand any k-tuple yﬁ,ﬁa,,yké;ggn. In particular

For Yo% v Y579 + P ™Vpog o yk+j=vkxj r 0%j4n, we get

k
\ “@((Tx‘ﬂ (unvi))xj)a £ 278 agken, 083¢n:
L=

)n are uniformly bounded in norm (being

k
Since (W (uow, )
ji=ts e

unitary elements), this implies that they converge to zero
¥ -weakly, for any k2 1.
(OF 10 PR DI

PROOF: of 1.1, Taking Vg =V in the preceding lemma, we obtain

a sequence of unitary elements (un)nc;A such that ((unv)k)n
converge g~weaky to zero for any k2 1. But then (unv)mK:

ek
=((u v)7)" also converge g -weakly to zero.

Q.5.D.

3. FINAL REMARKS

3.1. It is quite clear that the study of (maximal) abelian
#-subalgebras of a von Neumann algebra M and of their interrela-
tions should be important in order to understand the algebra M
itself. This fact seems even more evident in problems of ccho-
mological nature on the algebra M, because cohomological problems
can in general be solved for the abelian subalgebras of M (cf. {3},
Y43, 151), So the whole problem remains to get the compatibility
of the respective solutions, by relating in some way the abelian
subalgebras. However this idea has not yet been proved to be so
useful. The proof of theorem B seems to us the first succesful

approach close to this line.



g o e

3.2, A diffuse abelian subalgebra A of M can be regarded
in two ways: as generated by its projections or by its unitary
elements. The first point of view means that we can refine in-
ductively finite partitions of the unity in A ‘'so that the corres-
ponding.algebras generate A as a von Neumann algebra. This is
like regarding the Borel §-algebra of the interval Lo,il as being

generated by the diadic intervals KJ;F ; Ei%), or equivalently

: 2. 2 _

; . ot e : i .
taking a Haar system in L = ( Lo,ﬁj ,}\), where X is the Lebesgue
measure. The second point of view means that we regard A as being
: ; ; oo ’ :
isomorphic with L (T,ﬁ\). If u¢ A is the unitary element
corresponding to the identity function on T, then u generates A
as a von Neumann algebra in a very nice way, as Fourier series
in u. The first point of view proved to be useful in many situa-
tions: see for example (71 or ‘even the proof of 2.1 in this paper.

The proof of theorem B shows that the second point of view may

also be of interest.

3.3, During the proof of theorem B we avoided to use the
general result in {31} that a derivation c%:M“”iB(b{), where
MC B(M) is a von Neumann algebra, is automatically € -weakly
continuous. However this result is fully used by Johnson and
Prarrott when solving the non IIl cases and also by us in proving

the continuity result 4.1 ({8)).

3.4. After E.Christensen’s solution to the cohomology
problem Hl(M;K(X&))=O for IIl factors in standand form (ili), il b
was probably noted by many people that the statements of theorems

A and B (or equivalently properties (Pl) and (Pz) in T4)) are



actually equivalent in general.: The argument is the same as the
one we give at the end of the proof of theorem B, when we get the

general case from the case when M acts standardly on I

In [4] Johnson and Parrott also obtained some other inte--
resting results related to theorems A and B. They proved these
results for von Neumann algebras satisfying the statements of
these theorems. Since we now know that all von Neumann algebras
satisfy them, it worth mentioning these corollaries. The proof
of the first one is a trivial consequence of theorem A. The proof

of the next two can be found by the interested reader in [4-1

5.5y CORBLEARY . Let T B(A) — B(R)/ XK(HK) be the quotient
map into the Calkin algebra. If McB(Y) is a von Neumann algebra
then the commutant of (M) in WBW(MN)/ KK ) is the image by T of
the cozﬁmutant of M in »(X ). In particular the bicommutant of

™ (M) in iB\(b‘\)/:K(}{) equals Tw(M).

3.6. COROLLARY. Let M € B(Y) be a von Neumann algebra and

S:iM+ KR ) —> M+K(X ) a derivation. Then S =ad T for some

Te MM+ K(K).

3.7 CORQLLERY. Let ML BA(AX ) be a von Neumann algebra in

. ; 9 Sk
standard form and U&€ B(X ) a unitary operator with U(M+ K (X ))U"=

=M+ ¥ (WX ). Then U can be splitted as u=U,U, where U,l,UZET’_ (M)

are unitary operators such that UiMUif=M, Uz-I &N ) .



4. APPENDIX

In this section we prove a continuity result for derivations

intc the compacts ([8]).

4.1. THEOREM. Let M be a type L1, factor acting on a Hilbert
space Y\ . Let $:M —»X(%) be a derivation. Then @ is continuous
from the unit ball of M with the strong operator topology to

HK(IK) with the norm topology.

[3l it is @ -weakly continuous. Since M is a factor it has a

unique trace ¢ , 2(1)=1 and we denote as in Section 1 by | UZ

the norm implemented by % . Since H? induces the strong ope-
rator topclogy on the unit ball of M, we have to show that if

(Xn) is a bounded sequence in M with | xn\lp-w¢ 0 then

nn

I %(xn)l\wﬂwo. It is clear that we only need to prove this im-

plication in the case X, are selfadjoint elements. Moreover, since
oLz HZC I x Kz, it follows that 1if }lxnu g =0 then

ale g and ll(xn)_ilz-m% U, 86 that ‘it 1= sufficignt to
prove that if X, €M are positive elements andlﬁxnllz —» 0 (equi-
valently @(xn)m~9 0)- - then u‘é(xn)\i-ﬁwo. Let’s first prove

this in case x  are projections in. M, Suppose this is false,; so
that there exists a sequence of projections (fn)n In M with
g(fn)-& 0 sand A S(fn)u 2 ¢>0 for all n. By taking.a sub=

sequence if necessary, we may assume f;rﬂfn)df& . Let Iy be

v T g x ) L - & o mt \ - < =
the supremum of the projections (fk’kz,n' Then Q(gn)iﬁgz &(f) )

" zelr o with n. the support of £ =L Then
tends  to zedo with n. Let B be the support wIntn

s < and s is majorised b go that &(s_  Jc&lg )—>» 0

Som £y @ e e Y 9p U :

for each ifixed m. Moreover since g, is dicreasing, f g £  1is



dicreasing in #; 80 that s is dicreasing in n., T s
g 4 “nra : 9 hus (fm nm)n

: ol pe v s e =
increases to fm so that o(xmwsnm) is weakly convergent to %(rm),

and so, by the inferior semicontinuity of the norm, for n big

enough we have
il %(fm—snm) - zoes o

We may thus get by induction @n increasing sequence of

integers DgrMggees such that the projections hh:ﬁ§_~sn -
s

satisfy \\%(hk)H » ©/2. These projections alsuv'satisfy w(h )s

&“@(fn ) ~—> 0. Moreover a simple inspection of the definitions
K ‘
show that (hk)k are mutually orthogonal projections. By [ 4] this

is“a contradiction.

Let now (xn)n be positive elements in M with x I & i and
= =1 1 . ] 5 i

@(xn)—M» 0. Let anéi“ 2 em be the diadic decomposition of,xpn
S ' )

It follows that a(eg)-wa«¢ 0 for each m» 1. Let &» 0 and moz 1 s

m
that 2 © < &/2100 .. Then by the first part of the vproof ‘there

exists w o sugh that #or nbn -, l{%(en)ﬂ <. &/2 for any msm_.
o) o my M o
Thus, for nxn_ we get {{5(ng\£: %"ﬂ2_m\\%(e;)ﬂ + Wl L Z_mga
m=1 : msm

S &YYo+ Ej2=¢.,
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