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ON THE THERMODYNAMICS OF THIRD ORDER
AND THIRD GRADE FLUIDS
by

Victor TIGOIU
F

0. INTRODUCTION

In this paper we deduce the complete thermodynamics restric-
tions which can be obtained from the Clausius-Duhem inequality. for
third order and third grade fluids without the supplementary hy-
pothesis used by Fosdick and Rajagopal in ES] (which concerns to
the existence of an absolute minimum on equilibrium states, for
the free energy). Due to this hypothesis the stress response
function of third grade f£luid ddes not devwend on the third Rivlin-
~Ericksen tensor A3. On the other hand, a2s wa have observed in
Section 1, the dissipation function can attain his maximum on
processes which are différent from equilibrium (by equilibrium
we understand as in [7,8] locally at rest) and for that we have
considered thét it is more suitable that we don’t make use of the
above mentioned hypothesis.

In the first section we obtain general thermodynamics res-
tfictions (more complete than those obtained in [7,8}) on the
class of non-Newtonian third order fluids and we annalyse the

‘behaviour of response functions at equilibrium. In particular we



observe that the heat flux must vanishes on each process if the
temperature gradient vanishes. These restrictions are used in the
second section when we deduce the heat propagation equation in
the neighbourhood of the equilibrium states. Here we prove that
the thermal conductivity tensor is symmetric and non-negative
-definite.

In the third section we obtain constitutive restrictions
for third grade fluids, which preserve the fundamental character
of this subclass of third order fluids. As a consequence of thé
residual dissipation inequality and of constitutive restrictions
in the fourth section we can construct the class of functions
/mich can be chosen as free energy for these fluids. Moreover
we obtain an interesting interpretation for the normal stress
coefficient 4 and the complete description of the free energy

: ; . L , . y 2
which, on vigcometric flows, is a linear function of trAln

1. THERMCDYNAMICS OF THIRD ORDER FLUIDS

We shall keep, in this paper, the definitions given in

(1,21 for a general thermodynamics theory. That is, we shall
identify the material particle X of a body B with the position
XGJQB which is occupied by this particle in a fixed reference
configuration B§T§3. We shall denote by Y the vector space

¥ 3
attached to @ 7.

Let

(1, %) x=X(X,t)

‘ o : . S T
the motiom%of* the body,%; then with the classical definitions
we shall have for the deformation gradient and the velocity

<34 s y 5 . N7
gradient associated with the motion A :



F(X,t)=CGrad X

(e, 29 .
L(x,t)=grad x=grad v

and

(1.3) L=FF '

whenever F is non-singular (and we shall preserve this assump-
tion allways in this paper).

A thermokinetic.process will be the pair (%(X,t),@(x,t))
where O: Bxr ~—>»R, is the absolute temperature of the body I3 .
A thermodynamic process for the bodyﬁ@*will be the following

collection of eight functions defined on BxR:
(XX, £),8 (X, £) , T (X, t), £ (X, t) ;9 (X, t) g (X t) b (X)), r (X, ),

(where T is the Cauchy stress tensor, § —the specific internal
energy per unit mass , % -the specific entropy per unit mass
ci—the heat flux; b-the specific body forces per unit mass,
r-the radiant heating per unit mass), if the balance laws of
momentum and energy and the classical Clausius-Duhem inequality
are satisfied.

When sufficient smoothness is assumed and when we take into

account the conservation of mass
(1.4) gO(X)=§(X,t) det F(X,t) ;

where §<3 is a positive function given once and for all allong
with the body %, the local equations of balance of linear momentum

and energy are:
(1.5) g V=div T+ eb

(1.i61) gé-=T~L—div qt er.



In the same time the local form of the Clausius-Duhem
ineguality is:
{Ls7) 0 Cf»ﬁéﬁ)wTwL+(l/§)q-grad9 £0
where we have introduced the Helmholtz specific free energy

(1.8) V=YX, £)=2-89

Further on a particular class of fluids, namely the
homogeneous and incompressible third order fluldy, will -be con—
sidered. For this kind of materials det F=1 (tr L=0).

We shall denote by Lino(ﬂVK) the space of all linear
and traceless *transformations from Y into U and by

13 -

{3 {L“ (u,,“')_}L xR x U

it With these notations the above mentioned

class of fluids is characterized by the existence of the

following response fonctions

2 g: L' ARG

Sk 1 s -
oD R
3 U{ : D —\

" ha

in terwms of which:

T(x,t)=T(L,L,L,5,q)

€(x,t)=¢(L,L,L,%,q)

(1.10) Tt LY
W (xot) =7 (L, 1,1, &, q)

q (x,t)=q(L,5,L, ,9) ,
i

and where we have denoted by SLin (¥,%) the space of all symmetric
transformations from V into V and by g=arad & . We shall suppose

that all this functions are continuously differentiable.



According to the effective principle of determinisme P
[2,3,4} , we shall say that: the material response fonctions given
by (1.10) are compatible with thermodynamics if for any thermo-
kinetic précess (X,8) the eight functions (x,@,g,?/T,?,r,b) are

a thermodynamic process (because trL=0, p dose not appear 11
(1.7)). By consequence the response functions (1.10) will be

compatible with thermodynamics if they will verify the inequali-

ty ¢l.7) for any thermokinetic process:

(1.11) o (Y+f 8 )~ L+q d¢0 ,
3 &

(g

where ¥ is given by
(1.12) V(M= T (M)~ 6 (1)

o\ : I .
for any MeDand where for the calculus of ¥ we apply “a particular

case of the Mizel-Wang chain rule { 5]}

AN NN AR O W -
(1 4-1:3) ¥ _—[KL.L—F fEJI'._I“L-%' t-i-L-i- 1}91}-{-"{"(3-(5
Concerning the restrictions for the respons functions (1.10)
that we want to obtain, we are interested in finding a motion 7.
and a temperature field ©® for which L,i,L,L,8,6,9,4 may be

arbitrary chosen, that is:

LEMMA 1.1. Let two arbitrary real numbers 60,96 ,6307’0

Let go,gé.{g arbitrary and LO,L L" *g’f L1n (U,¥) arbitrary.

s/

Then, theré exists a motion X and a temperature field 8 such that

if X 13 a flged particle and t a fixed-time:



ER L

{ L(x,.t)=LO,L(x,t)=L(’),L(x,t)=Lc';,L(x,t)=Lg'

(1 .14) <6 <x,t)=:=ao ¥ é;*(x,t):@(’)

®

i

grad ‘?)(x,t)-*:gO , grad O (x,¢)= =T

where x=3(X,t).

PROOF. For the proof we first observe that it dis sufficient
to construct a velocity field v with the properties (1. 14)l 7
Then, because

=X, &}
and

y=%(X,s)

and on the other hand:

v(y,6)=—

we shall obtain the following problem:

= v(y,38)

DJ:Q:

3 s
<

&
(L1415) %
iy CE =2

If v is a Lipschitz function then this problem has a unique
solution.
The construction of the field v(yv,8) is standard and. for

that we shall remember only that if we consider



(1:16) v(y, s =v(x, L)k»;v x,t){y x»+,§?v\x ) (B-t)+

1 e 42 1 g 2 <
= - s g Mo
Yoy %;j v (x,t) LY %, 7R) 5T @y@gv(xlt)(@—t)Ly 4%
f;,)‘ 2 M 3
‘*%"‘“ ,.WDZV(X:’L‘.) (e~t) 2-!-—“%- d2 w7 (%, ) (G- t) LV x‘i +
S : C}{; c) y
3 3
150 1 o
57 w3 VB [y YRy R+ g7 o () (66 (y-x,y-x]
Dy oo 8y
~4 4
1 3 1%
+le ’"‘:’”‘ZV (x,t) \’y Ky YRy Y=X; ¥~ XJ VS B v (x,t) (E-t) i }

03 DE Yy

then a simple functional calculus shows us that the gradient

attached field is:

o i
1 2 o
DA Ly, 8t ~L (x,t)0w] e ’6‘>y"b‘&v(x’t) (e-t)fwl+
2 2
l - 1 -
”l—«-z_.»f ‘m?, ZV (X;t)YWIY"X} +—2—-‘!— r&_—_._zv (X t)@:y "{,V]l"}'
&y 3y
3 3
2 \ P
£-$%m~v(x,t)(s t)2€w}+}-i? iy t)iiw,y—x,y«x}+
LN 370 3 \L :
-3 c}y g =

+Ly—x w,y- \3+Ly— V=X, zl-fffﬁyijégs—~V'x t) liw y-x| +{y-x w,
{3 \’7 " k

‘'~ 4 :
3 fore
. 3~ v (x,t) rwﬁ 3 4v(x,t)%iwfy—x,y—x,y~xl+ i

& 57 %5
...+[§mx,y—x,y~x,w]}

and where we have denoted Log Lo(x,t);»g§v(x,t).

The formulas. (1.16), (l1.17) give the response to the first

part of the problem.



In the same way, the field

(1. 18] ©(y,8)=8 (x,t) +>(xt) (5~t) Jr:;f?{f%(x,t) Al e
E‘ 2 /8 bt g 1 ‘;}2 K ¥
.é;'g],‘"::“, (X, t) (Q,."t) y_X} ‘f"é‘“i-' ;;ﬁz‘ﬁ)(x,’ t) ® {-Y""X ,YWX-‘;

satiety the preperties (1.14)g~§ if we put

43(; z %fé(xft)Jrqé'v(x,t)

Jo
(= 19)
3° D
’ = 1 YE i J.:L. 7 - E' 3
9 @3»3%,{73(1<'C)+;3>YQO(>*'U;.V(X't)f

~which complete the proof@ﬂ

It is a very simple fact to observe that the above con-
struction permites an{arbitrary chaoise, 1n the point (x,t), for
the temporal derivatives and for the gradients of the motion
and of the temperature field. With this we can give the proof
of a Coleman theorem concerning the necessary and sufficient
conditions in which the response fonctions (1.10) are compa-

tible with thermodynamics.

THECREM 1.1. The response functions (1.10) are compatbile

with thermodynamics if and only if

N ©
(3. 200 v (x,t)=Y(,L,8) ,
(1.21) W (x,t)= Q’Z(L,}J,@)=~*“/~%'9(L,i,9)

Eand

P 5
and the respoise functlons Wl ., ) Tlaye eyl vand ‘qleisverars)

are such that the dissipation inequality

A . Bt S S i B 1~ )
a2 oY (L,L,Q)°L+?V‘i(L,LJ9)°M~T\M)‘L+6q(M)~q <0



holds for every thermokinetic process, where Me .

PROOF. We shall choose a thermokinetic process which

verify the conditions of Lemma l.l1. Then with (1.16) and (1.18)

we can apply the chain rule and we obtain:

(1.23) ?L LM ) T +‘c’i(MO)~Lg+"‘ﬁ€;f(MO) L”’+"*" M) 9! +v e

s ,.,_"“' by _]; o £
+€>»¢L(MO)@O T(MO) Lo+é;q(Mo) 9’0.{:0 '

where:M = (L ,L'’,L",8 ,g ), which must hold for all
o agluelvof ol 7y

(LO,L(I)ILHIL(';’ réor{'},\(;rg

¥ ,gé). Moreover Lg’,g’ 2

19, appear only linear-
ly and hence (1.23) is equivalent to

NS ., U= . weS R : T M VY AT e
(I.24) xL(MO) Lo'=w 0 ; ‘g(M YeglelEe \ﬂ@}MO)+QfMO/)OO.WO

o o for 1 ee
(1..25) 8: "t‘L (MO) °Lo+ij‘§’ $ (MO) 'LO-I‘ (MO) 1 ’l"fé;q (MO) g

<0
g

for alil LO,LC’),LS,LS’Q Lino (4,99, 8O>0, & C’) &R and go,qée"i’»

Thus (1,200, (121) and~ (122} necessarily folldw from

(L.24) and: (1,25). The proof of the sufficiencyiis dmpedia

5%
(ﬁ?

It is net surprising . .that from (r.24). it result: that
o
x i(Mo)E 0, because a simple calculus shows that for such func-

tions the restriection of the derivative on Lin(¥,0): to. the
subspace Lino(U,U) coincide with the derivative on Lin_(V,y).
The results obtained in Lemma 1.1 and in Theorem 1.1 are

similar with those given in {7,83 but with some specific inter-

pretations that are necessary in the remainder of the paper.



; ey R e Lo
) = (7( i ® fe ik 2L ] A o ] g A e Lt o
(Li2&) (M) =¢ fL(M) Lbg ¢y (M) -1 T (M) IF@q(M) g

we observe that the reduced dissipation ineguality (222 ) ampliies
that the function ¥ be nonpositive over & . Also we see that in
equilibrium points (that is in Me'i(0,0,0,%e,O); a more precise

term would be:locally at rest) iﬁ(Me)=O. However we observe that

. o

in the points Méa(0,0,io,ﬂo,O) the inequality (1.22) reduces to:

ray

“ag o
(T.27) QY L(O,O,f:”}o) L 40

If we substitute now io with SEO and employ the definition

4

of the derivative of ¥ in relation with L we shall see that

(1.27) is satisfied with equality and more, that the ‘deviator of

~ : : , :
W’t(O,O,HO) ig nulifor all @ 5 Then T(Mé)=0 and so [' attains

his maximum in two different processesg
In the paper of Dunn and Foskick E7§ it is proved that
for nonewtonian fluids of order two the points (O,Lo,gb,O) are

stationary points for the free energy (that means for this class

I

A , s o 2 :
of fluids that . (0,0)=0 ande¢¥ . (0,9)[A,A}=T(0,A,8,0) A}. We

7 ( iy

shall obtain any results of this type for flulde of third order,

COROLLARY 1.1 . The points Mée&ﬁEare necessarily statio-

nary points for the free energy.

A
PROOF. Supposing Y twice continuously differentiable

e

Pe

we observe that the condition that Méé&iﬁbe a maximum (local)

for §* is equivalent with

_ aity
ds |

»;

s=0

(L.28) 0



and
El29) O?ﬁéﬂ"é’,
_ ds
If we perform the caleulis in the right hand sides of

(1.28) and (1.29) we shall obtain in a standard way the following

necessary conditions

(1:30)

(‘x} 4 (O,O,J‘O) gﬂ.ul ,Loéwrl <I\4C)) Ll

which, in particular, gives the proof of the corollarys

COROLLARY 1.2. The points Meéia are necessarily stationary

points for the free eﬁergy°

rity property is similar with those performed in the Corollary
1.1. The restrictions that we shall obtain by an appropriate

Hse of ieenditieons (1.28) = (1.29) in the point M, are:

~

) B

¥ L(O,O,:so) 0

A

Y. (0,0,8 )=0

(131 - =

T(Me)-Ll=O ) L& Lin (V,7)
q (M) =0

Sl



which in particular gives the proof of the corollary and more-
ovierd it recults that on the equilibrium states thia wregsure
tensor is hydrostatic.

By emploing the relation (1.29) we can obtain any useful
supplementary restrictions on second derivatives of‘@ and first

et
derivatives of T.

(1232

)

for all AeLin_(V,v).
S =
As ¥ has been supposed twice continuously differentiable

we ‘can conclude from (1.33). and (1.35)l that

2
(37 ) Ti(Me){ArA}é 0

for all AeLinO(ﬁ;ﬁ)gg

REMARK 1.1, The conclusions of these two corollaries are

in the sense of the Corollary 1 from §3 of [ 7}. We cannot say
else about the mechanical power than it is inferior bounded by

Pa A ) se
the projections of QW’L andq“?L respectively on L and L.

REMARK 1.2. The complet.set of necessary and sufficient

conditions for the existence of a local maximum for {* in Meeéb iS:



- s
b 9=0
- 1 e
j\ P8l =0
; o
(1.35) bp ?(M ){M,M} &0
{ M.‘
%L,.-;Mz (m_) T2, M} “¢ ;*MZ (Me)[M,M]'? , M) [, N ]

for all M,Ne ®. If we performe the calculus (which is similar
to the calculus performed in the Corollary 1.1) we can obtain

any supplementary restriction on response functions:

{ 3 (M) =0.

(1.36) g, )yl o

for all yelVl, A&Lino(v,ﬁ), @O:>O.
Moreomer ;i Brom  (1.20) ; (1.21) and (1.8) it is easily - to ceec
that the specific internal energy is given by:
(1.37) £(x,t) =R =Y(L,L,0)-6 ¥, 1,1,8)s8,L,6)
If we uge the principle of frame indifference El,6,7,8},
we can breafily conclude that the response functions can depend

on the motion only by the first three Rivlin-Ericksen tensors

Al, A2, A3 which can be given by the recurrence formuila::
Z\.l:L+LT
(1.38)
deshag cnar s
neoan—l =1 n-1



So we can write:

{”’(x t)=" g(Al,AZ,@ )
. M (x,t)== V(A A, 0)
(1.39)
T(x,t)=—p§+T(A AZ,A3,f a)
q(x,£)=q (A, ,Ay,A5,0,9)

n

and moreover the response functions 7V , T and @ are isotropic

furictions. The isotropy of § leads toc

;%(Al,AZ,A3,%,0)=~q(A S RC U 0

2% 3’
and finally to:

(1.40) E(Al,A Q,0) =0

]—\3,;

Then we can conclude that the heat flux must vanishes,
regardless of the motion and the temperature at a particle,

if the temperature gradient vanishes.

2. HEAT PROPAGATION IN- THIRD ORDER FLUIDS

Taking into account the relations (1.8), (1.20) and (1.21)
and the chain rule the equation of balance of energy (1.6) can

be written:

A 0y ~

: o i /:) : —_n e I - ."...
(2.1 @(ﬂ (L,L’H L@(LJQ 3) ) L+%(x(L,Lﬂﬂ @%L@(Lﬂgﬁ)) Ii

c

g% (L,L,8)8-T (M) -L+div g (M)-or=0 .

Introducing the chain rule for g and separating the terms that

vanishe if the motion vanishes, we can write:



P~
o e T o~ i
(2»2) = gﬁ X a6 (LrLr%’"> +qg (M) S (t‘?q) 4“({{}(1"1) ‘9‘**3’(“’1 (LrLr%")—
i [ 9 'A‘ ",‘,, ey 1
- 8% _(r,1,0)) Ltg(¥: (1,1,6)- 0¥ (1,1,8)) L-T (M) -L+

where by W a we have noted the gradient of the function a. The
equation (2.2) represent the heat nropagation equation for a
third order fluid.

On the other hand, we can write, in the neighbourhood of

an equilibrium point Me:

(2.3) G =gm)+§ m )8+g M ){g]+iterms which vanishe if
€ . B goie ook

e

the motion vanisheéi+0§%}2,£g£2§ :
J é

According to (1031)4 and (1.36)1 the eguation (2.3) can be

written:
(2.4) G () =g Cgl+0 (6%, |g1 °
. g M -—qg (M?) 193 (4, 1gl )

Consequently, if additionally we suppose that the material
is homogeneous in the equilibrium state, we have (in linear

approximation) :

~ (M) - (*’:/q)T

L .
(2:::5)) diwv q(M)—qq 2

(Me)' the thermal conductivity,

)

If we denote by %(Mek§~ﬁﬁ
then it results that ?(Me) is a symmetric: tensor and fxom (1.36)2
we see that %(Me) is non-negative defined.

Then, if we rewrite the equation (2.2) in the neighbour-
hoeod of an equilibrium point in the absence of mechanical motion,
we obtain the heat propagation equation for a third order flulid

intho form:



s =

- =
2t t ~ 3

(2.6) (68 ==L~ ) )8 -K; . (M ) e = 0 =0
L g e

If wee suppose ghat - &’%&@(0,0,@):~O and if we observe
that ﬁi%@(L,L,ﬁ)mc(L,ii&) is the specific heat, then (2.6) has
the form of the classical heat equation.

We conclude this section by observing that from (2.4) we
can write in neighbouring states to equilibirum
e E@ﬂ-w%m—%w%)gvﬁzzéo
and according with this relation it results that in neighbouring
states with equilibrium the Fourier inequality holds and the

Fourier law is a good approximation for the constitutive law of

the heat flux.

3. TEHERMODYNAMICS OF THIRD ORDER, AND THIRD GRADE FLUIDS

In this section we shall concern with the restrictionsthat
can be ‘derived from the second law of thermodvnamics (in the
classical Clausius~Duhgm form) for the stressc: response function.
We don’t make use of the supplementary hypotesis concefning the
existence of an absolute minimum for the free energy on equili-
brium states as in the paper of Fosdick and Rajagopal [ 8].

The incompressible third order and third grade fluid are
described by the following Cauchy stress response function (see

for example 58} and the References of 581)

N 4 £ . Q) 2 £
(3.1) T(x,t)==p(8) I+t (8)A +ek (@) A +& (B}AT+P (B)A

+0. (8) (A A,+A Al)+F§(@)(trA2)A

2 ol |



e e A et T O —— T

where -p(8)I is the stress due to the constraint of incompressi-

bility i (8)<is the Kinemetic viscosity, & () and mz(@) are

1
the coefficients of normal stresses and %1(&), %2(9), %B(%) are
material functions connected with the notion of shear viscosity.
Bor simpliecity we shall call this class pof flﬁidsv- third grade
fluidss

The conclusions derived in the first two sections remain
valid and, moreover, dué to the particular form of the stress
response function we shall obtain supplementary information
about the free energy and any important restrictions on consti-
tutive coefficients from (3.1). In this section we shall deal
only with constitutive restrictions. on the stress respense funec=
tion. In this sense we give the following theorem (which, with
a different proof ‘can be found. in the paper of Fosdick and

Rajagopal [ 8]) .

THEOREM 3. 1.» The free ehergy of @a third grad fluid.is

lineary dependent on Al'

PROOF. If we substitute the stress T given by (3.1} into
(1.7)-and if we have into account the restrictions impose by the
Theorem 1.1 we obtain:

8] &

aat A 3 ww “m
o Y ¢ e . - [ £ . =
(3.2 @Yt L ;b s B) L =P (O )T (Lo +L ) =0
- % . ‘e 3 5 <
foralil LO>O and LO,LO,LO& Llno(L,b).

Now, choosing iOQ;Skew Lin (v ,V) it resultis that
A

%ﬂ’i(LO,LO,QO)&SimLinO(U,v). By Skew Lin (V,V) we have denoted the

space of all skew linear transformation from Ve ndo Ar o hen,

if LO&SLinO(U)U) we‘shall have thatg“?i(Lo,L ,Bb)m2§l(@o)LO§ Ae¢

@)

¢ Skew Lin (U,V). These properties finally leads to the following

4 4

PR poneva ey o POl RS g



relation:

J & = - J =R €3 A
€ L(LO'LO’? ) “1( )(L e ) fl(Jo)Al
Then
s o P ¢ & -
&) 29 — a™ (7 Bor=an- (& - TR ’
(3-3) 62;* (LOII—‘OI\JO);';%’ b (A]_’AZ’ O) 2‘;~1(% )L LO+’: i (]-—OI(‘)O)

where L%ir(L+LT) is the symmetrical part of Lg

—

REMARK 3.1. With these, the Clausius-Duhem inequality

written on processes with ¥9:=0 has the following form:

:".5 4 s I3
¥ (L ,8)t-1L - 8 ‘
sL(IO,LO)j LO T(LO,LO,LO,“O,O) LO.QO

28

(3.4) f2p (6 ) (L) +

D

for all B S0 affd L ,i ,E; olin @,V
o g o o o
Using (3.1) and groupping in a suitable manner the terms,

the inequality (3.4) becomes:

sy

(3.5 2@ (M -1 gV (1,0)-p, ®)A -p ()] 3a3+2 0 -a W] -

e - 20
"2i.12 (‘” )Alj L~ kli ;‘Jl(&)’r‘ZE_sz(%)*‘ZuB (%)} (trAl) -+

4B ()] eradedu ) tealep b 2“
o) (8) +h ( )| £rB]+3 1 (8) LraT+p, (6) x| AT~ (A1) @

for all §>0, A;,A, € SLin_ (V) and WeSkewLin (V,V), where

iRediy
4 é(L LT) is the skew part of L.

For eimplicity, we shall denote:

Wz L

9 !
L eie -
. Bz gV, (L,0)-o(9)A - B (%){3A2+2 (WAl—Alw)} -2p, (0‘)Ai
: | = l{ { ) )+28 (B)+21, (B) 1 trA [m +f’(6]trA3+
."“2& T e e 1 Sl )
L }MQ)LrA +2$ (bﬁtrkA? 2—(A1W)2}



Now we are ready to give the following theorem:

THEOREM 3.2. The residual inequality (3.5) holds, for all

thermokinetic process if and only if

(3.7) %

where B’z B - =

: 3(trB)I is the deviator of B.

PROOF. Denoting XsL&LinO(S/V) and using (3.6) the inequa-

lity (3.5) can be written as follows

(3.3) ax”s X+B-X+c &0

for=all X&Lino(g}v), Then if we chose Xg}\Ba with N €R arbitrary

chosen (3.8) becomes:

(3.9) KB R e 40

for all X e R, which imply that B%z 0. Then from the relation

(3.6) . it results that'ﬁsL(L,%)QSLih(ﬂ/S). On the other hand

2

the inequality (3.8) becomes:
(3.10) : aXeX+B'+ X+c £ 0

for all XeShin (0,0).

:
Then if we chose Xz AB' for arbitrary » € R we immediately

see that (3.10) is+valids 1if and only if the relations (3.7}

are valid, which concludes the proof of the necessity. For the

sufficiency we appiy the Schwartz inequality and the proof is

immediate



REMARK 3.2. The three conditions (3.7) will be separately

s}

analysed. For this first we shall observe Blhat - (5. 7) implies

@l(@)&o, The equality leads to the degeneracy of the»constituu
tive law (3.1) by the diéappearance of Agy (it is the case which
has been obtained as necessary by Fosdick and Rajagopal consi-
dering the supplemntary hypoteses mentioned to the beginning of

this section). We shall not consider this hypotesis and by con-

sequence %&l(@)4053

The condition (3.7)2 together with (3.6)3vlead to:

Bl B, () tr| AZWZ (A W)2?+u(%)traz+ [& (8)+ec (Qﬂ trA3+

S vl L 1 T i e 1 5 - 1
L 4 i e Dl
iLgl(1)+Zfb(b)+2V3(JU (trAl) 2 0

for all ©>0 and Al@»SLino(ﬁ]V), W & SkewLin (V,V) . Then taking

into account the condition (3.7)l we can prove the following

proposition:

PROPOSITION 3.1. The condition (3.11) with ?&l(%)A?O is

equivalent to:

(2. 12) y(”)+rA2+ &w () +et, (ﬂ)jtrA3+l%4 (O)1+2

0
1. 2%¢1 (‘;)5 (L.»Al) b3

k2(3

3
for all B >0 and Al& SLinO(VﬁT).

PROOF. The necessity is immediate if we choose W= 0. For

AT ——

the sufficiency we denote byuA(3,Al) the left hand side of (3.12)

and we choose W#0, W &SkewLin (V,V). Let >xi, =1 2.3, the proper

1 E ol i s x5l o} o N k&
values of A, (not necessary equal). Let W « , Wya= Pr Wys=

the representation of W in the proper vector base of A;. A simple

calculus leads to the following inequality



A

: T Emo L 22 2
(3.13) A @A -y ) L Og=2) 4" (A=A S =2 2 0

for all &> 0, >\i& Roali=1.2-3, )\l+/\2+,\3: 0) and ol By € R, which

gives the proof of the proposition.gg

With these we can state the main theorem of this section
which gives the necessary and sufficient conditions for the vali-

dity of the inequality (3.12):

THEOREM 3.3. The condition (3:12) is equivalent to the
following restrictions on the constitutive coefficients:

M ®y=o0
(3.14) ' 1{31 (8)+28, (9)+2p, (8) 2 0

q(l (9)+b(2 (8).= 0

wfor alds Bibi0n

PROOF. The sufficiency is immediate. For the necessity
we denote, as in the proof of the Proposition 3.1, with }‘i :

=12, 3 the proper. values.of &A. /\l+>~2+)~3:0. Then we can write

1
(B:12 ) as follows:s ‘

(a5 2#(6)[(Alw\z)z—xl}\;g-{dl(‘é)mz(e)}>\l>\2(>\l+k2)+

+2 [ by (012, ©)+2p, @ Ty 2-a0,12 20

ot -
fortall 1\1,3\2 = R. ‘
Denoting A l+)\2=5, %l}~2=p and 52—p=Z it results that

730 andsi(3515) bec_omes:
‘ 2 ’ Ao 2 :
(3.16)  2[ By @) +2p, B)+2p; ©)] 27+ {24 (0)+3 (¢ (8) +¢, (8) )5 ] -

353t ()4, (0] 20,



for all B30, 230 and se R. Then with necessity we have:

j )A.(%t)) 10

1
l By ()42, (§) +285 (8) 2. 0

for 211 27 0.
Moreover, a necessary condition for the achievement of

(3:16) 15

(3.18) -5 [, () +eL, ()] 2.0

for all 90 and s €R, which gives the relation (3.14)3 and
concludes the proof.@

In conclusion, taking into account the Remark of the end
of the Section‘Z (the relation (2.7)) according to which the
Fourier inequality is valid in the neighbourhood of the equili-
brium states, it results that the Clausius-Duhem inequality is
valid dn the neighbdurhood of the equilibrium states if and only
if the constitutive coefficients of the material verify the res-

trictions:

PL(8)¢ 0, pM(®)20

(3L19) $ Pl(6)+2ﬁ2(6)+2§3(€)L 0

"‘1 (&) +et, (®) =0

-

for all B>0 and the residual inequality (3.7)3
Oon far from equilibrium states the conditions (3.19) are
®

only necessary conditions (and are also sufficient for processes

in which ¥ 8 =0) .



The interpretation of the residual inequality (3.7)3 ;
which is closely connected with the free energy is the object of

the following section.

4, THE FREE ENERGY OF A THIRD GRADE FLUID

- In this section we are interested in the construction of
the class of ‘functions which can be chosen as free energy for a

third grade “fluid. For this it is essential to interpret the

inequality (3.7)3

LEMMA 4, 1. IF (3.7) . holds: then

3

(4.1) *‘?L(L,e )Alel"V L,5)

L
Foriaiul LeLino(v,w).

PROOF. The inequality (3.7)3 is linear in W and must be

satisfied for all W e SkewLin (V,V), then:

(4.2) t6p,® [ ¥iwea-a B we]wao,

for alil Lc:LinO(ﬁ)ﬂ) and W ¢ SkewLin (V,V) .

REMARKA4.1. The inequality (3.7)3 (as we see from the

Lemma 4.1) is equivalent with the relation (4.1) and the follow-

ing inequality:

5 o w2ng
(4.3) | oW/ (1,9)-d (DA -[3B, ®)+2p,(0}]AT]" ¢
& # 200 2 e o o )
§ =4 O)p(B) tral+3 [3p] (8)+4p; (8)-12p,(B)B; B) | * (trA]) " ,

where we have denoted \f1%5f~f for all felLin (S V)



From (4.1) we easily deduce the isotropy of ¥ _ and S0
we have the following chain rule

et L r‘:,/
4

;:!;,) f) = 7‘“3 6‘? 2 \ Wi 3
(@.4) % o (1,8} = sAl( ) =4A, \ ¥(x,y D) +607 ys(x,y,O)

where we have denoted x=trAi ’ y=trAi and:

o

(4.5) W (L,8) wTA,,0) =Y (x,y,0).
With these we are ready to prove the following lemma:

LEMMA 4.2. If the Clausius-Duhem inequality is valid then

with necessity:

(4.6) 3 xz)f@+4 %'@+uwﬂx> 0
. E ‘°y e 2

tor all xeR+ , 050, y €R and where:

oy (8) 3p, (B8)-2p, ()
(4. 7) gN%x v,9) gﬁ(x VLD )= 14 X- ! z b3 Y

PROOF. Having in view the relations (4.5) and (3.5) we

. shall observe that (3.5) becomes (with w=0, A =0) :

3 (6) -2%. (&)
2+~&1 %)trAi ?1 q ?3

= 2 1
(4.8) g“ﬁAlﬂAl,G)-Al y - §,K@)LrA

-(trAi)z

which, toghether with (4:4), leads to:

= 0)-2 )
(4.9) 4§yé°“ &u%+3gx%§?mdﬁw—%“®y- 2! 5 s (uﬂ@zﬂu%sz

for all (x,y)éR+xR and 850. With this the proof is finished. @



REMARK 4.2. We can remark that the free energy on visco-

metric motion dis given by:

0~ =~

(4.10) Y (x,0,0) = ’“‘.’ (x,9)

The problem of finding the solutions of the ineguation

(4.6): with the condition

"%(X,O,@)=’%O(x,6)

o % o (9)
where ”VO(X,@)EWQ(X,%)— ~%§w—x is thus reduced to the following
problem:
30229 a+4; o +u(0)}~. Ed 0D
3 y Y ) Xy Y0
(had 1)

l"?t’(x,O,‘E*)=f';'¢,(x,f})

in the domain R xR , for all 9% 0 and where

- . > : 1 i
feMslgRxRR, — R lge CRR} ®

The Lemmas 4.1, 4.2 and the Remark 4.2 lead us to the

following main result:

Theorem 4.1. The problem (4.11) has a unique solution

given by:
o e}
G412 ﬂ’f(x,y;5)=“ﬁ4(x3—2y2)1/3;0)+
il 2 2 ); 3 3 2 173
§§Sy (x —2y +2Y / /u(@ % =2y FZY ) / } ‘
; dY

(X3~2 +2Y )2/3

PROOF. The uniqueness is obvious. For the existence we

apply the classic method for solving the linear hyperbolic



equations, observing that the problem (4.11) is equivalent to:

l

(4.13) Iy

1
H
I

£ (x(E) ,y (£),0)-u@)x(t)
and

x(0) = u
(4.14) vy (0) =0

z(0)= ¥_(u;6)

The solution of this new problem lead to

e et

e
Jet= Y
i i (u3+2y2)2/3

(4.15)

o t

L zﬁgu%ﬂ=ﬂ%hu@ﬂé{f&(&uh y(snﬂ;@%yd@XGLugdS

Then denoting by u the inverse of u and t=£(x,y) we have:
%L 3 t(x,y) :
(4.16) wyf(x,y;ﬁ):“%(u(x,y);ﬁo+ S E f(x(s,u(x,yk@,y(s,u(x,y)»—
' o

—ﬁ(@h<w,a(X&ﬁ)]ds

We complete the proof if we observe that the function:

Y
1 d
W Ve
3? é (u3+2y‘4)2/3

is invertible. Then proceeding in (4.16) to the following change

of variables



¥ .

S:-:,_]I..., S a E’:}

% 14
3? eix ~2y2+2?2)2/3
where:
: Y

el o7 e

0 X =2y +2% )

we easily-ebtain ‘thie solution on the form given i1 the relation

(4.12) .

REMARE 4.3, From (4.12), (4.10) and (4.7) 4t results the

)
representation for the free energy ¥ and finally we shall have:

g 1 21 (©) 2
@7 Q % f(Al,Az,e)zigisl (é))_Al Ayt Shte il =5
3g, (8)-28, (6)
il : - trA§+§”’ uxA tnAi,@)

Denoting by z=trAlA2 an elementary calculus leads us to:

P ,‘\( 1 3
(4.18) ?W%(Al,A2ﬁ9ﬁ3? V(x,y,z,®)=§ B

¢ (©)z -3 P (O)y+

1

L @]x 6200 3 Y ad-2yH 13 0y 4
0
d§
(X =2y +2Y

+§ [ (eP-2y%4277) 1/3 y

3 =2 1/3
F(X 2y +2¥") j =

O & i

REMARK 4.4.. When (4.18) and restrictions (1.31)=(1,33) are

taken into account we observe that the partial derivatives of 9
must be bounded on all paths in the neighbourghood of (0,0,0,8).

N
Then from the boundedness of 0 i# we can easily deduce that

(4.19) 4gbx§om,%=ﬁ}@

That means thatckl(@) is the measure of the variation of



free ener on viscometric motion in the neighbourhood of
g

equilibrium state. @

REMARK 4.5. From the same- condition concerning the bounded-

~
ness of partial derivatives of "V we deduce that

(4.20) f(x,y:09)=g(x,y:8)+p(0)x

with
‘ g(x,y:9)
(4 .21) lim i S o i 0
x,y-»O b’

REMARK 4.6. As “Vf(x,y,@) must verify the equation (4.11)l
. o

for y=0, then the boundedness of the derivative 'by"Vf} y=0 and

the Remark (4.4) lead to

o 0’(1(6)
4.22) Bxht (X,@)z_zgrﬂ

and therefore the free energy of a third grade fluid on visco-

: . ; ; : 2
metric motion is linear in X=trAl

i /'A = "’s g r-(,‘,.) (:;
(4.23) xo(x,L) T *, (B x+ ‘O(O, )

om
~

In addition if we compare the viscometric stress relation

(see for example [6]) .:

S G, (k) G (ki)
(4.24) T(x,t)=~p1+ﬁiﬁ§Ll(M+MT)=,1 bt
| [kl k|

with- (3.1) written on viscometricy flows, that is:

(4.25)  T(x,t)=-pI+a() (M+MT) et (8) (M M-MM) +

‘ e D
+2, (8) 1kl 2 ") 428, (0) 1K1 % Q)

where we have emploiéd the well known relations Als M+MT,



A 212MTM and A_= 0, we are led to:

2 3
& i = - , ) i
-wmé%?«l=pdw)+2;3(@)k +2;b(%)k2
(4.26) u‘l( ki)

Moreover from the constitutive restrictions (3,14)2 we
Slik))

deduce ®hat B (lki) 2.0, for little ki (1ki—=>0) -TET~=O(1) and
£ sk ) _ 2 :
or great ik} (tkt—> o) —wTET—_O(k ). If we employ the relatlons_
2 - 2
(4.26)2 3 we easily see that ‘32(%k1)~61(ak\)=—2mlk #0 and then
7

according to {6], for example, this fluid can experience a

/

Weissemberg effect.
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